Scaling of the Sasamoto-Spohn model in equilibrium*

Milton Jara ${ }^{\dagger} \quad$ Gregorio R. Moreno Flores ${ }^{\ddagger}$

Abstract

We prove the convergence of the Sasamoto-Spohn model in equilibrium to the energy solution of the stochastic Burgers equation on the whole line. The proof, which relies on the second order Boltzmann-Gibbs principle, follows the approach of [9] and does not use any spectral gap argument.

Keywords: KPZ equation; Burgers equation; Sasamoto-Spohn model.
AMS MSC 2010: Primary 60K35, Secondary 82B20; 60H15.
Submitted to ECP on October 29, 2018, final version accepted on December 20, 2018.

1 Model and results

The goal of this note is to show the convergence of a certain discretization of the stochastic Burgers equation:

$$
\begin{equation*}
\partial_{t} u=\frac{1}{2} \partial_{x}^{2} u+\partial_{x} u^{2}+\partial_{x} \mathscr{W} \tag{1.1}
\end{equation*}
$$

where \mathscr{W} is a space-time white noise. This equation can be seen as the evolution of the slope of solutions to the KPZ equation [15] which is itself a model of an interface in a disordered environment. The KPZ/Burgers equation has been subject to an extensive body of work in the last years. It appears as the scaling limit of a wide range of particle systems [4, 8], directed polymer models [1, 20] and interacting diffusions [6], and constitutes a central element in a vast family of models known as the KPZ universality class [5, 21].

Due to the nonlinearity, a lot of care has to be taken to obtain a notion of solution for (1.1). There are today several alternatives, for instance, regularity structure [14], paracontrolled distributions [11] and energy solutions [8, 10, 12], which is the approach we will follow.

The discretization we consider corresponds to

$$
\begin{equation*}
d u_{j}=\frac{1}{2} \Delta u_{j}+\gamma B_{j}(u)+d \xi_{j}-d \xi_{j-1} \tag{1.2}
\end{equation*}
$$

[^0]where $\left(\xi_{j}\right)_{j}$ is an i.i.d. family of standard one-dimensional Brownian motions,
\[

$$
\begin{aligned}
\Delta u_{j} & =u_{j+1}+u_{j-1}-2 u_{j} \\
B_{j}(u) & =w_{j}-w_{j-1} \quad \text { with } \quad w_{j}=\frac{1}{3}\left(u_{j}^{2}+u_{j} u_{j+1}+u_{j+1}^{2}\right)
\end{aligned}
$$
\]

This model, introduced in [16] (see also [17]) and further studied in [22], is nowadays often referred to as the Sasamoto-Spohn model.

While the discretization of the second derivative and noise are quite straightforward, there are a priori several ways to discretize the nonlinearity in Burgers equation. This particular choice is motivated by two reasons: first, it only involves nearest neighbor sites and, second, it yields the explicit invariant measure $\mu=\rho^{\otimes \mathbb{Z}}$, where $d \rho(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$ (see Section 3).

Our result states the convergence of the discrete equations (1.2) to Burgers equation in the sense of energy solutions (see Section 2 for a precise definition).
Theorem 1.1. For each $n \geq 1$, let u^{n} be the solution to the system (1.2) for $\gamma=n^{-1 / 4}$ and initial law μ, and let

$$
\mathcal{X}_{t}^{n}(\varphi)=\frac{1}{n^{1 / 4}} \sum_{j} u_{j}^{n}(t n) \varphi\left(\frac{j}{\sqrt{n}}\right)
$$

The sequence of processes $\left(\mathcal{X}^{n}\right)_{n \geq 1}$ converges in distribution in $C\left([0, T], \mathcal{S}^{\prime}(\mathbb{R})\right)$ to the unique energy solution of the Burgers equation.

A similar result was shown in [11] for much more general initial conditions although restricted to the periodic setting.

At the technical level, our approach relies on the techniques of [9] and avoids the use of any spectral gap estimate. The core of the proof consists in deriving certain dynamical estimates among which the so-called second order Boltzmann-Gibbs principle plays a major role. A key ingredient is a certain integration-by-parts satisfied by the model.

The paper is organized as follows: in Section 2, we recall the notion of energy solution from [8]. We show the invariance of the measure μ in Section 3. In Section 4, we prove the dynamical estimates. Finally, in Sections 5 and 6, we show, respectively, tightness and convergence to the energy solution. The construction of the dynamics (1.2) is given in the appendix.

Notations: We denote by $\mathcal{S}(\mathbb{R})$ the space of Schwarz functions on \mathbb{R}. For $n \geq 1$ and a smooth function φ, we define $\varphi_{j}^{n}=\varphi\left(\frac{j}{\sqrt{n}}\right), \nabla^{n} \varphi_{j}^{n}=\sqrt{n}\left(\varphi_{j+1}^{n}-\varphi_{j}^{n}\right)$ and $\Delta^{n} \varphi_{j}^{n}=$ $n\left(\varphi_{j+1}^{n}+\varphi_{j-1}^{n}-2 \varphi^{n}\right)$. We also define

$$
\mathcal{E}(\varphi)=\int \varphi^{2}(x) d x, \quad \mathcal{E}_{n}(\psi)=\frac{1}{\sqrt{n}} \sum_{j \in \mathbb{Z}} \psi_{j}^{2}
$$

respectively, for $\varphi \in L^{2}(\mathbb{R})$ and $\psi \in l^{2}(\mathbb{Z})$.

2 Energy solutions of the Burgers equation

We will introduce the notion of an energy solution for Burgers equation [8]. We start with two definitions:
Definition 2.1. We say that a process $\left\{u_{t}: t \in[0, T]\right\}$ satisfies condition (S) if, for all $t \in[0, T]$, the $\mathcal{S}^{\prime}(\mathbb{R})$-valued random variable u_{t} is a white noise of variance 1 .

For a stationary process $\left\{u_{t}: t \in[0, T]\right\}, 0 \leq s<t \leq T, \varphi \in \mathcal{S}(\mathbb{R})$ and $\varepsilon>0$, we define

$$
\mathcal{A}_{s, t}^{\varepsilon}(\varphi)=\int_{s}^{t} \int_{\mathbb{R}} u_{r}\left(i_{\varepsilon}(x)\right)^{2} \partial_{x} \varphi(x) d x d r
$$

where $i_{\varepsilon}(x)=\varepsilon^{-1} \mathbf{1}_{(x, x+\varepsilon]}$.
Definition 2.2. Let $\left\{u_{t}: t \in[0, T]\right\}$ be a process satisfying condition (S). We say that $\left\{u_{t}: t \in[0, T]\right\}$ satisfies the energy estimate if there exists a constant $\kappa>0$ such that: (EC1) For any $\varphi \in \mathcal{S}(\mathbb{R})$ and any $0 \leq s<t \leq T$,

$$
\mathbb{E}\left[\left|\int_{s}^{t} u_{r}\left(\partial_{x}^{2} \varphi\right) d r\right|^{2}\right] \leq \kappa(t-s) \mathcal{E}\left(\partial_{x} \varphi\right)
$$

(EC2) For any $\varphi \in \mathcal{S}(\mathbb{R})$, any $0 \leq s<t \leq T$ and any $0<\delta<\varepsilon<1$,

$$
\mathbb{E}\left[\left|\mathcal{A}_{s, t}^{\varepsilon}(\varphi)-\mathcal{A}_{s, t}^{\delta}(\varphi)\right|^{2}\right] \leq \kappa(t-s) \varepsilon \mathcal{E}\left(\partial_{x} \varphi\right)
$$

We state a theorem proved in [8]:
Theorem 2.3. Assume $\left\{u_{t}: t \in[0, T]\right\}$ satisfies (S) and (EC2). There exists an $\mathcal{S}^{\prime}(\mathbb{R})$ valued stochastic process $\left\{\mathcal{A}_{t}: t \in[0, T]\right\}$ with continuous paths such that

$$
\mathcal{A}_{t}(\varphi)=\lim _{\varepsilon \rightarrow 0} \mathcal{A}_{0, t}^{\varepsilon}(\varphi)
$$

in L^{2}, for any $t \in[0, T]$ and $\varphi \in \mathcal{S}(\mathbb{R})$.
We are now ready to formulate the definition of an energy solution:
Definition 2.4. We say that $\left\{u_{t}: t \in[0, T]\right\}$ is a stationary energy solution of the Burgers equation if

- $\left\{u_{t}: t \in[0, T]\right\}$ satisfies (S), (EC1) and (EC2).
- For all $\varphi \in \mathcal{S}(\mathbb{R})$, the process

$$
u_{t}(\varphi)-u_{0}(\varphi)-\frac{1}{2} \int_{0}^{t} u_{s}\left(\partial_{x}^{2} \varphi\right) d s-\mathcal{A}_{t}(\varphi)
$$

is a martingale with quadratic variation $t \mathcal{E}\left(\partial_{x} \varphi\right)$, where \mathcal{A} is the process from Theorem 2.3.

Existence of energy solutions was proved in [8]. Uniqueness was proved in [12].

3 Generator and invariant measure

The construction of the dynamics given by (1.2) is detailed in Appendix A. We denote by \mathscr{C} the set of cylindrical functions F of the form $F(u)=f\left(u_{-n}, \cdots, u_{n}\right)$, for some $n \geq 0$, with $f \in C^{2}\left(\mathbb{R}^{2 n+1}\right)$ with polynomial growth of its partial derivatives up to order 2 . The generator of the dynamics (1.2) acts on \mathscr{C} as

$$
L=\sum_{j}\left\{\frac{1}{2}\left(\partial_{j+1}-\partial_{j}\right)^{2}-\frac{1}{2}\left(u_{j+1}-u_{j}\right)\left(\partial_{j+1}-\partial_{j}\right)+\gamma B_{j}(u) \partial_{j}\right\}
$$

where $\partial_{j}=\frac{\partial}{\partial u_{j}}$. Let us introduce the operators

$$
S=\sum_{j}\left\{\frac{1}{2}\left(\partial_{j+1}-\partial_{j}\right)^{2}-\frac{1}{2}\left(u_{j+1}-u_{j}\right)\left(\partial_{j+1}-\partial_{j}\right)\right\}, \quad A=\sum_{j} \gamma B_{j}(u) \partial_{j}
$$

which formally correspond to the symmetric and anti-symmetric parts of L with respect to $\mu=\rho^{\otimes \mathbb{Z}}$, where $d \rho(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$. We note that our model satisfies the Gaussian integration-by-parts formula:

$$
\int u_{j} f d \mu=\int \partial_{j} f d \mu
$$

which will be heavily used in the sequel.
We will also consider the periodic model u^{M} on $\mathbb{Z}_{M}:=\mathbb{Z} / M \mathbb{Z}$ and denote by L_{M}, S_{M} and A_{M} the corresponding generator and its symmetric and anti-symmetric parts respectively. Finally, denote $\mu_{M}=\rho^{\otimes \mathbb{Z}_{M}}$ and let ρ_{M} be its density.
Lemma 3.1. The measure μ_{M} is invariant for the periodic dynamics u^{M}.
Proof. The lemma follows from Echeverría's criterion ([7], Thm 4.9.17) once we show

$$
\int L_{M} f d \mu_{M}=0
$$

for all $f \in C^{2}\left(\mathbb{R}^{\mathbb{Z}_{M}}\right)$ with polynomial growth of its derivatives up to order 2. By standard integration-by-parts,

$$
\int S_{M} f d \mu_{M}=\int f(u) S_{M}^{\dagger} \rho_{M}(u) d u_{-M} \cdots d u_{M}
$$

where

$$
S_{M}^{\dagger}=\frac{1}{2} \sum_{j \in \mathbb{Z}_{M}}\left\{\left(\partial_{j+1}-\partial_{j}\right)^{2}+\left(u_{j}-u_{j+1}\right)\left(\partial_{j}-\partial_{j+1}\right)+2\right\}
$$

It is a simple computation to show that $S_{M}^{\dagger} \rho_{M} \equiv 0$. It then remains to verify that

$$
\int A_{M} f d \mu_{M}=\int \sum_{j \in \mathbb{Z}_{M}}\left(w_{j}-w_{j-1}\right) \partial_{j} f(u) \rho_{M}(u) d u_{-M} \cdots d u_{M}=0
$$

But, using standard integration-by-parts once again, we can verify that there exists a degree three polynomial in two variables $p(\cdot, \cdot)$ such that

$$
\int A_{M} f d \mu_{m}=\int \sum_{j \in \mathbb{Z}_{M}} f(u)\left\{p\left(u_{j}, u_{j+1}\right)-p\left(u_{j-1}, u_{j}\right)\right\} d \mu_{M}
$$

Finally, Gaussian integration-by-parts yields a degree two polynomial in two variables $\tilde{p}(\cdot, \cdot)$ such that

$$
\int A_{M} f d \mu_{M}=\int \sum_{j \in \mathbb{Z}_{M}}\left\{\tilde{p}\left(\partial_{j}, \partial_{j+1}\right)-\tilde{p}\left(\partial_{j-1}, \partial_{j}\right)\right\} f(u) d \mu
$$

which is telescopic. This ends the proof.
By construction of the infinite volume dynamics and taking the limit $M \rightarrow \infty$, we obtain
Corollary 1. The measure μ is invariant for the dynamics (1.2).

4 The second-order Boltzmann-Gibbs principle

We recall the Kipnis-Varadhan inequality: there exists $C>0$ such that

$$
\begin{equation*}
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|\int_{0}^{t} F(u(s n)) d s\right|^{2}\right] \leq C T \|\left. F(\cdot)\right|_{-1, n} ^{2} d s \tag{4.1}
\end{equation*}
$$

where the $\|\cdot\|_{-1, n}$-norm is defined through the variational formula

$$
\|F\|_{-1, n}^{2}=\sup _{f \in \mathscr{C}}\left\{2 \int F(u) f d \mu+n \int f L f d \mu\right\}
$$

The proof of this inequality in our context follows from a straightforward modification of the arguments of [12], Corollary 3.5. In our particular model, we have

$$
-\int f L f d \mu=\frac{1}{2} \sum_{j} \int\left(\left(\partial_{j+1}-\partial_{j}\right) f\right)^{2} d \mu
$$

so that the variational formula becomes

$$
\|F\|_{-1, n}^{2}=\sup _{f \in \mathscr{C}}\left\{2 \int F(u) f d \mu-\frac{n}{2} \sum_{j} \int\left(\left(\partial_{j+1}-\partial_{j}\right) f\right)^{2} d \mu\right\}
$$

Denote by τ_{j} the canonical shift $\tau_{j} u_{i}=u_{j+i}$ and let $\vec{u}_{j}^{l}=\frac{1}{l} \sum_{k=1}^{l} u_{j+k}$.
Lemma 4.1. Let $l \geq 1$ and let g be a function with zero mean with respect to μ which support does not intersect $\{1, \cdots, l\}$. Let $g_{j}(s)=g\left(\tau_{j} u(s)\right)$. There exists a constant $C>0$ such that

$$
\begin{equation*}
\mathbb{E}\left[\left|\int_{0}^{t} d s \sum_{j} g_{j}(s n)\left[u_{j+1}(s n)-\vec{u}_{j}^{l}(s n)\right] \varphi_{j}\right|^{2}\right] \leq C \frac{t l}{\sqrt{n}}\|g\|_{L^{2}(\mu)}^{2} \mathcal{E}_{n}(\varphi) \tag{4.2}
\end{equation*}
$$

Proof. Let $\psi_{i}=\frac{l-i}{l}, i=0, \cdots, l-1$. Then,

$$
u_{j+1}-\vec{u}_{j}^{l}=\sum_{i=1}^{l-1}\left(u_{j+i}-u_{j+i+1}\right) \psi_{i}
$$

Hence,

$$
\begin{aligned}
\sum_{j} \varphi_{j} g_{j}\left(u_{j+1}-\vec{u}_{j}^{l}\right) & =\sum_{j} \varphi_{j} g_{j} \sum_{i=0}^{l-1}\left(u_{j+i}-u_{j+i+1}\right) \psi_{i} \\
& =\sum_{k}\left(\sum_{i=1}^{l-1} \varphi_{k-i} g_{k-i} \psi_{i}\right)\left(u_{k}-u_{k+1}\right) \\
& =: \sum_{k} F_{k}\left(u_{k}-u_{k+1}\right)
\end{aligned}
$$

Now, for $f \in \mathscr{C}$, using integration-by-parts,

$$
\begin{aligned}
2 \int \sum_{j} \varphi_{j} g_{j}\left(u_{j+1}-\vec{u}_{j}^{l}\right) f d \mu & =2 \int \sum_{k} F_{k}\left(u_{k}-u_{k+1}\right) f d \mu \\
& =2 \int \sum_{k} F_{k}\left(\partial_{k}-\partial_{k+1}\right) f d \mu \\
& \leq \int \sum_{k}\left\{\alpha F_{k}^{2}+\frac{1}{\alpha}\left(\left(\partial_{k}-\partial_{k+1}\right) f\right)^{2}\right\} d \mu
\end{aligned}
$$

by Young's inequality. Taking $\alpha=2 / n$, we find that the above is bounded by

$$
\frac{2}{n} \sum_{k} \int \sum_{k} F_{k}^{2} d \mu+\frac{n}{2} \sum_{k} \int\left(\left(\partial_{k}-\partial_{k+1}\right) f\right)^{2} d \mu
$$

which, thanks to the Kipnis-Varadhan inequality, shows that the left-hand-side of (4.2) is bounded by

$$
C \frac{t}{n} \sum_{k} \int F_{k}^{2} d \mu
$$

Finally, as g is centered,

$$
\sum_{k} \int F_{k}^{2} d \mu \leq \sum_{k} \sum_{i=1}^{l-1} \varphi_{k-i}^{2} \int g^{2} d \mu \leq l \sqrt{n} \int g^{2} d \mu \mathcal{E}_{n}(\varphi) .
$$

We now state the second-order Boltzmann-Gibbs principle: let $Q(l, u)=\left(\vec{u}_{0}^{l}\right)^{2}-\frac{1}{l}$, Proposition 4.2. Let $l \geq 1$. There exists a constant $C>0$ such that

$$
\mathbb{E}\left[\left|\int_{0}^{t} d s \sum_{j}\left\{u_{j}(s n) u_{j+1}(s n)-\tau_{j} Q(l, u(s n))\right\} \varphi_{j}\right|^{2}\right] \leq C \frac{t l}{\sqrt{n}} \mathcal{E}_{n}(\varphi)
$$

Proof. We use the factorization

$$
u_{j} u_{j+1}-\tau_{j} Q(l, u)=u_{j}\left(u_{j+1}-\vec{u}_{j}^{l}\right)+\vec{u}_{j}^{l}\left(u_{j}-\vec{u}_{j}^{l}\right)+\frac{1}{l}
$$

We handle the first term with Lemma 4.1. The second term is treated in the following lemma.

Lemma 4.3. Let $l \geq 1$. There exists a constant $C>0$ such that

$$
\mathbb{E}\left[\left|\int_{0}^{t} d s \sum_{j}\left\{\vec{u}_{j}^{l}(s n)\left[u_{j}(s n)-\vec{u}_{j}^{l}(s n)\right]+\frac{1}{l}\right\} \varphi_{j}\right|^{2}\right] \leq C \frac{t l}{\sqrt{n}} \mathcal{E}_{n}(\varphi)
$$

Proof. Let $\psi_{i}=\frac{l-i}{l}$. Then,

$$
\vec{u}_{j}^{l}\left[u_{j}-\vec{u}_{j}^{l}\right]=\sum_{i=0}^{l-1} \psi_{i}\left(u_{j+i}-u_{j+i+1}\right) \vec{u}_{j}^{l} .
$$

For $f \in \mathscr{C}$, using integration-by-parts,

$$
\begin{aligned}
\int \vec{u}_{j}^{l}\left[u_{j}-\vec{u}_{j}^{l}\right] f d \mu & =\int \sum_{i=0}^{l-1} \psi_{i}\left(u_{j+i}-u_{j+i+1}\right) \vec{u}_{j}^{l} f d \mu \\
& =\int\left\{\sum_{i=0}^{l-1} \psi_{i} \vec{u}_{j}^{l}\left(\partial_{j+i}-\partial_{j+i+1}\right) f-\frac{1}{l} f\right\} d \mu
\end{aligned}
$$

The second summand comes from the term $i=0$. Hence,

$$
2 \int \sum_{j} \varphi_{j}\left\{\vec{u}_{j}^{l}\left[u_{j}-\vec{u}_{j}^{l}\right]+\frac{1}{l}\right\} f d \mu=2 \int \sum_{j} \varphi_{j} \sum_{i=0}^{l-1} \psi_{i} \vec{u}_{j}^{l}\left(\partial_{j+i}-\partial_{j+i+1}\right) f d \mu
$$

By Young's inequality, this last expression is bounded by

$$
\begin{aligned}
& \int \sum_{j} \sum_{i=0}^{l-1}\left\{\alpha \varphi_{j}^{2}\left(\vec{u}_{j}^{l}\right)^{2}+\frac{1}{\alpha} \psi_{i}^{2}\left(\left(\partial_{j+i}-\partial_{j+i+1}\right) f\right)^{2}\right\} d \mu \\
\leq & \alpha l \int \sum_{j} \varphi_{j}^{2}\left(\vec{u}_{j}^{l}\right)^{2} d \mu+\frac{l}{\alpha} \int \sum_{j}\left(\left(\partial_{j}-\partial_{j+1}\right) f\right)^{2} d \mu
\end{aligned}
$$

Taking $\alpha=2 l / n$, this is further bounded by

$$
\begin{aligned}
& \frac{2 l^{2}}{n} \int\left(\vec{u}_{j}^{l}\right)^{2} d \mu \sum_{j} \varphi_{j}^{2}+\frac{n}{2} \int \sum_{j}\left(\left(\partial_{j}-\partial_{j+1}\right) f\right)^{2} d \mu \\
\leq & \frac{l}{\sqrt{n}} \mathcal{E}_{n}(\varphi)+\frac{n}{2} \int \sum_{j}\left(\left(\partial_{j}-\partial_{j+1}\right) f\right)^{2} d \mu .
\end{aligned}
$$

The result then follows from the Kipnis-Varadhan inequality.

5 Tightness

In the sequel, we let $\varphi \in \mathcal{S}$ be a test function. Remember the fluctuation field is given by

$$
\mathcal{X}_{t}^{n}(\varphi)=\frac{1}{n^{1 / 4}} \sum_{j} u_{j}(n t) \varphi_{j}^{n}
$$

Recalling the definition of the operators S and A from Section 3, the symmetric and anti-symmetric parts of the dynamics are given by

$$
\begin{aligned}
d \mathcal{S}_{t}^{n}(\varphi) & =n S \mathcal{X}_{t}^{n}(\varphi) d t=\frac{1}{n^{1 / 4}} n \sum_{j} u_{j}(t n) \Delta \varphi_{j}^{n} d t=\frac{1}{n^{1 / 4}} \sum_{j} u_{j}(t n) \Delta^{n} \varphi_{j}^{n} d t \\
d \mathcal{B}_{t}^{n}(\varphi) & =n A \mathcal{X}_{t}^{n}(\varphi) d t=-\frac{1}{n^{1 / 2}} n \sum_{j} w_{j}(t n)\left(\varphi_{j+1}^{n}-\varphi_{j}^{n}\right) d t=\sum_{j} w_{j}(t n) \nabla^{n} \varphi_{j}^{n} d t
\end{aligned}
$$

where we used $\gamma=n^{-1 / 4}$. Then, the martingale part of the dynamics corresponds to

$$
\mathcal{M}_{t}^{n}(\varphi)=\mathcal{X}_{t}^{n}(\varphi)-\mathcal{X}_{0}^{n}(\varphi)-\mathcal{S}_{t}^{n}(\varphi)-\mathcal{B}_{t}^{n}(\varphi)=n^{1 / 4} \int_{0}^{t} \sum_{j}\left(\varphi_{j}-\varphi_{j+1}\right) d \xi_{j}(s)
$$

and has quadratic variation

$$
\left\langle\mathcal{M}^{n}(\varphi)\right\rangle_{t}=n^{1 / 2} t \sum_{j}\left(\varphi_{j}^{n}-\varphi_{j+1}^{n}\right)^{2}=t \mathcal{E}_{n}\left(\nabla^{n} \varphi^{n}\right)
$$

We will use Mitoma's criterion [19]: a sequence \mathcal{Y}^{n} is tight in $C\left([0, T], \mathcal{S}^{\prime}(\mathbb{R})\right)$ if and only if $\mathcal{Y}^{n}(\varphi)$ is tight in $C([0, T], \mathbb{R})$ for all $\varphi \in \mathcal{S}(\mathbb{R})$.

5.1 Martingale term

We recall that $\left\langle\mathcal{M}^{n}(\varphi)\right\rangle=t \mathcal{E}_{n}\left(\nabla^{n} \varphi^{n}\right)$. From the Burkholder-Davis-Gundy inequality, it follows that

$$
\mathbb{E}\left[\left|\mathcal{M}_{t}^{n}(\varphi)-\mathcal{M}_{s}^{n}(\varphi)\right|^{p}\right] \leq C|t-s|^{p / 2} \mathcal{E}_{n}\left(\nabla^{n} \varphi^{n}\right)^{p / 2}
$$

for all $p \geq 1$. Tightness then follows from Kolmogorov criterion by taking p large enough.

5.2 Symmetric term

Tightness is obtained via a second moment computation and Kolmogorov criterion:

$$
\mathbb{E}\left[\left|\mathcal{S}_{t}^{n}(\varphi)-\mathcal{S}_{s}^{n}(\varphi)\right|^{2}\right] \leq|t-s|^{2} \frac{1}{\sqrt{n}} \sum_{j} \mathbb{E}\left[u_{j}^{2}\right]\left(\Delta^{n} \varphi_{j}^{n}\right)^{2}=|t-s|^{2} \mathcal{E}_{n}\left(\Delta^{n} \varphi^{n}\right)
$$

5.3 Anti-symmetric term

We study the tightness of the term

$$
\begin{aligned}
\mathcal{B}_{t}^{n}(\varphi) & =\int_{0}^{t} \sum_{j} w_{j}(s n) \nabla^{n} \varphi_{j}^{n} d s \\
& =\int_{0}^{t} \sum_{j} \frac{1}{3}\left[u_{j+1}^{2}(s n)+u_{j}(s n) u_{j+1}(s n)+u_{j}^{2}(s n)\right] \nabla^{n} \varphi_{j}^{n} d s
\end{aligned}
$$

We begin with a lemma:

Lemma 5.1. The process

$$
Y_{t}^{n}(\varphi)=\int_{0}^{t} d s \sum_{j} \varphi_{j}\left\{\left(u_{j}(s n) u_{j+1}(s n)-u_{j}^{2}(s n)\right)+1\right\}
$$

goes to zero in the ucp topology.
Proof. Using integration by parts,

$$
\begin{aligned}
\int \sum_{j} \varphi_{j}\left(u_{j} u_{j+1}-u_{j}^{2}\right) f d \mu & =\int \sum_{j} \varphi_{j}\left(u_{j+1}-u_{j}\right) u_{j} f d \mu \\
& =\int \sum_{j} \varphi_{j}\left(\partial_{j+1}-\partial_{j}\right)\left(u_{j} f\right) d \mu \\
& =\int \sum_{j} \varphi_{j}\left\{u_{j}\left(\partial_{j+1}-\partial_{j}\right) f-f\right\}
\end{aligned}
$$

Hence,

$$
\int \sum_{j} \varphi_{j}\left\{\left(u_{j} u_{j+1}-u_{j}^{2}\right)+1\right\} f d \mu=\int \sum_{j} \varphi_{j} u_{j}\left(\partial_{j+1}-\partial_{j}\right) f d \mu
$$

Using Young's inequality,

$$
\begin{aligned}
2 \int \sum_{j} \varphi_{j}\left\{\left(u_{j} u_{j+1}-u_{j}^{2}\right)+1\right\} f d \mu & \leq \int \sum_{j}\left\{\alpha \varphi_{j}^{2} u_{j}^{2}+\frac{1}{\alpha}\left(\left(\partial_{j+1}-\partial_{j}\right) f\right)^{2}\right\} d \mu \\
& \leq \frac{2}{\sqrt{n}} \mathcal{E}_{n}(\varphi)+\frac{n}{2} \sum_{j} \int\left(\left(\partial_{j+1}-\partial_{j}\right) f\right)^{2} d \mu
\end{aligned}
$$

by taking $\alpha=2 / n$. Into the Kipnis-Varadhan inequality, this yields

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|\int_{0}^{t} d s \sum_{j} \varphi_{j}\left\{\left(u_{j}(s n) u_{j+1}(s n)-u_{j}^{2}(s n)\right)+1\right\}\right|^{2}\right] \leq \frac{C T}{\sqrt{n}} \mathcal{E}_{n}(\varphi)
$$

which shows that this process goes to zero in the ucp topology.
This means we can switch the term w_{j} in the anti-symmetric part of the dynamics by $u_{j} u_{j+1}$ modulo a vanishing term. Note that, as we apply the previous lemma to a gradient, the constant term 1 will disappear. We are then left to prove the tightness of

$$
\widetilde{\mathcal{B}}_{t}^{n}(\varphi)=\int_{0}^{t} \sum_{j} u_{j}(s n) u_{j+1}(s n) \nabla^{n} \varphi_{j}^{n} d s
$$

From Proposition 4.2, we have

$$
\mathbb{E}\left[\left|\widetilde{\mathcal{B}}_{t}^{n}(\varphi)-\int_{0}^{t} \sum_{j} \tau_{j} Q(l, u(s n)) \nabla^{n} \varphi_{j}^{n} d s\right|^{2}\right] \leq C \frac{t l}{\sqrt{n}} \mathcal{E}_{n}\left(\nabla^{n} \varphi^{n}\right)
$$

where, here and below, C denotes a constant which value can change from line to line. On the other hand, a careful L^{2} computation, taking dependencies into account, shows that

$$
\mathbb{E}\left[\left|\int_{0}^{t} \sum_{j} \tau_{j} Q(l, u(s n)) \nabla^{n} \varphi_{j}^{n} d s\right|^{2}\right] \leq C \frac{t^{2} \sqrt{n}}{l} \mathcal{E}_{n}\left(\nabla^{n} \varphi^{n}\right)
$$

Observe that $\lim _{n \rightarrow \infty} \mathcal{E}_{n}\left(\nabla^{n} \varphi^{n}\right)=\int \partial_{x} \varphi(x)^{2} d x<\infty$. Summarizing,

$$
\mathbb{E}\left[\left|\widetilde{\mathcal{B}}_{t}^{n}(\varphi)\right|^{2}\right] \leq C\left\{\frac{t l}{\sqrt{n}}+\frac{t^{2} \sqrt{n}}{l}\right\}
$$

For $t \geq 1 / n$, we take $l \sim \sqrt{t n}$ and get

$$
\mathbb{E}\left[\left|\widetilde{\mathcal{B}}_{t}^{n}(\varphi)\right|^{2}\right] \leq C t^{3 / 2}
$$

For $t \leq 1 / n$, a crude L^{2} bound gives

$$
\mathbb{E}\left[\left|\widetilde{\mathcal{B}}_{t}^{n}(\varphi)\right|^{2}\right] \leq C t^{2} \sqrt{n} \leq C t^{3 / 2}
$$

This gives tightness.

6 Convergence

From the previous section, we get processes $\mathcal{X}, \mathcal{S}, \mathcal{B}$ and \mathcal{M} such that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathcal{X}^{n} & =\mathcal{X}, \quad \lim _{n \rightarrow \infty} \mathcal{S}^{n}=\mathcal{S} \\
\lim _{n \rightarrow \infty} \mathcal{B}^{n} & =\mathcal{B}, \quad \lim _{n \rightarrow \infty} \mathcal{M}^{n}=\mathcal{M}
\end{aligned}
$$

along a subsequence that we still denote by n. We will now identify these limiting processes.

6.1 Convergence at fixed times

A straightforward adaptation of the arguments in [6], Section 4.1.1, shows that \mathcal{X}_{t}^{n} converges to a white noise for each fixed time $t \in[0, T]$. This in turns proves that the limit satisfies property (S).

6.2 Martingale term

The quadratic variation of the martingale part satisfies

$$
\lim _{n \rightarrow \infty}\left\langle\mathcal{M}^{n}(\varphi)\right\rangle_{t}=t\left\|\partial_{x} \varphi\right\|_{L^{2}}^{2}
$$

By a criterion of Aldous [2], this implies convergence to the white noise.

6.3 Symmetric term

A second moment bound shows that

$$
\mathbb{E}\left[\left|\mathcal{S}_{t}^{n}(\varphi)-\int_{0}^{t} \mathcal{X}_{s}^{n}\left(\partial_{x}^{2} \varphi\right) d s\right|^{2}\right] \leq C \frac{t^{2}}{n}
$$

which shows that

$$
\mathcal{S}(\varphi)=\lim _{n \rightarrow \infty} \mathcal{S}^{n}(\varphi)=\int_{0} \mathcal{X}_{s}\left(\partial_{x}^{2} \varphi\right) d s
$$

6.4 Anti-symmetric term

We just have to identify the limit of the process $\widetilde{\mathcal{B}}^{n}(\varphi)$. Remembering the definition of the field \mathcal{X}^{n}, we observe that

$$
\sqrt{n} Q(\varepsilon \sqrt{n}, u(n t))=\mathcal{X}_{t}^{n}\left(i_{\varepsilon}(0)\right)^{2}-\frac{1}{\varepsilon}
$$

from where we get the convergences

$$
\lim _{n \rightarrow \infty} \sqrt{n} Q(\varepsilon \sqrt{n}, u(n t))=\mathcal{X}_{t}\left(i_{\varepsilon}(0)\right)^{2}-\frac{1}{\varepsilon}
$$

and

$$
\mathcal{A}_{s, t}^{\varepsilon}(\varphi):=\lim _{n \rightarrow \infty} \int_{s}^{t} \sum_{j} \tau_{j} Q(\varepsilon \sqrt{n}, u(r n)) \nabla^{n} \varphi_{j}^{n} d r .
$$

The second limit follows by a suitable approximation of $i_{\varepsilon}(x)$ by $\mathcal{S}(\mathbb{R})$ functions (see [8], Section 5.3 for details). Now, by the second-order Boltzmann-Gibbs principle and stationarity,

$$
\mathbb{E}\left[\left|\widetilde{\mathcal{B}}_{t}^{n}(\varphi)-\widetilde{\mathcal{B}}_{s}^{n}(\varphi)-\int_{s}^{t} \sum_{j} \tau_{j} Q(l, u(r n)) \nabla^{n} \varphi_{j}^{n} d r\right|^{2}\right] \leq C \frac{(t-s) l}{\sqrt{n}} .
$$

Taking $l \sim \varepsilon \sqrt{n}$ and the limit as $n \rightarrow \infty$ along the subsequence,

$$
\begin{equation*}
\mathbb{E}\left[\left|\mathcal{B}_{t}(\varphi)-\mathcal{B}_{s}(\varphi)-\mathcal{A}_{s, t}^{\varepsilon}(\varphi)\right|^{2}\right] \leq C(t-s) \varepsilon \tag{6.1}
\end{equation*}
$$

The energy estimate (EC2) then follows by the triangle inequality. Theorem 2.3 yields the existence of the process

$$
\mathcal{A}_{t}(\varphi)=\lim _{\varepsilon \rightarrow 0} \mathcal{A}_{0, t}^{\varepsilon}(\varphi)
$$

Furthermore, from (6.1), we deduce that $\mathcal{B}=\mathcal{A}$.
It remains to check (EC1). It is enough to check that

$$
\mathbb{E}\left[\left|\int_{0}^{t} \mathcal{X}_{s}^{n}\left(\partial_{x}^{2} \varphi\right)\right|^{2}\right] \leq \kappa t .
$$

Using the smoothness of φ and a summation by parts, it is further enough to verify that

$$
\begin{equation*}
\mathbb{E}\left[\left|\int_{0}^{t} n^{1 / 4} \sum_{j}\left[u_{j+1}(s n)-u_{j}(s n)\right] \nabla^{n} \varphi_{j}^{n}\right|^{2}\right] \leq \kappa t \tag{6.2}
\end{equation*}
$$

For that purpose, we will use Kipnis-Varadhan inequality one last time: let $f \in \mathscr{C}$,

$$
\begin{aligned}
2 \int n^{1 / 4} \sum_{j}\left(u_{j+1}-u_{j}\right) \nabla^{n} \varphi_{j}^{n} f d \mu & =2 \int n^{1 / 4} \sum_{j} \nabla^{n} \varphi_{j}^{n}\left(\partial_{j+1}-\partial_{j}\right) f d \mu \\
& \leq \sum_{j}\left\{\alpha \sqrt{n}\left(\nabla^{n} \varphi_{j}^{n}\right)^{2}+\frac{1}{\alpha} \int\left(\left(\partial_{j+1}-\partial_{j}\right) f\right)^{2} d \mu\right\} \\
& \leq 2 \mathcal{E}_{n}\left(\nabla^{n} \varphi^{n}\right)+\frac{n}{2} \sum_{j} \int\left(\left(\partial_{j+1}-\partial_{j}\right) f\right)^{2} d \mu
\end{aligned}
$$

with $\alpha=2 / n$, from where (6.2) follows.

A Construction of the dynamics

The system of equations (1.2) can be reformulated as

$$
u_{j}(t)=\frac{1}{2} \int_{0}^{t} \Delta u_{j}(s) d s+\gamma \int_{0}^{t} B_{j}(u(s)) d s+\xi_{j}(t)-\xi_{j-1}(t)
$$

We consider the system u^{M} on $\mathbb{Z}_{M}=\mathbb{Z} / M \mathbb{Z}$ evolving under its invariant distribution. We first check that, for all j and $T>0$

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|u_{j}^{M}(t)\right|^{2}\right]<\infty
$$

so that the dynamics is well-defined. Everything boils down to estimates of type

$$
\begin{aligned}
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|\int_{0}^{t} u_{j}^{M}(s) d s\right|^{2}\right] & \leq T \mathbb{E}\left[\sup _{0 \leq t \leq T} \int_{0}^{t}\left|u_{j}^{M}(s)\right|^{2} d s\right] \\
& \leq T \mathbb{E}\left[\int_{0}^{T}\left|u_{j}^{M}(s)\right|^{2} d s\right] \\
& \leq T^{2},
\end{aligned}
$$

where we used invariance in the last step.
Next, we show tightness of the processes (in M) where we now identify u^{M} with a periodic system on the line. This follows from Kolmogorov's criterion. It is enough to control expressions of type

$$
\mathbb{E}\left[\left|\int_{s}^{t} u_{j}^{M}(r) d r\right|^{4}\right] \leq|t-s|^{3} \mathbb{E}\left[\int_{s}^{t}\left|u_{j}^{M}(r)\right|^{4} d r\right] \leq C|t-s|^{3}
$$

Together with a standard estimate on the increments of the Brownian motion, this yields

$$
\mathbb{E}\left[\left|u_{j}^{M}(t)-u_{j}^{M}(s)\right|^{2}\right] \leq C|t-s|^{2}
$$

Hence, each coordinate is tight. By diagonalization, we can extract a subsequence of M_{k} such that $\left(u_{j}^{M_{k}}\right)$ converges in law in $C[0, T]$ for each j. This gives a meaning to the system (1.2).

References

[1] Alberts, T., Khanin, K. and Quastel, J. (2014) The intermediate disorder regime for directed polymers in dimension $1+1$, Ann. Probab. 42, 1212-1256 MR-3189070
[2] Aldous, D. (1981) Weak convergence and the general theory of processes, Unpublished notes
[3] Amir, G., Corwin, I. and Quastel, J. (2010) Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions, Comm. Pure. Appl. Math. 64, (4), 466-537 MR-2796514
[4] Bertini, L. and Giacomin, G. (1997) Stochastic Burgers and KPZ equations from particle systems, Comm. Math. Phys. 183, (3), 571-607 MR-1462228
[5] Corwin, I. (2012) The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl. 1, 1130001 MR-2930377
[6] Diehl, J., Gubinelli, M. and Perkowski, N. (2016) The Kardar-Parisi-Zhang equation as scaling limit of weakly asymmetric interacting Brownian motions, Comm. Math. Phys. 354, no. 2, 549-589 MR-3663617
[7] Ethier, S., Kurtz, T. (2009) Markov processes: characterization and convergence, vol. 282, Wiley, Hoboken MR-0838085

Scaling of the Sasamoto-Spohn model in equilibrium

[8] Goncalves, P. and Jara, M. (2014) Nonlinear fluctuations of weakly asymmetric interacting particle systems, Arch. Ration. Mech. Anal. 212, no. 2, 597-644 MR-3176353
[9] Goncalves, P., Jara, M. and Simon, M. (2017) Second order Boltzmann-Gibbs principle for polynomial functions and applications, J. Stat. Phys. 166, no. 1, 90-113 MR-3592852
[10] Gubinelli, M. and Jara, M. (2013) Regularization by noise and stochastic Burgers equations, Stoch. Partial Differ. Equ. Anal. Comput. 1, no. 2, 325-350 MR-3327509
[11] Gubinelli, M. and Perkowski, N. (2017) KPZ reloaded Comm. Math. Phys. 349, no. 1, 165-269 MR-3592748
[12] Gubinelli, M. and Perkowski, N. (2018) Energy solutions of KPZ are unique, J. Amer. Math. Soc. 31, 427-471 MR-3758149
[13] Gubinelli, M. and Perkowski, N. (2018) Probabilistic approach to the stochastic Burgers equation, In: Eberle A., Grothaus M., Hoh W., Kassmann M., Stannat W., Trutnau G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics \& Statistics, vol 229. Springer, Cham MR-3828193
[14] Hairer, M. (2013) Solving the KPZ equation, Annals of Mathematics 178, 559-664 MR3071506
[15] Kardar, M., Parisi, G and Zhang, Y-C. (1986) Dynamic scaling of growing interfaces Phys. Rev. Lett., 56(9):889-892
[16] Krug, J. and Spohn, H. (1991) Kinetic roughening of growing surfaces, In: Godreéche, C. (ed.) Solids Far from Equilibrium, pp. 412-525. Cambridge University Press, Cambridge MR-1163829
[17] Lam, C.-H. and Shin, F.G. (1998) Improved discretization of the Kardar-Parisi-Zhang equation, Phys. Rev. E 58, 5592-5595
[18] Liggett, T. (2005) Interacting Particle Systems, Classics in Mathematics, Springer-Verlag Berlin Heidelberg MR-2108619
[19] Mitoma, I. (1983) Tightness of probabilities in $C\left([0,1], Y^{\prime}\right)$ and $D\left([0,1], Y^{\prime}\right)$, Ann. of probability, 11, 4, 989-999 MR-0714961
[20] Moreno Flores, G., Quastel, J. and Remenik, D., in preparation
[21] Quastel, J. (2012) Introduction to KPZ, Curr. Dev. Math. 2011, 125-194, Int. Press, Somerville, MA MR-3098078
[22] Sasamoto, T. and Spohn, H. (2009) Superdiffusivity of the 1D Lattice Kardar-Parisi-Zhang Equation, J. Stat. Phys., 137: 917-935 MR-2570756

[^0]: *This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovative programme (grant agreement No 715734)
 ${ }^{\dagger}$ Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brasil. Partially supported by CNPq and FAPERJ. E-mail: mjara@impa.br
 ${ }^{\ddagger}$ Pontificia Universidad Católica de Chile, Santiago, Chile. Partially supported by Fondecyt grant 1171257 and Núcleo Milenio 'Modelos Estocásticos de Sistemas Complejos y Desordenados'.

 E-mail: grmoreno@mat.uc.cl

