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Abstract

For fixed λ > 0, it is known that Erdős-Rényi graphs {G(n, λ/n), n ∈ N}, with edge-
weights 1/

√
λ, have a limiting spectral distribution, νλ. As λ → ∞, {νλ} converges

to the semicircle distribution. For large λ, we find an orthonormal eigenvector basis
of G(n, λ/n) where most of the eigenvectors have small infinity norms as n → ∞,
providing a variant of an eigenvector delocalization result of Tran, Vu, and Wang
(2013).
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1 Introduction

The spectral theory of graphs is important since many principal invariants of graphs
are essentially related with their spectra. On the other hand, powerful tools used to
investigate the spectrum of random matrices have been developed following the seminal
work by Wigner [20]. In this paper, we study a class of random matrices related to
graphs, namely the adjacency matrices of Erdős-Rényi random graphs.

Let G(n, p) be the Erdős-Rényi random graph with n vertices and connection proba-
bility p. More precisely, letting Mn,p denote the adjacency matrix of G(n, p), for i > j we
independently set,

Mn,p(i, j) =

{
1 with probability p,

0 with probability 1− p,

and Mn,p(i, j) = Mn,p(j, i) if i < j. Also, the graph has no loops, so Mn,p(i, i) = 0 for all i.
Note that Mn,p is symmetric so its spectrum is real.

Recently, many outstanding results have been shown under the condition (with
p = pn)

lim
n→∞

np =∞,

in other words, under the condition that G(n, p) has an expected degree, np, diverging
with n. Under this condition, the spectral distribution of the scaled Erdős-Rényi ensemble

1√
np(1− p)

Mn,p , n ∈ N
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Delocalization and LSD of Erdős-Rényi graphs

weakly converges to the standard semicircle distribution [19]. Moreover, a local semicir-
cle law holds [11]. Also, remarkably, all the l2-normalized eigenvectors “delocalize” in
term of their l∞-norm [11, 19].

The situation is different if the expected degree is fixed. If, for all n, we impose that
p = λ/n for some fixed λ > 0, convergence to the semicircle law and delocalization do
not hold [2, 4, 21]. Let νn,λ be the empirical spectral distribution of the scaled random
adjacency matrix

1√
λ
Mn,λ/n ,

which is defined as

νn,λ :=
1

n

n∑
i=1

δxi

where {xi}ni=1 are the eigenvalues of λ−1/2Mn,λ/n and δ is a Dirac delta distribution. As
shown in [2, 4, 21], νn,λ almost surely has a deterministic limiting distribution νλ as λ
goes to infinity; however, it is an open problem to find an explicit form for νλ, or even to
give a characterization of its decomposition into pure-point, absolutely-continuous, and
singular-continuous parts [7]. In [2], Bauer and Golinelli analyzed νλ using the moment
method; we use the moment asymptotics given by their work as a starting point for this
study. A numerical simulation is also given in [2], and one can see that the numerical
approximation of νλ there, simulates the semicircle distribution as λ increases.

Theorem 1.1. For each λ > 0, let νn,λ be the empirical spectral distribution of 1√
λ
Mn,λ/n.

Let

νλ := lim
n→∞

νn,λ where the limit is in the weak sense.

Then, as λ goes to infinity, νλ converges weakly to the standard semicircle distribution
ρsc where

ρsc(dx) =
1

2π

√
4− x21{|x|≤2}(dx).

It was recently pointed out to us that the above result was proved in [10], nevertheless
we provide two independent proofs of this fact since they are both different from the
proof given in [10]. These proofs are provided also for the sake of completeness, since
the above result will play a crucial role in the proof of our main result, Theorem 1.3.

Let us also remark that while the semicircle convergence results of [11, 19] look
similar to the above, there is a difference in the “order of limits”: suppose {λm} is an
expected degree sequence such that limm→∞ λm =∞. In [11, 19], a limiting “diagonal”
spectral distribution sequence is considered,

lim
n→∞

νn,λn ,

whereas we are interested in the limit of limiting distributions {νλm},

lim
m→∞

νλm = lim
m→∞

lim
n→∞

νn,λm .

In addition to results about the spectral distribution, another natural question is
whether the l2-normalized eigenvectors of Mn,λ/n localize or delocalize. This question
was raised, for example, by Dekel et al. [8]:
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Problem 1.2 (Question 2 of [8]).
(i) Is it true that, almost surely, every unit eigenvector u of G(n, p) has ‖u‖∞ = o(1)?
(ii) Further, can we show that, almost surely, ‖u‖∞ = n−

1
2+o(1)?

If the answer to (i) is positive, we say that the unit eigenvectors delocalize. Tao and
Vu [18] showed that (i) and (ii) hold when p = 1/2, which is of course independent of n.
However, if p = λ/n, it is easy to see that G(n, p) almost surely has O(n) isolated vertices
which persist in the limit. Thus, almost surely there exist at least O(n) eigenvectors such
that their infinity norms are asymptotically 1, so delocalization fails.

One can, however, obtain a weak form of delocalization as follows. For any ε > 0,
one can choose n and λ large enough so that most of the vectors in some l2-normalized
orthonormal basis have an infinity norm smaller than ε. We need some notation in order
to state this result more precisely. For any symmetric n× n matrix H, the eigenvalues of
H are denoted by {Λi(H)}ni=1. Without loss of generality, we suppose

Λ1(H) ≤ Λ2(H) ≤ · · · ≤ Λn(H)

throughout this paper. Since H is symmetric, H has an orthonormal basis {ui(H)}ni=1

such that ui(H) is a unit eigenvector corresponding to Λi(H).

Theorem 1.3. Let ε > 0. Using the above notation, define a subset U(n, λ, ε) of
{1, 2, · · · , n} as follows,

U(n, λ, ε) := {i ∈ {1, 2, · · · , n} : ‖ui(Mn,λ/n)‖∞ < ε}.

Then, there exists an orthonormal basis {ui(Mn,λ/n)}ni=1 satisfying

lim inf
λ→∞

lim inf
n→∞

|U(n, λ, ε)|
n

= 1 almost surely.

The strategy and main tools for proving the above are provided by Theorem 1.16 in
[19] which we restate here for the reader’s convenience.

Theorem 1.4 (Theorem 1.16 in [19]). Assume that the expected degree depends on n,
i.e., λ = λn. Let Mn := Mn,λn/n. Suppose

lim
n→∞

λn
log n

=∞. (1.1)

Then there exists, a.s., an orthonormal eigenvector basis {ui(Mn) : i = 1, 2, · · · , n} such
that

‖ui(Mn)‖∞ = o(1)

for 1 ≤ i ≤ n.

In fact, we also get a “diagonalized convergence” result as a corollary to Theorem
1.3. The corollary should be viewed as a variant of the above Theorem 1.4. While the
conclusion of the corollary is weaker than that of Theorem 1.4, the assumptions also
allow for a broader class of sequences {λn}. This is one benefit of a priori considering
the limiting behavior as two separate limits instead of one single diagonalized limit.

Corollary 1.5. Let λ = λn depend on n and set Mn := Mn,λn/n. Also, suppose
limn→∞ λn =∞. Let ε > 0, and using the above notation, define U ′(n, ε) by

U ′(n, ε) := {i ∈ {1, 2, · · · , n} : ‖ui(Mn)‖∞ < ε}.

Then, there exists a.s. an orthonormal eigenvector basis {ui(Mn) : i = 1, 2, · · · , n} such
that

lim inf
n→∞

|U ′(n, ε)|
n

= 1 .
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The outline of the rest of this paper is as follows. In the next section (Section 2), we
give two proofs of Theorem 1.1 using respectively the moment method and the Stieltjes
transform method. Section 3 is devoted to the proofs of Theorem 1.3 and Corollary 1.5.

2 Convergence to the semicircle distribution

As a preliminary to the two proofs, let us recall that the limiting distribution νλ exists
[2, 4, 21]. In particular, [4] argues this via showing that the sequence of random graphs
{G(n, λ/n)}n∈N converges, in the Benjamini-Schramm topology on rooted graphs, to a
Galton-Watson tree with offspring distribution Pois(λ) (Poisson with intensity λ). This
fact will be useful to us in our second proof. Let us begin, however, with the classical
moment method.

2.1 Moment method proof

Fix λ > 0 and suppose n ≥ λ. Let mij be the (i, j) element of Mn,λ/n. A standard
calculation in random matrix theory gives

E
〈
νn,λ, x

k
〉

=
1

nλk/2
E
[
TrMk

n,λ/n

]
=

1

nλk/2

∑
1≤i1,··· ,ik≤n

E [mi1i2mi2i3 · · ·miki1 ] . (2.1)

We first obtain an asymptotic formula for E
〈
νn,λ, x

k
〉

using the method and terminol-
ogy of [2]. If a k-tuple (i1, i2, · · · , ik) satisfies i1 6= i2, i2 6= i3, · · · , ik−1 6= ik and ik 6= i1,
it is said to be admissible. Non-admissible k-tuples do not contribute to the sum (2.1)
since Mn,λ/n has vanishing diagonal entries. For each positive integer j ≤ k, define Wj

as the set of admissible k-tuple (i1, i2, · · · , ik) satisfying |{i1, i2, · · · , ik}| = j. The set W
of all admissible k-tuples is

W :=
⋃

1≤j≤k

Wj .

A k-tuple (i1, i2, · · · , ik) is called normalized if it is admissible and ij > 1 implies
that there exist j′ < j such that ij′ = ij − 1. Let Nj be the set of normalized k-tuples
(i1, i2, · · · , ik) such that {i1, i2, · · · , ik} = {1, 2, · · · , j}. For j ≤ n, Per(j, n) is defined to be
the set of injective maps from {1, 2, · · · , j} to {1, 2, · · · , n}. It is observed that, there is a
one to one correspondence between Wj and {(ω, σ)|ω ∈ Nj and σ ∈ Per(j, n)}. The set
N of all normalized k-tuples is expressed as

N :=
⋃

1≤j≤k

Nj .

In Eq. (2.1), mi1i2mi2i3 · · ·miki1 can be identified with a closed walk along the graph
given by the adjacency matrix Mn,λ/n. That is to say, mi1i2mi2i3 · · ·miki1 corresponds
with the closed walk i1i2 · · · iki1 (“closed” means that it ends where it started). Let the
sets of distinct edges and distinct vertices in the closed walk i1i2 · · · iki1 corresponding
to k-tuple ω = (i1, i2, · · · , ik) be denoted by E(ω) and V (ω), respectively. We denote an
edge e connecting the vertices with indices ij and ij+1 by e = ijij+1. Since

mi1i2mi2i3 · · ·miki1 = 1

if and only if me = 1 for all e ∈ E(ω),

1

nλk/2

∑
1≤i1,··· ,ik≤n

E [mi1i2mi2i3 · · ·miki1 ] =
1

nλk/2

∑
ω∈W

(
λ

n

)|E(ω)|

=
1

nλk/2

∑
ω∈N

(
λ

n

)|E(ω)|

|Per(|V (ω)|, n)| (2.2)
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The moment method proof of Theorem 1.1 will follow from Lemma 2.1 and Lemma
2.3 below.

Lemma 2.1. For every positive integer m,

lim
n→∞

E
〈
νn,λ, x

k
〉

=


0 k = 2m− 1

1
m+1

(
2m

m

)
+ O(λ−1) k = 2m

(2.3)

Proof. Let ω = (i1, i2, · · · , ik) ∈ N and set G(ω) as the graph consisting of edges E(ω)

and vertices V (ω). We have |E(ω)| ≥ |V (ω)| − 1 since the graph G(ω) is connected. On
the other hand, it is clear that in order to survive in the limit as n → ∞ in (2.2), one
must have |V (ω)| = |E(ω)|+ 1 because for any positive integer j

lim
n→∞

|Per(j, n)|
nj

= 1 .

In particular this implies that G(ω) must be a tree (rooted at 1).
Henceforth assume |V (ω)| = |E(ω)| + 1. Then, i1i2 · · · iki1 is a closed walk on a

tree and so the multiplicity of every edge in the closed walk i1i2 · · · iki1 is even. Thus,
2|E(ω)| ≤ k. Let al be the number of normalized k-tuples ω such that |E(ω)| = l and
|V (ω)| = |E(ω)| + 1. In particular, if k is odd, al = 0 for all 1 ≤ l ≤ k which proves the
case k = 2m− 1 in (2.3). The k = 2m portion of (2.3)) follows from (2.4).

lim
n→∞

1

nλk/2

∑
ω∈N

(
λ

n

)|E(ω)|

|Per(|V (ω)|, n)| = 1

λk/2

bk/2c∑
l=1

alλ
l. (2.4)

When k = 2m, it is clear that am is precisely the Catalan number, Cm, since the multi-
plicity of every edge in the closed walk i1i2 · · · iki1 is exactly 2.

Remark 2.2. More precisely, when k = 2m, one can easily check that

lim
n→∞

E
〈
νn,λ, x

k
〉

=
1

m+ 1

(
2m

m

)
+

m−1∑
l=1

alλ
l−m.

Lemma 2.3.

lim
n→∞

E
〈
νn,λ, x

k
〉

=
〈
νλ, x

k
〉

(2.5)

Proof. By Theorem 1 and Example 2 in [4] (see also [13, Thm 1.1]), νn,λ converges
weakly to νλ as n→∞. Thus, limn→∞E 〈νn,λ, f〉 = 〈νλ, f〉 for any bounded continuous f ,
by dominated convergence. The lemma follows from a standard truncation argument. It
is enough to consider the case for k even because νλ is symmetric (e.g., [13, Thm 1.1]).
For M > 1, define even functions gM with gM (x) = gM (−x) by

gM (x) =


1 0 ≤ x ≤M
0 x ≥M + 1

−x+M + 1 M < x < M + 1

so that

|E
〈
νn,λ, x

2m
〉
− E

〈
νn,λ, x

2mgM
〉
| ≤ E

〈
νn,λ, x

2m1|x|>M
〉
≤
E
〈
νn,λ, x

4m
〉

M2m

Using the moment bound (2.3), take n→∞ then M →∞ to obtain (2.5).
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Recall that ρsc is the standard semicircle distribution. It is easy to see that

lim
λ→∞

〈
νλ, x

k
〉

=
〈
ρsc, x

k
〉
.

Since ρsc has bounded support, its moments characterize it uniquely, which implies that
νλ converges weakly to ρsc (See Theorem 30.2 in [3]).

2.2 Stieltjes transform proof

For later use, recall from [15, pg. 225] the notion of a spectral measure νφ, of a
self-adjoint operator A, associated to a unit vector eφ. Such a probability measure, νφ,
can be defined by finding the unique measure satisfying∫

R

f(x)νφ(dx) = 〈eφ, f(A)eφ〉

for all bounded, continuous f .

Using spectral theory and exchangeability, [4] argued that the mean of the random
measure νn,λ can be regarded as the expected spectral measure at vertex 1 (or any
other fixed vertex) of the Erdős-Rényi graph G(n, λ/n) (with weights 1/

√
λ on the edges).

Moreover, the limiting deterministic measure νλ is the expected spectral measure
associated to the root of a Galton-Watson tree with offspring distribution Pois(λ) and
weights 1/

√
λ, which is the limit of {G(n, λ/n)} with weighted edges in the Benjamini-

Schramm topology (see also [5, 13]). The adjacency operator 1√
λ
M

(λ)
∞ of the limiting

graph is self-adjoint ([13, Lemma 5.2]) and its resolvent R(λ) is well-defined. Letting φ
denote the root of the tree and eφ denote the root vector, i.e. a Kronecker-delta function
at the root, define the random variable

R
(λ)
φ,φ(z) :=

〈
eφ,

(
1√
λ
M (λ)
∞ − zI

)−1
eφ

〉

where the domain of z is C\R.

Let Sλ be the Stieltjes transform of the limiting distribution νλ. According to [4, Thm
2],

R
(λ)
φ,φ(z)

d
= −

[
1

z + 1
λ

∑Pois(λ)
k=1 R

(λ)
k,k(z)

]
(2.6)

where (R
(λ)
k,k(z))k∈N is an i.i.d. sequence with the same distribution as R(λ)

φ,φ(z) and Pois(λ)

is a Poisson random variable independent from (R
(λ)
k,k(z))k∈N. Thus,

Sλ(z) = ER
(λ)
φ,φ(z).

The strategy of the proof is to show that

S(z) := lim
λ→∞

Sλ(z)

exists for all z ∈ C\R and satisfies the self-consistent equation,

S(z) = − 1

z + S(z)
(2.7)
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implying that S(z) = − 1
2 (z −

√
z2 − 4) by choosing the solution of (2.7) such that the

imaginary parts of S(z) and z are the same. By the Stieltjes inversion formula, νλ
converges weakly to ρsc, the standard semicircle law, as λ→∞.

Let us now carry out the above strategy. Define Yλ and fλ as follows.

Yλ :=
1

λ

Pois(λ)∑
k=1

R
(λ)
k,k(z) and fλ(θ) := E exp

(
iθR

(λ)
φ,φ(z)

)
so that

E exp(iθYλ) = E
[{
fλ( θλ )

}Pois(λ)]
= E

[
exp[Pois(λ) log fλ( θλ )]

]
= exp

[
λ
(
elog fλ(

θ
λ ) − 1

)]
= exp

[
λ
(
fλ( θλ )− 1

)]
= exp

[
λ
(
iθ
λ ER

(λ)
φ,φ(z) + o( 1

λ )
)]

(2.8)

where o( 1
λ ) depends on θ. The last equality in (2.8) comes from the Taylor expansion of

the characteristic function f which is possible since we have the a.s. bound∣∣∣R(λ)
φ,φ(z)

∣∣∣ ≤ ∫ ∣∣∣∣ 1

x− z

∣∣∣∣ dνφ ≤ 1

|Im(z)|
. (2.9)

Choose a subsequence λn →∞ such that a limit S(z) exists. Eq. (2.8) tells us that

1

λn

Pois(λn)∑
k=1

R
(λn)
k,k (z)

pr−→ S(z) as n→∞,

by convergence of the characteristic functions of {Yλn , λn > 0}, and the fact that the
limit is a constant. Next, suppose without loss of generality that z ∈ C+. Then

=(S(z) + z) ≥ =(z) > 0

which implies S(z) 6= z. By the continuous mapping theorem,

− 1

z + 1
λn

∑Pois(λn)
k=1 R

(λn)
k,k (z)

pr−→ − 1

z + S(z)
.

By (2.6), the left-hand side above has the same distribution as R(λn)
φ,φ (z) which by (2.9) is

bounded for any fixed z ∈ C\R. Thus

lim
n→∞

Sλn(z) = lim
n→∞

ER
(λn)
φ,φ (z) = − 1

z + S(z)
.

Therefore S(z) satisfies (2.7) and must be the Stieltjes transform of the semicircle law.
The proof follows since the measures {νλ} are tight, while the above argument shows
that there is a unique limit point.

3 Delocalization

Recall that {Λi(H)}ni=1 and {ui(H)}ni=1 denote the eigenvalues and eigenvectors of
a symmetric n × n matrix H, respectively. We begin with several lemmas, the first of
which is Eq. (5.8) in [12]. We state the version from [18, Lemma 41]:

Lemma 3.1 (Lemma 41 in [18])).
Let

H =

(
a XT

X H̃

)
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be an n × n symmetric matrix for some a ∈ R and X ∈ Rn−1, and let

(
x

v

)
be the unit

eigenvector with eigenvalue Λi(H) where x ∈ R and v ∈ Rn−1. Assume that none of the
eigenvalues of H̃ are equal to Λi(H). Then,

|x|2 =
1

1 +
∑n−1
α=1(Λα(H̃)− Λi(H))−2|〈uα(H̃), X〉|2

where 〈·, ·〉 denotes the inner product between vectors.

The second lemma is a consequence of Talagrand’s inequality that was proved in
Lemma 68 of [18]. We state the version from [19, Lemma 3.4]:

Lemma 3.2 (Lemma 3.4 in [19]). Let Y = (y1, · · · , yn) ∈ Rn be a random vector whose
coordinates are i.i.d. centered random variables which are a.s. bounded in absolute
value by 1 and have variance σ2. Let H be a subspace of dimension k and πH the
orthogonal projection onto H. Then,

P
(∣∣∣ ‖πH(Y )‖ − σ

√
k
∣∣∣ ≥ t) ≤ 10 exp(−t2/4)

where ‖·‖ is the Euclidean norm.

Remark 3.3. In the above lemma, if the coordinates of Y are Gaussian, then similar
inequalities are simply obtained. First, ‖πH(Y )‖ has the same distribution as

∑k
i=1 y

2
i

by rotation invariance. Since
∑k
i=1 y

2
i has a chi-square distribution, one can then use

(7.50) in [14] or alternatively use the Chernoff bound.

Let Nn be a symmetric n×n matrix whose upper triangular elements are independent
standard normal variables N(i, j). Note that even though the perturbed matrix elements
are unbounded, we have that

P[|N(i, j)| >
√
n] ≤ Ce−n4 .

As
∑
n n

2e−
n
4 < ∞, by Borel-Cantelli we have that |N(i, j)| ≤

√
n a.s. for all n large

enough and all 1 ≤ i, j,≤ n. This will allow us to use Lemma 3.2 later on.
Assume that Nn is also independent from Mn,λ/n. Let {δ(n)}n∈N be a sequence of

positive numbers satisfying

δ(n) = o(n−1/2). (3.1)

Denote the scaled adjacency matrix and a perturbed version of it as follows:

An,λ :=
1√
λ
Mn,λ/n ,

Bn,λ := An,λ + δ(n)Nn .

The reason for introducing the perturbed matrix is that it almost surely has a simple
spectrum (see [17, Exercise 1.3.10]):

Λ1(Bn,λ) < Λ2(Bn,λ) < · · · < Λn(Bn,λ) almost surely. (3.2)

Write Bn,λ in the following matrix form:

Bn,λ =

(
a XT

X B̃n,λ

)
where a ∈ R and X ∈ Rn−1. (3.3)

Then,

{Λi(Bn,λ) : i = 1, 2, · · · , n} ∩ {Λα(B̃n,λ) : α = 1, 2, · · · , n− 1} = ∅ almost surely (3.4)

ECP 23 (2018), paper 92.
Page 8/13

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP198
http://www.imstat.org/ecp/


Delocalization and LSD of Erdős-Rényi graphs

by (3.2) and the Cauchy interlacing principle. Note that (3.4) allows us to use Lemma
3.1. Our third preliminary lemma bounds the effect of the above perturbation on infinity
norms of eigenvectors:

Lemma 3.4 (Lemma 3.1 in [19]).
Recall that Bn,λ is defined as the perturbation An,λ+δ(n)Nn. There exists an orthonormal
basis of eigenvectors {ui(An,λ)}ni=1 such that, for every 1 ≤ i ≤ n,

‖ui(An,λ)‖∞ ≤ ‖ui(Bn,λ)‖∞ + α(n) (3.5)

where α(n) → 0 as n → ∞, and α(n) can be chosen to be arbitrarily small depending
only on δ(n).

Henceforth assume ui(An,λ) = ui(Mn,λ/n) for all i and n and that the orthonormal
basis {ui(An,λ)}ni=1 satisfies (3.5).

Lemma 3.5. Let µ̃n,λ be the empirical spectral distribution of B̃n,λ. Then, for a < b, and
δ(n) satisfying (3.1),

lim sup
λ→∞

lim sup
n→∞

|νλ([a, b])− µ̃n,λ([a, b])| = 0, almost surely.

The above lemma follows simply from Theorem 1.1 and Weyl’s inequality; however,
for completeness, we provide an explicit proof in Appendix A.1.

3.1 Proof of Theorem 1.3

By Lemma 3.4, it is sufficient to show that the conclusion of Theorem 1.3 holds when
ui(Mn,λ/n) is replaced with ui(Bn,λ). Let Ũ be defined by

Ũ(n, λ, ε) := {i ∈ {1, 2, · · · , n} : ‖ui(Bn,λ)‖∞ < ε/2}.

Our goal is to prove

lim inf
λ→∞

lim inf
n→∞

|Ũ(n, λ, ε)|
n

= 1 almost surely.

For this, it suffices to show

lim sup
λ→∞

lim sup
n→∞

‖ui(Bn,λ)‖∞ <
ε

2
almost surely, (3.6)

uniformly for all Λi(Bn,λ) ∈ [−2, 2], since by Lemma 3.5

lim inf
λ→∞

lim inf
n→∞

|{i ∈ {1, 2, · · · , n} : Λi(Bn,λ) ∈ [−2, 2]}|
n

= 1 almost surely. (3.7)

By (3.4), we can apply Lemma 3.1 to get

|x|2 =
1

1 +
∑n−1
α=1(Λα(B̃n,λ)− Λi(Bn,λ))−2

∣∣∣〈uα(B̃n,λ), X
〉∣∣∣2 (3.8)

where x = ui(1) is the first coordinate of ui(Bn,λ). A similar bound holds for any other
coordinate ui(k) of ui(Bn,λ) by replacing B̃n,λ with an appropriate submatrix. Thus, we
will see that it suffices to find an upper bound of |x|2, with high enough probability, in
order to get an upper bound for ‖ui(Bn,λ)‖∞, uniformly in i with high probability.

Let Q be a positive integer and set

l := 4/Q. (3.9)
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Choose Q large enough so that Q ≥ 5 and

1

1 + 1/(π
√

3l)
<
ε2

4
. (3.10)

We fix this value of Q (thus fixing l) henceforth and note that they only depend on ε.
Partition the interval [−2, 2] into {[aq, aq+1]}Qq=1 so that a1 = −2, aQ+1 = 2 and

aq+1 − aq = l for every q. Define a subset J of {1, 2, · · · , n− 1} as

J(n, q) := {α ∈ {1, 2, · · · , n− 1} : Λα(B̃n,λ) ∈ [aq, aq+1]}

and define H = H(n, q) := spanα∈J(n,q){uα(B̃n,λ)}. Suppose that Λi(Bn,λ) ∈ [−2, 2] so
that there is a qi such that Λi(Bn,λ) ∈ [aqi , aqi+1]. For this qi,

J(n, qi) ⊂ {α ∈ {1, 2, · · · , n− 1} : |Λα(B̃n,λ)− Λi(Bn,λ)| ≤ l}.

If πH denotes the orthogonal projection onto H, then we have for Hi = H(n, qi),

n−1∑
α=1

(Λα(B̃n,λ)− Λi(Bn,λ))−2
∣∣∣〈uα(B̃n,λ), X

〉∣∣∣2 ≥ 1

l2

∑
α∈J(n,qi)

∣∣∣〈uα(B̃n,λ), X
〉∣∣∣2

=
1

l2
‖πHi(X)‖2

≥ 1

l2
min

q∈{1,2,··· ,Q}
‖πH(n,q)(X)‖2 (3.11)

Note that our choice of qi depends on Bn,λ and thus it is random (with its randomness
inherited from Bn,λ). The same is true for the random subspace Hi. On the other hand,
for fixed q, H(n, q) is a random subspace depending only on B̃n,λ, by definition, thus it is
independent of X.

Now, define a random vector Y from the vector X which is as in (3.3)

Y := X −
√
λ

n
1(n− 1) where 1(n) = (1, 1, · · · , 1) ∈ Rn.

Let H′ be the orthogonal complement of span{1(n − 1)}. Then, for generic q and
H = H(n, q),

‖πH(X)‖ ≥ ‖πH∩H′(X)‖ = ‖πH∩H′(Y )‖.

Observe in particular, that dim(H ∩H′) ≥ dim(H)− 1. Since B̃n,λ is independent of Y ,
Lemma 3.2 can be applied with

t = t(n) =

√√
n · log n

after conditioning on B̃n,λ, and also after normalizing Y so that σ = 1. Thus with
probability at least 1− 10 exp(−(

√
n · log n)/4),

∥∥∥∥∥πH∩H′

((
1− λ/n

n
+ δ2

)− 1
2

· Y

)∥∥∥∥∥ ≥√|J(n, q)| − 1−
√√

n · log n. (3.12)

The Borel-Cantelli lemma implies that the inequality (3.12) holds almost surely for
large n and for every subspace H(n, q) with q ∈ [1, Q], so in particular it holds for H(n, qi).
Plugging (3.12) into (3.11), and recalling that δ(n) = o(n−1/2), we have, almost surely,

lim inf
n→∞

n−1∑
α=1

(Λα(B̃n,λ)− Λi(Bn,λ))−2
∣∣∣〈uα(B̃n,λ), X

〉∣∣∣2 ≥ lim inf
n→∞

min
q∈{1,2,··· ,Q}

|J(n, q)|
n · l2

(3.13)
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Recall that µ̃n,λ is the empirical spectral distribution of B̃n,λ. Fix q ∈ {1, 2, · · · , Q}
and note that

|J(n, q)|
n− 1

= µ̃n,λ([aq, aq+1]). (3.14)

Applying Theorem 1.1 and Lemma 3.5 to

µ̃n,λ([aq, aq+1]) ≥ ρsc([aq, aq+1])− |ρsc([aq, aq+1])− νλ([aq, aq+1])|
− |νλ([aq, aq+1])− µ̃n,λ([aq, aq+1])| (3.15)

and using the calculation in Appendix A.2, we have almost surely,

lim inf
λ→∞

lim inf
n→∞

min
q∈{1,2,··· ,Q}

|J(n, q)|
n− 1

≥ min
q∈{1,2,··· ,Q}

ρsc
(
[aq, aq+1]

)
≥ l3/2

π
√

3
. (3.16)

Combining (3.8), (3.10), (3.13) and (3.16) we get that |x| < ε/2 almost surely for large n
and large λ under the assumption Λi(Bn,λ) ∈ [−2, 2].

Finally, recall that a relation similar to (3.8) holds for any other coordinate ui(k) of
ui(Bn,λ) and so using a union bound over k ∈ {1, . . . , n}, and noting that

∑
n 10n exp(−(

√
n·

log n)/4) <∞ (in order to invoke the Borel-Cantelli lemma for a union of probabilities),
we obtain (3.6). This completes the proof.

3.2 Proof of Corollary 1.5

From now on, we let the expected degree depend on n, i.e., λ = λn. Recall that in
contrast to Theorem 1.4 where the growth condition (1.1) is required, we consider the
more general case where

lim
n→∞

λn =∞.

Recall that Mn := Mn,λn/n. Also, let νn := νn,λn . According to Theorem 1.3 in [19], the
empirical spectral measure νn weakly converges to the standard semicircle distribution
ρsc as n goes to infinity. We can use the same argument as in the proof of Theorem 1.3 up
until (3.14). After that, set µn := µn,λn and µ̃n := µ̃n,λn and use the following inequality
instead of (3.15):

µ̃n([aq, aq+1]) ≥ ρsc([aq, aq+1])− |ρsc([aq, aq+1])− µ̃n([aq, aq+1])| .

By the absolute continuity of ρsc, and the argument in Appendix A.1, we have

lim sup
n→∞

|ρsc([aq, aq+1])− µ̃n([aq, aq+1])| = 0.

Consequently,

lim inf
n→∞

min
q∈{1,2,··· ,Q}

|J(n, q)|
n · l2

≥ min
q∈{1,2,··· ,Q}

ρsc
(
[aq, aq+1]

)
l2

≥ 1

π
√

3l .

Since lim infn→∞ µn([−2, 2]) = 1, the result follows.
While Corollary 1.5 has the advantage of holding without any growth rate condition

on λn, it has the drawback that it give no information about the infinity norms of
eigenvectors corresponding to the eigenvalues outside of [−2, 2]. Note that [−2, 2]

corresponds to the support of the standard semicircle law.
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A Some additional tools

A.1 Proof of Lemma 3.5

With some abuse of notation, write B̃n,λ = An−1,λ + δ(n)Nn−1. Then, Weyl’s theorem
implies

|Λi(B̃n,λ)− Λi(An−1,λ)| ≤ δ(n)‖Nn−1‖op = O(δ(n)
√
n) for all 1 ≤ i ≤ n

since {(n)−1/2Nn}n∈N is a Wigner ensemble with moments of all order. Using (3.1),
Weyl’s inequality, and the Cauchy interlacing theorem, there is a sequence limn→∞ ζn = 0

such that

νn−1,λ([a+ ζn, b− ζn]) ≤ µ̃n,λ([a, b]) ≤ νn−1,λ([a− ζn, b+ ζn]).

Note that

lim sup
n→∞

νn,λ([a− ζn, b+ ζn]) ≤ lim
ξ↓0

lim sup
n→∞

νn,λ([a− ξ, b+ ξ]).

For fixed ξ > 0, choose continuous functions fξ and gξ which converge pointwisely to
1[a,b], as ξ →∞, and which satisfy

0 ≤ fξ ≤ 1[a−ξ,b+ξ] ≤ gξ ≤ 1.

Then, almost surely,∫
fξ dνλ = lim

n→∞

∫
fξ dνn,λ ≤ lim sup

n→∞
νn,λ([a− ξ, b+ ξ]) ≤ lim

n→∞

∫
gξ dνn,λ =

∫
gξ dνλ .

We deduce that

lim sup
n→∞

|νλ([a, b])− µ̃n,λ([a, b])| = νλ({a}) + νλ({b}) .

Finally by Theorem 1.1, both νλ({a}) and νλ({b}) go to 0 as λ→∞.

A.2 A simple bound for the semicircle edge

Recall from (3.9) that l = 4/Q. Here we will show that when [−2, 2] is partitioned into
Q equal parts,

min
q∈{1,2,··· ,Q}

ρsc
(
[aq, aq+1]

)
≥ l3/2

π
√

3 .

Observe that

min
q∈{1,2,··· ,Q}

ρsc
(
[aq, aq+1]

)
=

1

2π

∫ 2

2−l

√
4− x2 dx.

Since 4− x2 = (2 + x)(2− x), we have for l < 1,

1

2π

∫ 2

2−l

√
4− x2 dx ≥

√
3

2π

∫ l

0

√
x dx =

l3/2

π
√

3 .
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