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Abstract

We prove the convergence of the Sasamoto-Spohn model in equilibrium to the energy
solution of the stochastic Burgers equation on the whole line. The proof, which relies
on the second order Boltzmann-Gibbs principle, follows the approach of [9] and does
not use any spectral gap argument.
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1 Model and results

The goal of this note is to show the convergence of a certain discretization of the
stochastic Burgers equation:

Oyu = 30u+ Opu® + 0. W, (1.1)

where # is a space-time white noise. This equation can be seen as the evolution of the
slope of solutions to the KPZ equation [15] which is itself a model of an interface in a
disordered environment. The KPZ/Burgers equation has been subject to an extensive
body of work in the last years. It appears as the scaling limit of a wide range of particle
systems [4, 8], directed polymer models [1, 20] and interacting diffusions [6], and
constitutes a central element in a vast family of models known as the KPZ universality
class [5, 211].

Due to the nonlinearity, a lot of care has to be taken to obtain a notion of solution
for (1.1). There are today several alternatives, for instance, regularity structure [14],
paracontrolled distributions [11] and energy solutions [8, 10, 12], which is the approach
we will follow.

The discretization we consider corresponds to

du; = 1Au;+vBj(u) + d&; — d€;_q, (1.2)
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where (§;); is an i.i.d. family of standard one-dimensional Brownian motions,
AUj = Ujp1 +Uj—1 — QUj,

. 1
Bj(u) = wj—w;—; with w; = g(u? Ut +uF ).

This model, introduced in [16] (see also [17]) and further studied in [22], is nowadays
often referred to as the Sasamoto-Spohn model.

While the discretization of the second derivative and noise are quite straightforward,
there are a priori several ways to discretize the nonlinearity in Burgers equation. This
particular choice is motivated by two reasons: first, it only involves nearest neighbor sites
and, second, it yields the explicit invariant measure y = p®%, where dp(z) = \/%76_12/ 2dx
(see Section 3).

Our result states the convergence of the discrete equations (1.2) to Burgers equation
in the sense of energy solutions (see Section 2 for a precise definition).

Theorem 1.1. For each n > 1, let u" be the solution to the system (1.2) fory = n~'/4
and initial law u, and let

X (9) = s S (i),

The sequence of processes (X"),,>1 converges in distribution in C([0,T],S’(R)) to the
unique energy solution of the Burgers equation.

A similar result was shown in [11] for much more general initial conditions although
restricted to the periodic setting.

At the technical level, our approach relies on the techniques of [9] and avoids the use
of any spectral gap estimate. The core of the proof consists in deriving certain dynamical
estimates among which the so-called second order Boltzmann-Gibbs principle plays a
major role. A key ingredient is a certain integration-by-parts satisfied by the model.

The paper is organized as follows: in Section 2, we recall the notion of energy solution
from [8]. We show the invariance of the measure u in Section 3. In Section 4, we prove
the dynamical estimates. Finally, in Sections 5 and 6, we show, respectively, tightness
and convergence to the energy solution. The construction of the dynamics (1.2) is given
in the appendix.

Notations: We denote by S(R) the space of Schwarz functions on R. For n > 1 and
@ smooth function ¢, we define ¢} = p(Jf). V'¢} = Vitlehyy — ¢}) and A"} =
n(@l 1 + ¢} 1 —2¢"). We also define

&)= [Padn &)= = vk
JEZ

respectively, for ¢ € L2(R) and v € I*(Z).

2 Energy solutions of the Burgers equation
We will introduce the notion of an energy solution for Burgers equation [8]. We start
with two definitions:

Definition 2.1. We say that a process {u; : t € [0,T]} satisfies condition (S) if, for all
t € [0,T], the 8'(R)-valued random variable u; is a white noise of variance 1.

For a stationary process {u; : t € [0,7]},0<s<t<T, ¢ € S(R) and € > 0, we define

Ao = | t [ -0
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where i (z) = e ' 1(; 440

Definition 2.2. Let {u; : t € [0,T]} be a process satisfying condition (S). We say that
{us : t €]0,T]} satisfies the energy estimate if there exists a constant « > 0 such that:
(EC1) For any ¢ € S(R) and any0 < s <t <T,

2

B /ur(aﬁgo)dr < K(t - 5)E(Drp)

(EC2) Forany ¢ € S(R), any0<s<t<Tandany0<d<e<]1,

E [[42.(0) — AL,(2)[] < k(t — 5)e(0r)

We state a theorem proved in [8]:

Theorem 2.3. Assume {u; : ¢t € [0,T]} satisfies (S) and (EC2). There exists an S'(R)-
valued stochastic process {A; : t € [0,T]} with continuous paths such that

Ai(p) = lim AG ,(¢),

e—0
in L?, for anyt € [0,T] and ¢ € S(R).
We are now ready to formulate the definition of an energy solution:

Definition 2.4. We say that {u, : t € [0,T]} is a stationary energy solution of the Burgers
equation if

e {u;: t €[0,T]} satisfies (S), (EC1) and (EC2).
e For all p € S(R), the process

() — uolg) — } / ua(020) ds — Au()

is a martingale with quadratic variation t£(0,y), where A is the process from
Theorem 2.3.

Existence of energy solutions was proved in [8]. Uniqueness was proved in [12].

3 Generator and invariant measure

The construction of the dynamics given by (1.2) is detailed in Appendix A. We denote
by € the set of cylindrical functions F' of the form F'(u) = f(u—p, -+ ,uy), for some n >0,
with f € C?(R?*"*+!) with polynomial growth of its partial derivatives up to order 2. The
generator of the dynamics (1.2) acts on % as

1 1
L=>, {Q@H = 0))” = 5 (g =) (@y1 = 0)) + ij(u)Bj} :
J
where 0; = % Let us introduce the operators

1 1
S = > {2(3j+1 — ;) - 5 (1 = 5) (941 — 3j)} . A= "7B;(u)d;,
i

J
which formally correspond to the symmetric and anti-symmetric parts of L with respect
2
to u = p®%, where dp(z) = \/%e*”” /2dz. We note that our model satisfies the Gaussian

integration-by-parts formula:
[ustdn= [ o5an

ECP 24 (2019), paper 3. http://www.imstat.org/ecp/
Page 3/12


http://dx.doi.org/10.1214/18-ECP206
http://www.imstat.org/ecp/

Scaling of the Sasamoto-Spohn model in equilibrium

which will be heavily used in the sequel.

We will also consider the periodic model uMonZy =7 /M7 and denote by Ly, Sy
and Aj; the corresponding generator and its symmetric and anti-symmetric parts re-
spectively. Finally, denote py; = p®%™ and let py; be its density.

Lemma 3.1. The measure p,; is invariant for the periodic dynamics u™ .

Proof. The lemma follows from Echeverria’s criterion ([7], Thm 4.9.17) once we show
/ Ly fdun =0,

for all f € C?(R%™) with polynomial growth of its derivatives up to order 2. By standard
integration-by-parts,

/SMfduM = /f(u)SJTpr(u) du_ps -+ duyy,

where

= % Y {051 =0 + (uj —uj41)(95 — Djsa) + 2}

JE€EZMm
It is a simple computation to show that SL pm = 0. It then remains to verify that
/AMfd/,(,]u / Z —w] 1 8f( )pM(u)du_M---duM:().
JE€EZ M

But, using standard integration-by-parts once again, we can verify that there exists a
degree three polynomial in two variables p(-, -) such that

/AMfd,u'm / Z f {p u_]?“’_j-‘rl) p(uj—lauj)}d,uM-
J€Z N

Finally, Gaussian integration-by-parts yields a degree two polynomial in two variables
p(+, ) such that

[ st = [ 52 (5(05,0700) = 5(0,-1,0,)) £(w) d
JE€Znm
which is telescopic. This ends the proof. O

By construction of the infinite volume dynamics and taking the limit M — oo, we
obtain

Corollary 1. The measure p is invariant for the dynamics (1.2).

4 The second-order Boltzmann-Gibbs principle

We recall the Kipnis-Varadhan inequality: there exists C' > 0 such that

¢ 2
E | sup / F(u(sn))ds ] < CT||F()||2 1 nds, (4.1)
0<¢<T |Jo
where the || - ||-1,,-norm is defined through the variational formula
IF|?,,, = sup {2 [ Fasdnen [ fodu}
fee
ECP 24 (2019), paper 3. http://www.imstat.org/ecp/
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The proof of this inequality in our context follows from a straightforward modification of
the arguments of [12], Corollary 3.5. In our particular model, we have

1 2
- [ 1Lran =33 [ (@51 00 du
J
so that the variational formula becomes

110 = sup 32 [ (g - 23 [ (@510 au

Denote by 7; the canonical shift 7ju; = u;,; and let @} = 157wy

Lemma 4.1. Let ! > 1 and let g be a function with zero mean with respect to u which

support does not intersect {1,--- ,1}. Let g;(s) = g(tju(s)). There exists a constant C' > 0
such that
2
¢
tl
E /0 ds Y gj(sn)lujsi(sn) — Wh(sn)ley| | < Cﬁ\lglliz(#)&z(@) (4.2)

J
Proof. Let y; = %,i:07~-~ ,l — 1. Then,

-1
I
wipr = W5 = (s — i )i

=1

Hence,

-1
> igi(ujpr — UY) D 0505 > (uji — i)
J 7 =0

-1
Z (Z Wk—igk—z'dh') (up — Upy1)
k \i=1
=: ZF"“(U’“ — Uk+1)
k

Now, for f € ¥, using integration-by-parts,

Q/Z@jgj(ujﬂ - 7§)fd/i = 2/ZFk(uk — upy1) fdp
J k
= 2/ZFk(ak — Oky1) fdu
k
1
/Z {O‘Flg + a((ak - 5k+1)f)2} dp,
k
by Young’s inequality. Taking o = 2/n, we find that the above is bounded by

%Z/ZFﬁdng/((ak — 1) f)2dp,
k k .

which, thanks to the Kipnis-Varadhan inequality, shows that the left-hand-side of (4.2) is
bounded by

IN

t
- F2du.
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Finally, as g is centered,

Z/deﬂ<zz<ﬂk / 2du<lf/ G (¢ O

k =1

N‘P—‘

We now state the second-order Boltzmann-Gibbs principle: let Q(l,u) = (u})? —

Proposition 4.2. Let [ > 1. There exists a constant C > 0 such that
2

E || [ ds S (uslomugan (sm) — 5QULu(sn)} o SC%&M

0 J
Proof. We use the factorization
wujir — QU u) = (w1 — Wh) + Wh(u; — Wh) + -

We handle the first term with Lemma 4.1. The second term is treated in the following
lemma. m

Lemma 4.3. Let! > 1. There exists a constant C' > 0 such that
2

K 1 tl
E /0 ds Z {7§(sn)[uj(sn) — 72(811)} + l} il | < Cﬁé’n(cp)

J

Proof. Let ¢; = 5. Then,

-1
Wy — 0l = Z"/’i(ujJri — uji1) UL

i=0
For f € ¥, using integration-by-parts,

-1
/71 — ] fdp /waum — wjpip1) U fdp
=0

-1
/ {Z Tﬁiﬁé‘(ajﬂ‘ —Ojyip1)f — ;f} dp
i=0

The second summand comes from the term 7 = 0. Hence,

/Z%{ﬁl — }fd”Q/Z% Zd’z (0j+i = Ojpit1) fdp

By Young’s inequality, this last expression is bounded by

/Z li {o«pi(ﬁé)? + éwg((aﬂi - aj+i+1)f)2} du
< al/Zgoj 71 )2dp + — /Z 0;41)f)2dp

Taking « = 2l /n, this is further bounded by
(7§)2du2<ﬁ] /Z 0j4+1) f)2dp
< /Z 9j+1)f Qdﬂ-

The result then follows from the Kipnis-Varadhan inequality. O
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5 Tightness

In the sequel, we let p € S be a test function. Remember the fluctuation field is given
by

n 1
J

Recalling the definition of the operators S and A from Section 3, the symmetric and
anti-symmetric parts of the dynamics are given by

dSi () =nSX(p)dt = WnZuj(tn)Acpj dt = i Zuj(tn)A @ldt

dBi(p) =nAX](p)dt = 1/211211)] (tn)(@]1 — @} )dt = Zw] (tn) V"] dt
j

where we used v = n~1/4. Then, the martingale part of the dynamics corresponds to
Mile) = ()= X() - 1)~ Bl =n/* [ St~ )i (9

and has quadratic variation

(M (@) = nl/ZtZ — @) =tE (V™)

We will use Mitoma'’s criterion [19]: a sequence V" is tight in C([0, 7], S’(R)) if and only
if Y™ () is tight in C([0,T],R) for all ¢ € S(R).

5.1 Martingale term

We recall that (M"(¢)) = t£,(V™¢™). From the Burkholder-Davis-Gundy inequality,
it follows that

E[IM} () = M2 (9)"] < Clt = s|P/2E, (V"™ )P/2,
for all p > 1. Tightness then follows from Kolmogorov criterion by taking p large enough.

5.2 Symmetric term

Tightness is obtained via a second moment computation and Kolmogorov criterion:
2
E|[S7(¢) - Si@| < \FZE A™EM)? = |t — 52, (A™™).

5.3 Anti-symmetric term
We study the tightness of the term

t
/ g w;(sn)V"plds
0y

¢
1
= /0 Z g[U?_H(SH) + u;(sn)ujy1(sn) + u?(sn)}vngp?ds
J

B} (¢)

We begin with a lemma:

ECP 24 (2019), paper 3. http://www.imstat.org/ecp/
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Lemma 5.1. The process
t
V() = [ ds S s {lus(snusia(on) — wdom)) + 1)
0 .
J
goes to zero in the ucp topology.
Proof. Using integration by parts,

/Z‘Pj(uj“jJrl —u}) fdp

J

/Z%‘(“J‘H — uj)u; fdp
/ 20 0n1 = 05) sl
/Z%‘ {u; (0541 = 05)f — f}

Hence,
/Z%‘ {(wjujpn —uf) +1} fdp = /Z‘Pj“j(aj-&-l — ;) fdp
J J
Using Young’s inequality,

2/2% {(ujuji1 —uf) + 1} fdu

J

IA

/Z{O‘% ((6j+1 _aj)f)z}du
= \f Z/ djr1 — 0;)f)dp,

by taking « = 2/n. Into the Kipnis-Varadhan inequality, this yields

2

t
CcT
E | su /ds (i (sn)uig(sn) —u(sn)) + 1 < —&,
Ay %:%{( j(sn)ujyr(sn) —uj(sn)) + 1} NG ()
which shows that this process goes to zero in the ucp topology. O

This means we can switch the term w; in the anti-symmetric part of the dynamics
by u;u;1 modulo a vanishing term. Note that, as we apply the previous lemma to a
gradient, the constant term 1 will disappear. We are then left to prove the tightness of

t

/ E uj(sn)ujp1(sn) V"] ds.
0 =
j

From Proposition 4.2, we have

2

E ||B7( / ZT]Q Lu(sn))V™lds SC%&l(V ")

where, here and below, C' denotes a constant which value can change from line to line.
On the other hand, a careful L? computation, taking dependencies into account, shows
that

2

2
/ZTJ (L, u(sn)) V"] ds < Cﬁgn(vmp").
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Observe that lim,, o, £,(V"¢"™) = f Op¢(2)? dr < 0co. Summarizing,
S ]2 t o t*\/n
E[‘Bt(gp)‘}gc{ﬁ+ f}

For ¢ > 1/n, we take | ~ +/tn and get

d

For ¢t < 1/n, a crude L? bound gives

gl

gn( )2 <Ct3/2.
t \P >

~ 2
Br(»)| } < Oy < OF2,
This gives tightness.

6 Convergence

From the previous section, we get processes X, S, B and M such that

lim X" = X, lim §" =S8,
n—oo n— 00

lim B = B, lim M"™ = M,
n—oo n—00

along a subsequence that we still denote by n. We will now identify these limiting
processes.

6.1 Convergence at fixed times

A straightforward adaptation of the arguments in [6], Section 4.1.1, shows that A}*
converges to a white noise for each fixed time ¢ € [0,7]. This in turns proves that the
limit satisfies property (S).

6.2 Martingale term
The quadratic variation of the martingale part satisfies

lim (M"(p))¢ = 1|02

n—oo

By a criterion of Aldous [2], this implies convergence to the white noise.

6.3 Symmetric term

A second moment bound shows that

2 2

<cl,

n

t
E ||sp(e) - / X(02p) ds
0

which shows that

S(p) = lim §"(¢) = / X,(02p) ds.

n—roo

6.4 Anti-symmetric term

We just have to identify the limit of the process g"(cp) Remembering the definition
of the field X", we observe that

ViQ(eV, u(nt)) = X7 (i.(0) —

e
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from where we get the convergences

Tim VAQ(evA, u(nt)) = (i (0))* - *

€

and
n n
—nh_{rgo/ ZTJ evn,u(rn))V=%e

The second limit follows by a suitable approximation of i.(z) by S(R) functions (see
[8], Section 5.3 for details). Now, by the second-order Boltzmann-Gibbs principle and
stationarity,

2

E ||B} () — B (¢ / ZTJQ (Lu(rn))Vheidr| | < C’(t\/ﬁs)l.
Taking ! ~ £4/n and the limit as n — oo along the subsequence,
c 2
E ||Bi(¢) - By() - Asu(9)|*] < Clt - 9)e. (6.1)

The energy estimate (EC2) then follows by the triangle inequality. Theorem 2.3 yields
the existence of the process

Ai(p) = lim Ag ().

e—0

Furthermore, from (6.1), we deduce that B = A.
It remains to check (EC1). It is enough to check that

t 2
/ X (02 ] < Kt.
0

Using the smoothness of ¢ and a summation by parts, it is further enough to verify that

2

¢

/ nt/4 g [ujr1(sn) —uj(sn)][V™p7| | <kt (6.2)
0 -
j

For that purpose, we will use Kipnis-Varadhan inequality one last time: let f € &,
2 / nt/4 Z(ujH —u)\Vpi fdu = 2 / nt/4 Z V00541 — ;) fdp
J J

< S{avavrepz+  [(@n - oprran

J
< 25n vn n Z/ ]+1 d/lv

with a = 2/n, from where (6.2) follows.
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A Construction of the dynamics

The system of equations (1.2) can be reformulated as

u;(t) = %/0 Au(s) ds—l—’y/o Bj(u(s))ds + &;(t) — &—1(t).

We consider the system u on Z,; = Z/MZ evolving under its invariant distribution.

We first check that, forall jand 7' > 0

J

E{ sup |uM(t)2] < 00,
0<t<T

so that the dynamics is well-defined. Everything boils down to estimates of type

t 2 t
/ujw(s) ds 1 < TE[ sup / uju(s)zds}
0 o<t<T Jo

/ s <s>|2ds]

E | sup

0<t<T

< TE

< 717

3

where we used invariance in the last step.

Next, we show tightness of the processes (in M) where we now identify uM with a
periodic system on the line. This follows from Kolmogorov’s criterion. It is enough to
control expressions of type

/: uj”(r) dr

Together with a standard estimate on the increments of the Brownian motion, this yields

E

4 t
] < Jt—sPPE {/ ‘uj»w(r)rl dr} < C|t — s

E [|u§”(t) - uj”(s)ﬂ < C|t — s/
Hence, each coordinate is tight. By diagonalization, we can extract a subsequence of
M, such that (ué”k) converges in law in C[0, T for each j. This gives a meaning to the
system (1.2).
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