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Abstract

We prove the convergence of the Sasamoto-Spohn model in equilibrium to the energy
solution of the stochastic Burgers equation on the whole line. The proof, which relies
on the second order Boltzmann-Gibbs principle, follows the approach of [9] and does
not use any spectral gap argument.
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1 Model and results

The goal of this note is to show the convergence of a certain discretization of the
stochastic Burgers equation:

∂tu = 1
2∂

2
xu+ ∂xu

2 + ∂xW , (1.1)

where W is a space-time white noise. This equation can be seen as the evolution of the
slope of solutions to the KPZ equation [15] which is itself a model of an interface in a
disordered environment. The KPZ/Burgers equation has been subject to an extensive
body of work in the last years. It appears as the scaling limit of a wide range of particle
systems [4, 8], directed polymer models [1, 20] and interacting diffusions [6], and
constitutes a central element in a vast family of models known as the KPZ universality
class [5, 21].

Due to the nonlinearity, a lot of care has to be taken to obtain a notion of solution
for (1.1). There are today several alternatives, for instance, regularity structure [14],
paracontrolled distributions [11] and energy solutions [8, 10, 12], which is the approach
we will follow.

The discretization we consider corresponds to

duj = 1
2∆uj + γBj(u) + dξj − dξj−1, (1.2)
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Scaling of the Sasamoto-Spohn model in equilibrium

where (ξj)j is an i.i.d. family of standard one-dimensional Brownian motions,

∆uj = uj+1 + uj−1 − 2uj ,

Bj(u) = wj − wj−1 with wj =
1

3
(u2j + ujuj+1 + u2j+1).

This model, introduced in [16] (see also [17]) and further studied in [22], is nowadays
often referred to as the Sasamoto-Spohn model.

While the discretization of the second derivative and noise are quite straightforward,
there are a priori several ways to discretize the nonlinearity in Burgers equation. This
particular choice is motivated by two reasons: first, it only involves nearest neighbor sites
and, second, it yields the explicit invariant measure µ = ρ⊗Z, where dρ(x) = 1√

2π
e−x

2/2dx

(see Section 3).
Our result states the convergence of the discrete equations (1.2) to Burgers equation

in the sense of energy solutions (see Section 2 for a precise definition).

Theorem 1.1. For each n ≥ 1, let un be the solution to the system (1.2) for γ = n−1/4

and initial law µ, and let

Xnt (ϕ) =
1

n1/4

∑
j

unj (tn)ϕ( j√
n

).

The sequence of processes (Xn· )n≥1 converges in distribution in C([0, T ],S ′(R)) to the
unique energy solution of the Burgers equation.

A similar result was shown in [11] for much more general initial conditions although
restricted to the periodic setting.

At the technical level, our approach relies on the techniques of [9] and avoids the use
of any spectral gap estimate. The core of the proof consists in deriving certain dynamical
estimates among which the so-called second order Boltzmann-Gibbs principle plays a
major role. A key ingredient is a certain integration-by-parts satisfied by the model.

The paper is organized as follows: in Section 2, we recall the notion of energy solution
from [8]. We show the invariance of the measure µ in Section 3. In Section 4, we prove
the dynamical estimates. Finally, in Sections 5 and 6, we show, respectively, tightness
and convergence to the energy solution. The construction of the dynamics (1.2) is given
in the appendix.

Notations: We denote by S(R) the space of Schwarz functions on R. For n ≥ 1 and
a smooth function ϕ, we define ϕnj = ϕ( j√

n
), ∇nϕnj =

√
n(ϕnj+1 − ϕnj ) and ∆nϕnj =

n(ϕnj+1 + ϕnj−1 − 2ϕn). We also define

E(ϕ) =

∫
ϕ2(x) dx, En(ψ) =

1√
n

∑
j∈Z

ψ2
j ,

respectively, for ϕ ∈ L2(R) and ψ ∈ l2(Z).

2 Energy solutions of the Burgers equation

We will introduce the notion of an energy solution for Burgers equation [8]. We start
with two definitions:

Definition 2.1. We say that a process {ut : t ∈ [0, T ]} satisfies condition (S) if, for all
t ∈ [0, T ], the S ′(R)-valued random variable ut is a white noise of variance 1.

For a stationary process {ut : t ∈ [0, T ]}, 0 ≤ s < t ≤ T , ϕ ∈ S(R) and ε > 0, we define

Aεs,t(ϕ) =

∫ t

s

∫
R

ur(iε(x))2∂xϕ(x)dxdr

ECP 24 (2019), paper 3.
Page 2/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP206
http://www.imstat.org/ecp/


Scaling of the Sasamoto-Spohn model in equilibrium

where iε(x) = ε−11(x,x+ε].

Definition 2.2. Let {ut : t ∈ [0, T ]} be a process satisfying condition (S). We say that
{ut : t ∈ [0, T ]} satisfies the energy estimate if there exists a constant κ > 0 such that:

(EC1) For any ϕ ∈ S(R) and any 0 ≤ s < t ≤ T ,

E

[∣∣∣∣∫ t

s

ur(∂
2
xϕ) dr

∣∣∣∣2
]
≤ κ(t− s)E(∂xϕ)

(EC2) For any ϕ ∈ S(R), any 0 ≤ s < t ≤ T and any 0 < δ < ε < 1,

E
[∣∣Aεs,t(ϕ)−Aδs,t(ϕ)

∣∣2] ≤ κ(t− s)εE(∂xϕ)

We state a theorem proved in [8]:

Theorem 2.3. Assume {ut : t ∈ [0, T ]} satisfies (S) and (EC2). There exists an S ′(R)-
valued stochastic process {At : t ∈ [0, T ]} with continuous paths such that

At(ϕ) = lim
ε→0
Aε0,t(ϕ),

in L2, for any t ∈ [0, T ] and ϕ ∈ S(R).

We are now ready to formulate the definition of an energy solution:

Definition 2.4. We say that {ut : t ∈ [0, T ]} is a stationary energy solution of the Burgers
equation if

• {ut : t ∈ [0, T ]} satisfies (S), (EC1) and (EC2).

• For all ϕ ∈ S(R), the process

ut(ϕ)− u0(ϕ)− 1
2

∫ t

0

us(∂
2
xϕ) ds−At(ϕ)

is a martingale with quadratic variation tE(∂xϕ), where A is the process from
Theorem 2.3.

Existence of energy solutions was proved in [8]. Uniqueness was proved in [12].

3 Generator and invariant measure

The construction of the dynamics given by (1.2) is detailed in Appendix A. We denote
by C the set of cylindrical functions F of the form F (u) = f(u−n, · · · , un), for some n ≥ 0,
with f ∈ C2(R2n+1) with polynomial growth of its partial derivatives up to order 2. The
generator of the dynamics (1.2) acts on C as

L =
∑
j

{
1

2
(∂j+1 − ∂j)2 −

1

2
(uj+1 − uj)(∂j+1 − ∂j) + γBj(u)∂j

}
,

where ∂j = ∂
∂uj

. Let us introduce the operators

S =
∑
j

{
1

2
(∂j+1 − ∂j)2 −

1

2
(uj+1 − uj)(∂j+1 − ∂j)

}
, A =

∑
j

γBj(u)∂j ,

which formally correspond to the symmetric and anti-symmetric parts of L with respect
to µ = ρ⊗Z, where dρ(x) = 1√

2π
e−x

2/2dx. We note that our model satisfies the Gaussian
integration-by-parts formula: ∫

ujfdµ =

∫
∂jfdµ,
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which will be heavily used in the sequel.
We will also consider the periodic model uM on ZM := Z/MZ and denote by LM , SM

and AM the corresponding generator and its symmetric and anti-symmetric parts re-
spectively. Finally, denote µM = ρ⊗ZM and let ρM be its density.

Lemma 3.1. The measure µM is invariant for the periodic dynamics uM .

Proof. The lemma follows from Echeverría’s criterion ([7], Thm 4.9.17) once we show∫
LMf dµM = 0,

for all f ∈ C2(RZM ) with polynomial growth of its derivatives up to order 2. By standard
integration-by-parts,∫

SMf dµM =

∫
f(u)S†MρM (u) du−M · · · duM ,

where

S†M =
1

2

∑
j∈ZM

{
(∂j+1 − ∂j)2 + (uj − uj+1)(∂j − ∂j+1) + 2

}
.

It is a simple computation to show that S†MρM ≡ 0. It then remains to verify that∫
AMf dµM =

∫ ∑
j∈ZM

(wj − wj−1)∂jf(u)ρM (u) du−M · · · duM = 0.

But, using standard integration-by-parts once again, we can verify that there exists a
degree three polynomial in two variables p(·, ·) such that∫

AMf dµm =

∫ ∑
j∈ZM

f(u) {p(uj , uj+1)− p(uj−1, uj)} dµM .

Finally, Gaussian integration-by-parts yields a degree two polynomial in two variables
p̃(·, ·) such that∫

AMf dµM =

∫ ∑
j∈ZM

{p̃(∂j , ∂j+1)− p̃(∂j−1, ∂j)} f(u) dµ,

which is telescopic. This ends the proof.

By construction of the infinite volume dynamics and taking the limit M → ∞, we
obtain

Corollary 1. The measure µ is invariant for the dynamics (1.2).

4 The second-order Boltzmann-Gibbs principle

We recall the Kipnis-Varadhan inequality: there exists C > 0 such that

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

F (u(sn)) ds

∣∣∣∣2
]
≤ CT ||F (·)||2−1,nds, (4.1)

where the || · ||−1,n-norm is defined through the variational formula

||F ||2−1,n = sup
f∈C

{
2

∫
F (u)fdµ+ n

∫
fLfdµ

}
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The proof of this inequality in our context follows from a straightforward modification of
the arguments of [12], Corollary 3.5. In our particular model, we have

−
∫
fLfdµ =

1

2

∑
j

∫
((∂j+1 − ∂j)f)

2
dµ

so that the variational formula becomes

||F ||2−1,n = sup
f∈C

2

∫
F (u)fdµ− n

2

∑
j

∫
((∂j+1 − ∂j)f)

2
dµ

 .

Denote by τj the canonical shift τjui = uj+i and let −→u lj = 1
l

∑l
k=1 uj+k.

Lemma 4.1. Let l ≥ 1 and let g be a function with zero mean with respect to µ which
support does not intersect {1, · · · , l}. Let gj(s) = g(τju(s)). There exists a constant C > 0

such that

E


∣∣∣∣∣∣
∫ t

0

ds
∑
j

gj(sn)[uj+1(sn)−−→u lj(sn)]ϕj

∣∣∣∣∣∣
2
 ≤ C tl√

n
||g||2L2(µ)En(ϕ) (4.2)

Proof. Let ψi = l−i
l , i = 0, · · · , l − 1. Then,

uj+1 −−→u lj =

l−1∑
i=1

(uj+i − uj+i+1)ψi.

Hence,

∑
j

ϕjgj(uj+1 −−→u lj) =
∑
j

ϕjgj

l−1∑
i=0

(uj+i − uj+i+1)ψi

=
∑
k

(
l−1∑
i=1

ϕk−igk−iψi

)
(uk − uk+1)

=:
∑
k

Fk(uk − uk+1)

Now, for f ∈ C , using integration-by-parts,

2

∫ ∑
j

ϕjgj(uj+1 −−→u lj)fdµ = 2

∫ ∑
k

Fk(uk − uk+1)fdµ

= 2

∫ ∑
k

Fk(∂k − ∂k+1)fdµ

≤
∫ ∑

k

{
αF 2

k +
1

α
((∂k − ∂k+1)f)2

}
dµ,

by Young’s inequality. Taking α = 2/n, we find that the above is bounded by

2

n

∑
k

∫ ∑
k

F 2
k dµ+

n

2

∑
k

∫
((∂k − ∂k+1)f)2dµ,

which, thanks to the Kipnis-Varadhan inequality, shows that the left-hand-side of (4.2) is
bounded by

C
t

n

∑
k

∫
F 2
k dµ.
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Finally, as g is centered,∑
k

∫
F 2
k dµ ≤

∑
k

l−1∑
i=1

ϕ2
k−i

∫
g2dµ ≤ l

√
n

∫
g2dµEn(ϕ).

We now state the second-order Boltzmann-Gibbs principle: let Q(l, u) = (−→u l0)2 − 1
l ,

Proposition 4.2. Let l ≥ 1. There exists a constant C > 0 such that

E


∣∣∣∣∣∣
∫ t

0

ds
∑
j

{uj(sn)uj+1(sn)− τjQ(l, u(sn))}ϕj

∣∣∣∣∣∣
2
 ≤ C tl√

n
En(ϕ)

Proof. We use the factorization

ujuj+1 − τjQ(l, u) = uj(uj+1 −−→u lj) +−→u lj(uj −−→u lj) +
1

l
.

We handle the first term with Lemma 4.1. The second term is treated in the following
lemma.

Lemma 4.3. Let l ≥ 1. There exists a constant C > 0 such that

E


∣∣∣∣∣∣
∫ t

0

ds
∑
j

{
−→u lj(sn)[uj(sn)−−→u lj(sn)] +

1

l

}
ϕj

∣∣∣∣∣∣
2
 ≤ C tl√

n
En(ϕ)

Proof. Let ψi = l−i
l . Then,

−→u lj [uj −−→u lj ] =

l−1∑
i=0

ψi(uj+i − uj+i+1)−→u lj .

For f ∈ C , using integration-by-parts,∫
−→u lj [uj −−→u lj ]fdµ =

∫ l−1∑
i=0

ψi(uj+i − uj+i+1)−→u ljfdµ

=

∫ { l−1∑
i=0

ψi
−→u lj(∂j+i − ∂j+i+1)f − 1

l
f

}
dµ

The second summand comes from the term i = 0. Hence,

2

∫ ∑
j

ϕj

{
−→u lj [uj −−→u lj ] +

1

l

}
fdµ = 2

∫ ∑
j

ϕj

l−1∑
i=0

ψi
−→u lj(∂j+i − ∂j+i+1)fdµ

By Young’s inequality, this last expression is bounded by∫ ∑
j

l−1∑
i=0

{
αϕ2

j (
−→u lj)2 +

1

α
ψ2
i ((∂j+i − ∂j+i+1)f)2

}
dµ

≤ αl

∫ ∑
j

ϕ2
j (
−→u lj)2dµ+

l

α

∫ ∑
j

((∂j − ∂j+1)f)2dµ

Taking α = 2l/n, this is further bounded by

2l2

n

∫
(−→u lj)2dµ

∑
j

ϕ2
j +

n

2

∫ ∑
j

((∂j − ∂j+1)f)2dµ

≤ l√
n
En(ϕ) +

n

2

∫ ∑
j

((∂j − ∂j+1)f)2dµ.

The result then follows from the Kipnis-Varadhan inequality.
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5 Tightness

In the sequel, we let ϕ ∈ S be a test function. Remember the fluctuation field is given
by

Xnt (ϕ) =
1

n1/4

∑
j

uj(nt)ϕ
n
j .

Recalling the definition of the operators S and A from Section 3, the symmetric and
anti-symmetric parts of the dynamics are given by

dSnt (ϕ) = nSXnt (ϕ)dt =
1

n1/4
n
∑
j

uj(tn)∆ϕnj dt =
1

n1/4

∑
j

uj(tn)∆nϕnj dt

dBnt (ϕ) = nAXnt (ϕ)dt = − 1

n1/2
n
∑
j

wj(tn)(ϕnj+1 − ϕnj )dt =
∑
j

wj(tn)∇nϕnj dt

where we used γ = n−1/4. Then, the martingale part of the dynamics corresponds to

Mn
t (ϕ) = Xnt (ϕ)−Xn0 (ϕ)− Snt (ϕ)− Bnt (ϕ) = n1/4

∫ t

0

∑
j

(ϕj − ϕj+1)dξj(s)

and has quadratic variation

〈Mn(ϕ)〉t = n1/2t
∑
j

(ϕnj − ϕnj+1)2 = tEn(∇nϕn)

We will use Mitoma’s criterion [19]: a sequence Yn is tight in C([0, T ],S ′(R)) if and only
if Yn(ϕ) is tight in C([0, T ],R) for all ϕ ∈ S(R).

5.1 Martingale term

We recall that 〈Mn(ϕ)〉 = tEn(∇nϕn). From the Burkholder-Davis-Gundy inequality,
it follows that

E [|Mn
t (ϕ)−Mn

s (ϕ)|p] ≤ C|t− s|p/2En(∇nϕn)p/2,

for all p ≥ 1. Tightness then follows from Kolmogorov criterion by taking p large enough.

5.2 Symmetric term

Tightness is obtained via a second moment computation and Kolmogorov criterion:

E
[
|Snt (ϕ)− Sns (ϕ)|2

]
≤ |t− s|2 1√

n

∑
j

E[u2j ](∆
nϕnj )2 = |t− s|2En(∆nϕn).

5.3 Anti-symmetric term

We study the tightness of the term

Bnt (ϕ) =

∫ t

0

∑
j

wj(sn)∇nϕnj ds

=

∫ t

0

∑
j

1

3
[u2j+1(sn) + uj(sn)uj+1(sn) + u2j (sn)]∇nϕnj ds.

We begin with a lemma:
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Lemma 5.1. The process

Y nt (ϕ) =

∫ t

0

ds
∑
j

ϕj
{

(uj(sn)uj+1(sn)− u2j (sn)) + 1
}

goes to zero in the ucp topology.

Proof. Using integration by parts,∫ ∑
j

ϕj(ujuj+1 − u2j )fdµ =

∫ ∑
j

ϕj(uj+1 − uj)ujfdµ

=

∫ ∑
j

ϕj(∂j+1 − ∂j)(ujf)dµ

=

∫ ∑
j

ϕj {uj(∂j+1 − ∂j)f − f}

Hence, ∫ ∑
j

ϕj
{

(ujuj+1 − u2j ) + 1
}
fdµ =

∫ ∑
j

ϕjuj(∂j+1 − ∂j)fdµ

Using Young’s inequality,

2

∫ ∑
j

ϕj
{

(ujuj+1 − u2j ) + 1
}
fdµ ≤

∫ ∑
j

{
αϕ2

ju
2
j +

1

α
((∂j+1 − ∂j)f)2

}
dµ

≤ 2√
n
En(ϕ) +

n

2

∑
j

∫
((∂j+1 − ∂j)f)2dµ,

by taking α = 2/n. Into the Kipnis-Varadhan inequality, this yields

E

 sup
0≤t≤T

∣∣∣∣∣∣
∫ t

0

ds
∑
j

ϕj
{

(uj(sn)uj+1(sn)− u2j (sn)) + 1
}∣∣∣∣∣∣

2
 ≤ CT√

n
En(ϕ)

which shows that this process goes to zero in the ucp topology.

This means we can switch the term wj in the anti-symmetric part of the dynamics
by ujuj+1 modulo a vanishing term. Note that, as we apply the previous lemma to a
gradient, the constant term 1 will disappear. We are then left to prove the tightness of

B̃nt (ϕ) =

∫ t

0

∑
j

uj(sn)uj+1(sn)∇nϕnj ds.

From Proposition 4.2, we have

E


∣∣∣∣∣∣B̃nt (ϕ)−

∫ t

0

∑
j

τjQ(l, u(sn))∇nϕnj ds

∣∣∣∣∣∣
2
 ≤ C tl√

n
En(∇nϕn)

where, here and below, C denotes a constant which value can change from line to line.
On the other hand, a careful L2 computation, taking dependencies into account, shows
that

E


∣∣∣∣∣∣
∫ t

0

∑
j

τjQ(l, u(sn))∇nϕnj ds

∣∣∣∣∣∣
2
 ≤ C

t2
√
n

l
En(∇nϕn).
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Observe that limn→∞ En(∇nϕn) =
∫
∂xϕ(x)2 dx <∞. Summarizing,

E

[∣∣∣B̃nt (ϕ)
∣∣∣2] ≤ C { tl√

n
+
t2
√
n

l

}
.

For t ≥ 1/n, we take l ∼
√
tn and get

E

[∣∣∣B̃nt (ϕ)
∣∣∣2] ≤ Ct3/2.

For t ≤ 1/n, a crude L2 bound gives

E

[∣∣∣B̃nt (ϕ)
∣∣∣2] ≤ Ct2√n ≤ Ct3/2.

This gives tightness.

6 Convergence

From the previous section, we get processes X , S, B andM such that

lim
n→∞

Xn = X , lim
n→∞

Sn = S,

lim
n→∞

Bn = B, lim
n→∞

Mn =M,

along a subsequence that we still denote by n. We will now identify these limiting
processes.

6.1 Convergence at fixed times

A straightforward adaptation of the arguments in [6], Section 4.1.1, shows that Xnt
converges to a white noise for each fixed time t ∈ [0, T ]. This in turns proves that the
limit satisfies property (S).

6.2 Martingale term

The quadratic variation of the martingale part satisfies

lim
n→∞

〈Mn(ϕ)〉t = t||∂xϕ||2L2 .

By a criterion of Aldous [2], this implies convergence to the white noise.

6.3 Symmetric term

A second moment bound shows that

E

[∣∣∣∣Snt (ϕ)−
∫ t

0

Xns (∂2xϕ) ds

∣∣∣∣2
]
≤ C t

2

n
,

which shows that

S(ϕ) = lim
n→∞

Sn(ϕ) =

∫ ·
0

Xs(∂2xϕ) ds.

6.4 Anti-symmetric term

We just have to identify the limit of the process B̃n(ϕ). Remembering the definition
of the field Xn, we observe that

√
nQ(ε

√
n, u(nt)) = Xnt (iε(0))2 − 1

ε
,
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from where we get the convergences

lim
n→∞

√
nQ(ε

√
n, u(nt)) = Xt(iε(0))2 − 1

ε

and

Aεs,t(ϕ) := lim
n→∞

∫ t

s

∑
j

τjQ(ε
√
n, u(rn))∇nϕnj dr.

The second limit follows by a suitable approximation of iε(x) by S(R) functions (see
[8], Section 5.3 for details). Now, by the second-order Boltzmann-Gibbs principle and
stationarity,

E


∣∣∣∣∣∣B̃nt (ϕ)− B̃ns (ϕ)−

∫ t

s

∑
j

τjQ(l, u(rn))∇nϕnj dr

∣∣∣∣∣∣
2
 ≤ C (t− s)l√

n
.

Taking l ∼ ε
√
n and the limit as n→∞ along the subsequence,

E
[∣∣Bt(ϕ)− Bs(ϕ)−Aεs,t(ϕ)

∣∣2] ≤ C(t− s)ε. (6.1)

The energy estimate (EC2) then follows by the triangle inequality. Theorem 2.3 yields
the existence of the process

At(ϕ) = lim
ε→0
Aε0,t(ϕ).

Furthermore, from (6.1), we deduce that B = A.

It remains to check (EC1). It is enough to check that

E

[∣∣∣∣∫ t

0

Xns (∂2xϕ)

∣∣∣∣2
]
≤ κt.

Using the smoothness of ϕ and a summation by parts, it is further enough to verify that

E


∣∣∣∣∣∣
∫ t

0

n1/4
∑
j

[uj+1(sn)− uj(sn)]∇nϕnj

∣∣∣∣∣∣
2
 ≤ κt. (6.2)

For that purpose, we will use Kipnis-Varadhan inequality one last time: let f ∈ C ,

2

∫
n1/4

∑
j

(uj+1 − uj)∇nϕnj fdµ = 2

∫
n1/4

∑
j

∇nϕnj (∂j+1 − ∂j)fdµ

≤
∑
j

{
α
√
n(∇nϕnj )2 +

1

α

∫
((∂j+1 − ∂j)f)2dµ

}
≤ 2En(∇nϕn) +

n

2

∑
j

∫
((∂j+1 − ∂j)f)2dµ,

with α = 2/n, from where (6.2) follows.

ECP 24 (2019), paper 3.
Page 10/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP206
http://www.imstat.org/ecp/


Scaling of the Sasamoto-Spohn model in equilibrium

A Construction of the dynamics

The system of equations (1.2) can be reformulated as

uj(t) =
1

2

∫ t

0

∆uj(s) ds+ γ

∫ t

0

Bj(u(s)) ds+ ξj(t)− ξj−1(t).

We consider the system uM on ZM = Z/MZ evolving under its invariant distribution.
We first check that, for all j and T > 0

E

[
sup

0≤t≤T
|uMj (t)|2

]
<∞,

so that the dynamics is well-defined. Everything boils down to estimates of type

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

uMj (s) ds

∣∣∣∣2
]
≤ TE

[
sup

0≤t≤T

∫ t

0

|uMj (s)|2ds
]

≤ TE

[∫ T

0

|uMj (s)|2ds

]
≤ T 2,

where we used invariance in the last step.
Next, we show tightness of the processes (in M ) where we now identify uM with a

periodic system on the line. This follows from Kolmogorov’s criterion. It is enough to
control expressions of type

E

[∣∣∣∣∫ t

s

uMj (r) dr

∣∣∣∣4
]
≤ |t− s|3E

[∫ t

s

∣∣uMj (r)
∣∣4 dr] ≤ C|t− s|3.

Together with a standard estimate on the increments of the Brownian motion, this yields

E
[
|uMj (t)− uMj (s)|2

]
≤ C|t− s|2.

Hence, each coordinate is tight. By diagonalization, we can extract a subsequence of
Mk such that (uMk

j ) converges in law in C[0, T ] for each j. This gives a meaning to the
system (1.2).
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