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Front propagation and quasi-stationary distributions for
one-dimensional Lévy processes
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Abstract

We jointly investigate the existence of quasi-stationary distributions for one dimen-
sional Lévy processes and the existence of traveling waves for the Fisher-Kolmogorov-
Petrovskii-Piskunov (F-KPP) equation associated with the same motion. Using proba-
bilistic ideas developed by S. Harris [16], we show that the existence of a monotone
traveling wave for the F-KPP equation associated with a centered Lévy processes
that branches at rate r and travels at velocity c is equivalent to the existence of a
quasi-stationary distribution for a Lévy process with the same movement but drifted
by —c and Kkilled at the first entry into the negative semi-axis, with mean absorption
time 1/r. This also extends the known existence conditions in both contexts. As it
is discussed in [15], this is not just a coincidence but the consequence of a relation
between these two phenomena.
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1 Introduction

Let £ be the generator of a centered one-dimensional Lévy process (precise definitions
and assumptions are given below) and consider the (generalized) F-KPP equation

% =Lu+r(u?—u), R, t>0,
t (1.1)

w(0,2) = uo(x), x€R.

Here £* denotes the adjoint of £. Both Fisher and Kolmogorov, Petrovskii and Piskunov
considered this equation for £ = %% and proved independently that in this case this
equation admits monotone traveling wave solutions connecting 0 and 1 of the form
u(t, z) = w.(x — ct) that travel at velocity ¢ for every ¢ > v/2r, [14, 18].

It is well known [5, 21, 29, 6] that a large class of equations describing the propaga-

tion of a front into an unstable region have properties similar to (1.1). These equations
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Front propagation and QSD for Lévy processes

admit monotone traveling-wave solutions for any velocity c larger than a minimal velocity
c* and the front moves with this minimal velocity c¢* for any initial data with “light enough”
tails.

For the Brownian case £ = %% we have ¢* = v/2r and for more general L the
minimal velocity can be computed in terms of the Legendre transform of the process
(see Theorem 2.1 below). This was essentially done by Kyprianou [19] using the seminal
McKean'’s representation [23] for the solutions of (1.1). We partially complete this
characterization in this note by looking at the critical case, which is missing from the
description in [19] to arrive to our main theorem.

The theory of quasi-stationary distributions has its own counterpart. It is a typical sit-
uation that there is an infinite number of quasi-stationary distributions while the Yaglom
limit (the limit of the conditioned evolution of the process started from a deterministic
initial condition) selects the minimal one, i.e. the one with minimal expected time of
absorption [12, 28, 7].

To be more precise, consider a Lévy process (X; — ct);>o with generator £ — c% killed
at first entry into (—o0, 0) defined in certain filtered space (Q2, F, (F;), P) with expectation
denoted by IE. In Section 2 we state the precise assumptions we made on this process.
The absorption time is defined by 7 = inf{t > 0: X; — ¢t € (—0,0)} and the conditioned
evolution at time ¢ is given by

pi (1) =PV Xy —ct € |7 > t).

Here ~ denotes the initial distribution of the process and P7(:) = P(:| Xy ~ 7). A
probability measure v is said to be a quasi-stationary distribution (QSD) if i = v for all
t>0.

The Yaglom limit is a probability measure v defined by

N O
vi= lim gy,
if the limit exists and does not depend on z. It is known that if the Yaglom limit exists,
then it is a QSD. A general principle is that the Yaglom limit selects the minimal QSD,
i.e. the Yaglom limit is the QSD with minimal mean absorption time. This fact has been
proved for a wide class of processes that includes birth and death process, subcritical
Galton-Watson processes, drifted random walks [28, 26, 17, 13] and Brownian motion
[22] among others, but the conjecture is still open for a much wider class.

In the last decades, a great deal of attention has been given to establish on the one
hand conditions for the existence of quasi-stationary measures of Lévy processes (see for
instance [22, 20]) and on the other hand to the existence of traveling waves for (1.1), eg.
see [19]. The purpose of this note is to show that given parameters r, ¢ > 0, the existence
of a traveling wave for (1.1) with velocity c is equivalent to the existence of a QSD v for
L — ¢k with expected absorption time E,(7) = 1/r. Moreover, minimal velocity TWs
are in a one-to-one correspondence with minimal absorption time QSDs with the same
parameters. Note that when dealing with traveling-waves the branching rate r is an
input while the velocity c is chosen by the system, while when dealing with QSDs the
velocity c is the input and r is chosen by the system. More precisely, when dealing with
traveling waves of (1.1), r is a parameter and we ask for what values of ¢ there is a
traveling wave that travels at that velocity. Moreover, as ¢ goes to infinity, the solutions
will travel asymptotically at a velocity c that will depend on the initial datum. On the
other hand, when considering QSDs of (X; — ct), ¢ is a parameter while the distribution
of the process conditioned on not being absorbed will behave asymptotically as a QSD
with some expected absorption time 1/r. The value of r (and the involved QSD) will be
determined by the initial distribution of the process. We remark here that the absorption
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time 7 is a very important object in the study of QSDs since a lot of information can
be extracted from it. For example, it can be easily seen from the invariance of the
conditioned evolution under a QSD that 7 has the loss of memory property when the
initial condition is a QSD and hence it is exponentially distributed with parameter r.
This fact implies that an exponential moment for the absorption time (started from a
deterministic initial condition) is a necessary condition to have a QSD (under some
suitable assumptions like irreducibility). For a large class of processes this has been
shown to be also sufficient [11]. For more on QSDs we refer the reader to [9].
Although our proof consists in showing that the conditions for the existence of TW
and QSD coincide, in a companion paper [15] we show that this is not just a coincidence
but that the two phenomena are essentially two faces of the same coin. In particular,
the connection between r and c is clearly explained there by means of microscopic
models that are natural microscopic versions of the models studied in this article. At the
microscopic level it is easier to understand the relation between these two phenomena
and that is the purpose of that article. We refer the reader to [15] for more on this.

2 Preliminaries and main result

Let X = (X¢):>0 be a Lévy process with values in R, defined on a filtered space
(Q, F,(F),P) and Laplace exponent ¢ : R — R defined by

E(eeXt,) — eww)t’

such that

2
Y(h) = bl + 0—2% +g(0),

where b € R, ¢ > 0 (which ensures that X is non-lattice) and ¢ is defined in terms of the
jump measure II supported in R \ {0} by

9(0) = /R(@gz =1 =021 ),)<1y)1(d2), /]R(l A 2*)I(dx) < oo.

Let 0% = sup{f: [¢(0)| < oo}, 0* = —inf{f: |1)(#)| < co}. We will assume that both are
positive to avoid large jumps. This assumption is not technical as the picture is completely
different without it. Recall that ¢ is strictly convex in (6*,6}) and by monotonicity
W(03) = V(01 —), $(0%) = (07 +), and ¥ (0%) = ¥/ (95—), ¥'(6%) = ¢/(0+) are well
defined as well as the derivative at zero ¢'(0) = IE(X}), that we assume to be zero. That
is, we consider centered processes. Of course, if the process is not centered, one can
remove the drift and our theorem will apply to the centered process and hence to the
original one with the adequate modifications. The generator of X applied to a function
f € C2, the class of compactly supported functions with continuous second derivatives,
gives

£1(w) = 307" (@) + b @) + [ (o) = @)~ uf @L{ly] < 1)1Ly)

R

The adjoint of £ is also well defined in CZ and has the form

. 1
£f(a) = 502 "@) =bf' (@) + [ (o= 9) = 1)+ (@)1l < 1)
It is immediate to see that the Laplace exponent of (X; — ct);>¢ is given by

Ye(0) == (0) — b, 0 e [6%,07],
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and that C? is contained in the domain of the generator £ — c%. We denote by I' the
Legendre transform of 7, i.e.,

T'(a) = sup [af — $(6)].
0cR
Similarly we will denote T the Legendre transform of the Laplace exponent of the dual
process (—X;)i>o0,

I'(a) = sup [af — (=0)].

Observe that since ¢ > 0, I as well as I are defined in R. At some point, we will need
to assume that the Lévy process X is spectrally positive, i.e. II(—o0,0) = 0. This means
that X does not perform negative jumps and will allow us to identify the first entrance
time to (—o0,0) with the first hitting time of zero. To simplify the exposition we will
assume it through the whole article and indicate where it is really needed. To summarize,
hereafter we assume

(A) L is the generator of a spectrally positive Lévy process, ¢ > 0, 4 > 0 and
E(X;) =0.

Our main result reads as follows.

Theorem 2.1. Under Assumption (A), the following are equivalent:

1. There exists a non trivial monotone traveling wave for (1.1) with velocity ¢ con-
necting 0 and 1, i.e. a monotone solution to

L*w+ cw' +rw(w—1) =0inR, w(+o00) =1 —w(—o0) = 1. (2.1)

2. There exists an (absolutely continuous) QSD for L — c% with expected absorption
time 1/r, i.e. a solution to,

L*v+ v +rv=0in (0,+00), withv >0, v(0) =0, / v=1. (2.2)
0

3. r <T(c).
4. A branching Lévy process driven by L — c%, killed on first entry into (—o0,0) gets
almost surely extinct.

Moreover, ¢ is a minimal velocity for (L*,r) if and only if 1/r is a minimal mean
absorption time for L — c%.
Remark 2.2. The hypothesis that the Lévy process is spectrally positive is only used to
prove the existence of a traveling wave when r = I'(¢). Every other implication is still
valid without this assumption.

Remark 2.3. When £ is the generator of one-dimensional Brownian Motion, this result
is well known and is discussed in [15].

Recall that the backward Kolmogorov equation for X is given by

d

SE(f(X))).y = £1(@),

while the forward Kolmogorov (or Fokker-Plank) equation for the density v (which exists
since o > 0) is given by
d
%u(t, x) = L*u(t, x).
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We will consider on the one hand Lévy processes with generator £ (or £*) that evolve in
R and on the other hand Lévy processes with generator £ — c%, killed at first entry into
(—00,0). A probability measure in R with density v is a QSD for the process (X; — ct);>0
killed at (—o0,0), if and only if, v is a positive solution of (2.2).

We will need the following lemma (see for instance Theorem 9.1 and the remark
thereafter in [25]).

Lemma 2.4 (Girsanov theorem fo~r Lévy processes). For 6 € (—01,01), let Mf =
exp(6X; — ¢.(0)t) and the measure Q be defined by
dQ

= =M? ) 2.
b |7, 7 tel0,4+00) (2.3)

Then, (M/);>o is a martingale and under Q, (X;):>o is a Lévy process with drift Eq(X1) =
Y'(0) = 9'(#) — ¢, variance o2, and jump measure ’*dll(z).

2.1 Some useful results on branching Lévy processes

Consider a continuous time branching process with binary branching at rate r > 0.
Each individual performs independent Lévy processes with generator £ started at the
position of his ancestor at his birth-time. Details on the construction of this process can
be found in [19]. Call N, the number of individuals in the process at time ¢ and (¢}, 1 <
i < t) the positions of the individuals that are alive at time t. We call Z; = ((}, ..., tN’)
and Z = (Z;):>0 a branching Lévy process (BLP) driven by £. For some results, we
need to consider BLP killed above (or below) some barrier x € R, the extension of the
definition to this situation is straightforward.

The following proposition is proved in [1, 2]. See also [4, Theorem 4.17] for an
alternative proof with spines and a setting closer to ours.

Proposition 2.5. Let Z be a BLP driven by £ and R; the position of the maximum of Z;.
Then

By means of this proposition we obtain the following partial extension of Theorem 1
in [3].
Proposition 2.6. Let Z be a BLP driven by L — c% started at x > 0 and killed at first
entry into (—o0,0).

(i) Ifr < T'(c), then Z gets extinct with probability 1.
(ii) Ifr > T'(c), then for any interval A C R, IP(Z?’:‘1 Ligicay = 00) > 0.

Proof. Observe that Z can be constructed straightforwardly with the trajectories of a
process without killing driven by the same generator. We just need to delete all the paths
that touched the negative semi-axes at some time. In the case r < I'(¢), we can directly
use the previous proposition to see that the maximum of the branching process with no
killing satisfies % — I'"1(r) — ¢ < 0 which implies that R; is almost surely negative after
some finite time. This in turn implies extinction of Z. For the critical case r = I'(c), we
need to slightly refine the arguments given in [4].

Consider the branching Lévy process Z driven by £ (without killing) defined in the
same filtered space (2, F, (F;),P) and define the martingale

Ny
7 = exp(6¢] — (ve(6) +1)t),
=1
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as well as the change of measure,

d
d%’}} = Zte ‘

On some suitably augmented filtration F: D F;, the new process can be seen as a
branching process with a spine (5;);>o which branches at rate 2r and follows a motion
given by the change of measure (2.3), i.e., a Lévy process with drift ¢/.(0) = ¢’'(0) — ¢,
variance ¢, and jump measure e*dll(z). The other particles follow the usual process X.
See [4] for details on this construction.

Since we assumed r = I'(c¢), we can define 6. such that ¥.(6.) = —TI'(c) and so
¥.(0.) = 0. From now on we choose # = 0. in the change of measure and hence, the
spine (S;) is centered. As a consequence, it is recurrent (as a non trivial Lévy process).
It follows that lim sup, S; = co. Now bounding Zf ¢ by the contribution of the spine, we
have

limsup Z7 > lim sup exp(0.S; — (e (0.) + 7)t) = exp(0.S;).

Since 1/Z% is a positive super-martingale (under Q), it converges Q—almost surely and
so does Z%. Hence,

lim ch =00, Q—a.s.
t—o0

Observe that if B € F,, we have

Q(B) = / limsup Z¢ dP + Q(B N {limsup Z¢ = oo}).
B t—o00

t—o00
It then follows that if lim Z = oo, under Q, then lim Z’ = 0, under PP. Finally, let

. i
R := 122}1(\4 ¢ —ct,
and observe that exp(f.R;) < Z¢¢, which implies that exp(f.R;) tends to 0 P—a.s. and
hence R; tends to —oo. As before, this implies extinction of Z.

To prove (ii), denote Zot(A) = vaztl 1{55@}. We use the many-to-one lemma to get

E(Zi(A)) = " P(X; — ct € A, min X, —cs > 0). (2.4)

To compute the last probability we can discretize the time variable and consider the
random walk S,‘i = X,s — cdn. Following [27, Theorem 4] and [17, Theorem 2.1] we
obtain that the decay parameter for the process (X; — ct) killed at first entry into (—oco, 0)
is given by I'(c) and hence for every r > I'(c) the r.h.s of (2.4) grows to infinity. So, for
any > 0 we can choose t* large enough to guarantee E””(Zot* (A)) > 1. Letz = inf A. We
can assume x > 0 without loss of generality. Consider the (discrete time) Galton-Watson
process with offspring distribution Zy- (A), started with one individual at . This process
at time n bounds from below Z,;-(A) and since it is supercritical we have that Z,,;- (A)
grows exponentially fast as n — oo with positive probability. Now,

Zi (A)

]P(ZDS(A) < for some nt* < s < (n+ l)t*‘cht*(A)) <

P*(Xs —cs <0forsome 0 <s < t*)Z"t"(A)/2

and the conditional Borel-Cantelli lemma [10, p. 207] implies the result. O

3 Quasi-stationary distributions and traveling waves

In this section we prove the equivalence between existence of traveling waves and
quasi-stationary distributions. The proof boils down to show that both are equivalent to
the absorption of a BLP driven by £ — c% and killed at (—o0,0).
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3.1 Existence of quasi-stationary distributions

Proposition 3.1. The following are equivalent

1. There exists a QSD for L— c — killed at first entry into (—o0, 0) with mean absorption
time 1/r.
2. r<TI(c).

Remark 3.2. The existence of a QSD for » = I'(c) has been established in [20] under
stronger assumptions on the Lévy process.

Proof. 1) = 2) (Non-existence). Assume there exists a non-trivial QSD v and suppose
r > I'(c). Since o > 0, there necessarily exists a density v being the Radon-Nikodym
derivative of v with respect to the Lebesgue measure on R.. Note that v(0) = 0 and on
R+ we have

L+ v +rv=0.

Let Z = (ftl, NG ) be a branching Lévy process driven by £* + cd killed at first entry
into (—o0, 0) and started at « > 0. The process

Ny

M, =Y w(G(1)),

i=1

is a martingale. On the other hand, for every A C R™,

E*(M;) > ( 1nfv Z 1{CieA} ufllfv)ertIP””(th +ct e A’OI%lsirglt —X.4+e¢s>0). (3.1)

We want to show that the r.h.s in (3.1) goes to infinity. Observe that if we take
A = RT we know the asymptotic behavior of the probability on the r.h.s of (3.1), but
since infz+ v = 0 this is useless. So we need to choose a smaller A. Irreducibility implies
that inf4 v > 0 for every A C R, bounded and at a positive distance from the origin. We
are going to choose A = [1, n] for an adequate n > 0. Consider the process X" = (X/");>0
with generator £ — c-& killed at (—oo, 1) U (n, 00) and call p,(z,t, B) = P*(X] € B) the
transition semigroup and )\, its decay parameter ([27, Theorem 6]) such that for every
interval B

o1
—tli>rrolo ;logpn(x,t,B) = .

We USe Poo, Moo, €tc. when we deal with the process in RT killed at (—oo, 0). We will show
that A, \{ Awc = I'(c) and hence, since r > I'(c) we can choose n such that r — A\, > 0
and the r.h.s of (3.1) goes to infinity. A contradiction to the fact that M; is a martingale.
Here we are using the fact that the exit problem from [n, n| for a process with generator
LY+ c% started at x is equivalent to the exit problem from the same interval for a
process with generator £ — c% startedaty =n —x + %

Since (\,) is decreasing in n, we only need to show lim A, < A,. By means of
time-discretization, using the splitting technique (which allows us to assume that X}*
has an atom) and the subadditive ergodic theorem [27, Section 4], it can be shown that
there exists a sequence of times ¢, * 0o, € > 0 and a constant x > 0, both depending on
x and € but not on n such that

1 K
——logpn(y,t, (y — &,y +€)) + — > \n.
123 tr
For fixed ¢, < oo we can take n — oo to obtain

—(1/tx)10g poo (y, t, B) + = > lim \,.

n—oo
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Now we let k& — oo to get Ao > lim,, \,,. The fact that A, = I'(¢) was already shown in
the course of the proof of Proposition 2.6.

2) = 1) (Existence). As before, note that v is a QSD with density v if and only if
v(0) =0 and

/f(E*UJrcv’Jrrv) =0, (3.2)

for all f in a subset D of the domain of the generator with killing, with the property that

for every measurable set A C R}, there exists a sequence f,, in D, uniformly bounded

and converging pointwise to 1,4. Let # > 0 and denote by e_y the function z — e~ and

v(x) = e % h(x). The function h: R>g — R will be determined later. Let (X;);>o be a
Lévy process with generator £. We compute

<£* + Cd) v(x) = ﬂEo [ 79(I7Xt+ct)h(x - X, + ct)] ,

dx dt =
L d
| (O tp0 [ 0X—(cO+(0))t _
L (e he=Xi+en)|
w d (0)—ch)t T 0(
@ {e E (h(x — X¢ + ct))} o

0% ((¢( )~ ch)h() + Lh(z)) .

here E denotes expectation under the measure Q defined by (2.3) and L is the generator
of a Lévy process with drift E(X;) = E(—X;) = ¢ — 1’ (f), variance 02 and jump measure
e %dr(—x) as in Lemma 2.4. Hence

L+ v +rv=eb ((1/)(9) — b +r)h(x) + ﬁh(m)) .

We obtained that (3.2) is equivalent to the following equation

/ fe_o(Lh+ (r + be(0))h) =0,

Note that since v is a convex function and —I'(¢) < —r, it is possible to choose 6 such
that ¥(0) — cd = —r. Hence (3.2) is equivalent to

/fﬁhzo,

forall f € e_¢D = {9 =e_gu,u €~D}. We then look for harmonic functions for the killed
Lévy process X with generator L.
Define the renewal measure associated to X

h(z) = E/O g,

where H = (H;):>o is the ladder process associated to —X. )
Let 6. be defined by I'(¢) = ¢f. — ¢(f.). For 6 < 0., the process X does not drift to
—00, since

E(X1) = ¢ = ¢/(0) = —¢u(0) > 0
This implies that the function A is harmonic (see Lemma 1 in [8]) and since moreover X 1
has a finite mean, the renewal theorem implies that h is asymptotically equivalent to the

identity and so
/e,gh < 0.

Also h(0) = 0 since 0 is regular for (—oo, 0). Then v is the density of a QSD with absorption
rate r. O
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3.2 Existence of traveling waves

We now present the corresponding equivalence for the case of traveling waves which
was actually the inspiration for the equivalence presented previously. Let us underline
that these results are already known for Lévy processes except in the critical case
r =T'(¢), [19]. At criticality, this result is known for Brownian Motion, [16]. Although
the proof is similar in our context, we included it for completeness, but follows [16] who
himself quote the results of Neveu [24].

Proposition 3.3. The following are equivalent

1. There exists a monotone solution to (2.1).

2. r<T(c).
Proof. 1) — 2) (Non-existence). Assume the existence of a non-trivial monotone travel-
ing wave w. This allows us to define the multiplicative positive martingale

Ny
M, = l_lw(@Z + ct).
i=1

Here Z; = (¢}, ..., _tN‘) is a BLP driven by £* (with no killing). This martingale being
positive and bounded, it converges and its mean being w(z), its limit is not 0. On the
other hand, since w <1,
My < w(L; + ct),

where L; = mini<;<n, f; Remark that the minimum of a BLP driven by £* has the same
law as —max; ;< y, ¢/, where Z = (({/)1<i<n, )¢>0 is a BLP driven by L. Proposition 2.5
implies that if r > I'(¢), Ry — ¢t = max; <<y, (; — ¢t = +00. So Ly — —oo and hence M,
should have a null limit. A contradiction to the the assumption.

2) = 1) (Existence). Recall that we suppose that the process does not have negative
jumps so that killing at first entry to (—o0,0) and at 0 are equivalent. This fact will be
crucial to use Neveu’s method for proving the existence of traveling waves, which con-
sists in constructing a multiplicative martingale from a Galton-Watson process obtained
as follows.

Consider Z a BLP driven by £ — c% with killing at the origin and started with one
individual at «# > 0 as in Proposition 2.6. Since r < I'(¢) the process is absorbed and then
the total population size is oﬁnite a.s. We can construct this random number for every
x > 0 using a unique BLP Z with generator £* + c% (with no positive jumps) started
with one individual at the origin and killing at x. If we couple all the processes in this
way and call G, < oo the number of individuals of Z that have reached height =, we
get that (G.).>0 is a continuous-time Galton-Watson process, [24, 16]. At this point, the

assumption of no positive jumps is crucial to get the branching property. Define
fals) = B(s%7),
and for some fixed s € (0,1)
w(z) = f7\(s).
Note that both quantities are strictly positive since G, < co. For y > 0 define
M; =w(z + y)Gy.
It turns out that (M/),>0 is a convergent martingale. To see that, observe that the
branching property gives us
E[M;|F,] = Elw(z +y') 9| F,],
= (fy—y(wlz+y)),
= (fy—y(f L, (w(z +9))))% = My.
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In addition, (M{f )y>0 is positive and bounded and hence, it does converge and is uniformly
integrable. Following the arguments of [16], for fixed ¢ and for all y large enough

2

t

G, =Y G

y—Ci
1

=
Il

where the (G%);>1 are independent copies of G = (G,).>o. Hence

z

N, )

G s +¢hi

My =[Jwle+y) =M 7"
i=1 1

(2

and the limit of the martingale satisfies
N, B
MT = H JWEaxSEa
i=1

Taking expectations leads to
Ny
w(z) = Eﬂw(m + &),
i=1
which in turn implies (see Theorem 8 in [19]) that
L*w 4 cw’ + r(w? —w) = 0. O

3.3 Proof of Theorem 2.1

Proof. Observe that Proposition 3.3 gives us 1) <= 3) while Proposition 3.1 proves
2) <= 3). The equivlence 3) <= 4) is the content of Proposition 2.6. Finally since I'
is strictly increasing, we have

inf{1l/r: r <T(c)} = 1/T(c), inf{c: 7 <T(c)} =T 1(r).

Hence minimality of 1/r (for a given c) as well as minimality of ¢, for a given r, reduces
to
r=1I(c). O

References

[1]1]. D. Biggins. The growth and spread of the general branching random walk. Ann. Appl.
Probab., 5(4):1008-1024, 1995. MR-1384364

[2] J. D. Biggins. How fast does a general branching random walk spread? In Classical and
modern branching processes (Minneapolis, MN, 1994), volume 84 of IMA Vol. Math. Appl.,
pages 19-39. Springer, New York, 1997. MR-1601689

[3]1]. D. Biggins, Boris D. Lubachevsky, Adam Shwartz, and Alan Weiss. A branching random
walk with a barrier. Ann. Appl. Probab., 1(4):573-581, 1991. MR-1129775

[4] S. Bocharov. Branching Lévy Processes with inhomogeneous breeding potentials. PhD thesis,
University of Bath, 2012. MR-3389372

[5] M. Bramson. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem.
Amer. Math. Soc., 44(285):iv+190, 1983. MR-0705746

[6] E. Brunet and B. Derrida. Effect of microscopic noise on front propagation. J. Statist. Phys.,
103(1-2):269-282, 2001. MR-1828730

[71]. A. Cavender. Quasi-stationary distributions of birth-and-death processes. Adv. Appl. Probab.,
10(3):570-586, 1978. MR-0501388

ECP 23 (2018), paper 93. http://www.imstat.org/ecp/
Page 10/11


http://www.ams.org/mathscinet-getitem?mr=1384364
http://www.ams.org/mathscinet-getitem?mr=1601689
http://www.ams.org/mathscinet-getitem?mr=1129775
http://www.ams.org/mathscinet-getitem?mr=3389372
http://www.ams.org/mathscinet-getitem?mr=0705746
http://www.ams.org/mathscinet-getitem?mr=1828730
http://www.ams.org/mathscinet-getitem?mr=0501388
http://dx.doi.org/10.1214/18-ECP199
http://www.imstat.org/ecp/

Front propagation and QSD for Lévy processes

[8] L. Chaumont and R. A. Doney. On Lévy processes conditioned to stay positive. Electron. J.
Probab., 10:no. 28, 948-961, 2005. MR-2164035

[9] Pierre Collet, Servet Martinez, and Jaime San Martin. Quasi-stationary distributions. Markov
chains, diffusions and dynamical systems. Probability and its Applications (New York).
Springer, Heidelberg, 2013. MR-2986807

[10] Durrett R. Probability. Theory and examples. The Wadsworth & Brooks/Cole Statis-
tics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove,
CA, 1991. MR-1068527

[11] P. A. Ferrari, H. Kesten, S. Martinez, and P. Picco. Existence of quasi-stationary distributions.
A renewal dynamical approach. Ann. Probab., 23(2):501-521, 1995. MR-1334159

[12] P. A. Ferrari, S. Martinez, and P. Picco. Some properties of quasi-stationary distributions
in the birth and death chains: a dynamical approach. In Instabilities and nonequilibrium
structures, III (Valparaiso, 1989), volume 64 of Math. Appl., pages 177-187. Kluwer Acad.
Publ., Dordrecht, 1991. MR-1177850

[13] P. A. Ferrari and L. T. Rolla. Yaglom limit via Holley inequality. Braz. J. Probab. Stat.,
29(2):413-426, 2015. MR-3336873

[14] R.A. Fisher. The wave of advance of advantageous genes. Ann. Eugenics, 7:353-369, 1937.

[15] P. Groisman and M. Jonckheere. Front propagation and quasi-stationary distributions: the
same selection principle? arXiv preprint arXiv:1304.4847, 2013.

[16] S.C. Harris. Travelling-waves for the FKPP equation via probabilistic arguments. Proc. Roy.
Soc. Edinburgh Sect. A, 129(3):503-517, 1999. MR-1693633

[17] D. L. Iglehart. Random walks with negative drift conditioned to stay positive. J. Appl
Probability, 11:742-751, 1974. MR-0368168

[18] A. Kolmogorov, I. Petrovsky, and N. Piscounov. Etude de l'’equation de la diffusion avec
croissance de la quantite de matiere et son application a un probleme biologique. Bull. Univ.
Etat Moscou, A 1:1(25), 1937.

[19] A. E. Kyprianou. A note on branching Lévy processes. Stochastic Process. Appl., 82(1):1-14,
1999. MR-1695066

[20] A. E. Kyprianou and Z. Palmowski. Quasi-stationary distributions for Lévy processes. Bernoulli,
12(4):571-581, 2006. MR-2248228

[21] ]. S. Langer. Models of pattern formation in first-order phase transitions. In Directions in
condensed matter physics, volume 1 of World Sci. Ser. Dir. Condensed Matter Phys., pages
165-186. World Sci. Publishing, Singapore, 1986. MR-0873138

[22] S. Martinez, P. Picco, and J. San Martin. Domain of attraction of quasi-stationary distributions
for the Brownian motion with drift. Adv. in Appl. Probab., 30(2):385-408, 1998. MR-1642845

[23] H. P. McKean. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-
Piskunov. Comm. Pure Appl. Math., 28(3):323-331, 1975. MR-0400428

[24] J. Neveu. Multiplicative martingales for spatial branching processes. Seminar on Stochastic
Processes, Birkhauser, in: E. Cinlar, K.L. Chung, R.K. Getoor (Eds.), pages 223-241, 1987.
MR-0896718

[25] A. Papapantoleon. An Introduction to Lévy Processes with Applications in Finance. 2008.

[26] E. Seneta and D. Vere-Jones. On quasi-stationary distributions in discrete-time Markov chains
with a denumerable infinity of states. J. Appl. Probability, 3:403-434, 1966. MR-0207047

[27] P. Tuominen and R. L. Tweedie. Exponential decay and ergodicity of general Markov processes
and their discrete skeletons. Adv. in Appl. Probab., 11(4):784-803, 1979. MR-0544195

[28] E.A. van Doorn. Quasi-stationary distributions and convergence to quasi-stationarity of
birth-death processes. Adv. in Appl. Probab., 23(4):683-700, 1991. MR-1133722

[29] W. van Saarloos. Three basic issues concerning interface dynamics in nonequilibrium pattern
formation. Physics reports, 301(1):9-43, 1998.

ECP 23 (2018), paper 93. http://www.imstat.org/ecp/
Page 11/11


http://www.ams.org/mathscinet-getitem?mr=2164035
http://www.ams.org/mathscinet-getitem?mr=2986807
http://www.ams.org/mathscinet-getitem?mr=1068527
http://www.ams.org/mathscinet-getitem?mr=1334159
http://www.ams.org/mathscinet-getitem?mr=1177850
http://www.ams.org/mathscinet-getitem?mr=3336873
http://www.ams.org/mathscinet-getitem?mr=1693633
http://www.ams.org/mathscinet-getitem?mr=0368168
http://www.ams.org/mathscinet-getitem?mr=1695066
http://www.ams.org/mathscinet-getitem?mr=2248228
http://www.ams.org/mathscinet-getitem?mr=0873138
http://www.ams.org/mathscinet-getitem?mr=1642845
http://www.ams.org/mathscinet-getitem?mr=0400428
http://www.ams.org/mathscinet-getitem?mr=0896718
http://www.ams.org/mathscinet-getitem?mr=0207047
http://www.ams.org/mathscinet-getitem?mr=0544195
http://www.ams.org/mathscinet-getitem?mr=1133722
http://dx.doi.org/10.1214/18-ECP199
http://www.imstat.org/ecp/

Electronic Journal of Probability
Electronic Communications in Probability

e Very high standards

e Free for authors, free for readers
e Quick publication (no backlog)
e Secure publication (LOCKSS!)
Easy interface (EJMS?)

Non profit, sponsored by IMS3, BS* | ProjectEuclid®

Purely electronic

Donate to the IMS open access fund® (click here to donate!)

Submit your best articles to EJP-ECP

Choose EJP-ECP over for-profit journals

'LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/

2EJMS: Electronic Journal Management System http://www.vtex.1lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/

4BS: Bernoulli Society http://www.bernoulli-society.org/

5Project Euclid: https://projecteuclid.org/

6IMS Open Access Fund: http://www.imstat.org/publications/open.htm


http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Preliminaries and main result
	Some useful results on branching Lévy processes

	Quasi-stationary distributions and traveling waves
	Existence of quasi-stationary distributions
	Existence of traveling waves
	Proof of Theorem 2.1

	References

