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Abstract

We generalize the evolution model introduced by Guiol, Machado and Schinazi (2010).
In our model at odd times a random number X of species is created. Each species is
endowed with a random fitness with arbitrary distribution on [0, 1]. At even times a
random number Y of species is removed, killing the species with lower fitness. We
show that there is a critical fitness fc below which the number of species hits zero
i.o. and above of which this number goes to infinity. We prove uniform convergence
for the fitness distribution of surviving species and describe the phenomena which
could not be observed in previous works with uniformly distributed fitness.
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1 Introduction

During the history of our planet, species have emerged and have become extinct,
some have lasted a relatively brief period, others are still present in a more or less
unchanged form after millions of years. It is widely accepted that the driving engine of
evolution is natural selection or “survival of the fittest”. It is therefore interesting to
provide mathematical models for the evolution of species.

Guiol, Machado and Schinazi [7] proposed a model where creation and deletion of
species is driven by chance in the sense that at each step with probability p one new
species is created and its fitness is chosen uniformly in [0, 1], while with probability 1− p
the least fit species (if there are species alive at that time) is removed. One motivation
for the study of this model is that its long-term behaviour is similar to the one which
simulations show for the Bak-Sneppen model: there is a critical value for the fitness
and species with smaller fitness disappear, while species with a larger fitness persist
indefinitely. Bak and Sneppen [1] modelled a simple ecosystem where the population
size is constant and at each step not only the least fit is removed, but also its neighbours
are replaced by new species (proximity may be seen as representing ecological links

*Dipartimento di Matematica e Applicazioni, Università di Milano–Bicocca, via Cozzi 53, 20125 Milano, Italy.
E-mail: daniela.bertacchi@unimib.it

†Institute of Mathematics and Statistics, University of Tartu, J. Liiv 2, 50409 Tartu, Estonia.
E-mail: juri.lember@ut.ee

‡Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
E-mail: fabio.zucca@polimi.it

https://doi.org/10.1214/18-ECP190
http://www.imstat.org/ecp/
mailto:daniela.bertacchi@unimib.it
mailto:juri.lember@ut.ee
mailto:fabio.zucca@polimi.it


A stochastic model for the evolution of species with random fitness

between species). It has proven difficult to obtain rigorous results for this model (see for
instance [9]) and this motivates the search for similar, more tractable models.

Several papers have studied the GMS model: [3] gives a law of the iterated logarithm
and a central limit theorem for number of species with supercritical fitness which go
extinct (this number is negligible with respect to n); [6] studies the maximal fitness ever
appeared in the subcritical case.

The model has been generalized in [10] and [2]: there is still a toss of a coin to
decide for creation or deletion, but instead of adding/removing one species at a time,
increments are arbitrary random variables. Even with these assumptions, the same
cut-off phenomenon of [7] appears.

In the original GMS, the lengths of subsequent births and deaths are geometrically
distributed random variables (with parameters which sum up to 1) and in [2, 10] they are
geometrical convolutions of certain laws (where the parameters of these geometrically
distributed number of convolutions, again, sum up to 1). In our model we group
all subsequent creations and deletions: the length of subsequent creations {Xn}n∈N
and the length of subsequent annihilations {Yn}n∈N are such that {(Xn, Yn)}n∈N is an
i.i.d. sequence with arbitrary distribution. Whence our results apply to the models in
[2, 7, 10] (see Section 2.1). Besides, in the older papers the fitness is assigned uniformly
while we use a general distribution µ. If µ has atoms, a new phenomenon appears: there
might be a fitness which acts as a barrier eventually protecting all species with higher
fitness (see Corollary 2.4 and the subsequent discussion for details).

Here is the outline of the paper. In Section 2 we give the formal construction of the
process and the necessary definitions. We state our main result, Theorem 2.2, which
describe the asymptotic expression of the proportion of species in a generic (Borel)
range of fitness. The asymptotic behavior of a single fitness is described by Theorem 2.3.
Corollary 2.4 and the subsequent discussion gives some details on the number of species
which are killed. Section 2.1 is devoted to a detailed comparison with previous works;
we explain why our work is a generalization of the previous models and which new
phenomena arise. At the end of the section we make a conjecture about a generalization
of our model with a different killing strategy (see Remark 2.5).

In Section 3 we study an example of a Markov model which cannot be treated by
using previously known results (see Section 3.1). We also give a counterexample to be
compared with Theorem 2.2(2).

All the proofs are in Section 4 which contains a couple of results which are worth
mentioning: a Law of Large Numbers (Proposition 4.2) and Proposition 4.1 which
identifies the set of fitness which become empty i.o. (and the total amount of time they
are empty).

2 The process and its asymptotic behaviour

We start by giving a formal description of the process.
Let {Xn, Yn, fn,i}n,i∈N be a family of nonnegative random variables and, for all n ∈ N,

denote by fn the sequence {fn,i}i∈N. Suppose that

1. for every n ∈ N, (Xn, Yn) and fn are independent,

2. {(Xn, Yn, fn)}n∈N are i.i.d.

3. all fn,i are distributed according to a measure µ on R.

Roughly speaking, Xn counts the new species, Yn counts the deaths and fn,i the fitness of
a newly created species. In order to avoid trivial cases we suppose that E[Xk] and E[Yk]

are both in (0,+∞]; moreover we assume that at least one of these two expected values
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is finite. Note that in this case {Xn}n∈N, {Yn}n∈N and {Xn−Yn}n∈N are all i.i.d. families,
but Xi and Yi might be dependent. From now on, we will denote by (X,Y ) a couple with
the same law as (X1, Y1). For every fixed n ∈ N also {fn,i}i∈N might be dependent (for
instance they can be generated by a Markov Chain or fn,1 = fn,i for all i ∈ N).

We will assume that µ([0, 1]) = 1; there is no loss of generality, since any measure on
R can be mapped to a measure supported in [0, 1]. We denote its cumulative distribution
function by F = Fµ and we define F (f−) := lima→f− F (a).

Let Zn be the number of species alive at time n. We start at time 0 with Z0 = 0 (Z0

could be a random variable with an arbitrary distribution on N).
At time 1, X1 species are generated and to each of them we assign a random fitness

with law µ. More precisely the fitness of the i-th created species is f1,i for all 1 ≤ i ≤ X1.
Thus Z1 = Z0 + X1. The procedure is repeated at any odd time: Z2k+1 = Z2k + Xk+1,
meaning thatXk+1 species are created and their fitness fk+1,1, . . . , fk+1,Xk+1

are assigned.
For any set A ⊆ [0, 1] we denote by Zn(A) the total number of species alive at time n and
with fitness in A. The fitness of a species does not change during its entire lifetime, and
species may disappear only at even times.

At time 2k + 2, a number Yk+1 ∧ Z2k+1 of species are removed and removal starts
from the least fit. This means that Z2k+2 = 0∨ (Z2k+1 − Yk+1). Thus if Yk+1 ≥ Z2k+1 then
Z2k+2(A) = 0 for all A ⊆ [0, 1]. Otherwise, let x+ := min{x ∈ [0, 1] : Z2k+1([0, x]) ≥ Yk+1}.
All species with fitness smaller than x+ are removed and Z2k+2(A) = 0 for all A ⊆ [0, x+).
A number Mk+1 := Yk+1 − Z2k+1([0, x+)) of species is removed from the set of species
with fitness equal to x+: Z2k+2({x+}) = Z2k+1({x+}) −Mk+1 and Z2k+2(A) = Z2k+1(A)

for all A ⊆ (x+, 1].
Given a Borel set A ⊆ [0, 1] such that µ(A) > 0, we define the number of species

created in A as

X̃n(A) =

Xn∑
i=1

1lA(fn,i); (2.1)

to avoid a cumbersome notation, henceforth we simply write X̃n instead of X̃n(A). By
our assumptions, for any A, we have that {(X̃n, Yn)}n∈N are i.i.d. and E[X̃n] = µ(A)E[Xn]

(where a · (+∞) = +∞, if a > 0 and 0 · ∞ = 0). Henceforth, an interval I ⊆ [0, 1] (either
closed or not) such that 0 ∈ I is called a left interval. We note that, for a left interval I
such that µ(I) > 0, {Z2n(I)}n∈N is the queuing process (see [5, Ch.VI.9]) associated to
the i.i.d. increments {X̃n − Yn}n∈N (see Section 4 for details).

We will often make use of the expected value E[αX − Y ] where α ∈ [0, 1]. If E[X] =

+∞ > E[Y ] and α > 0 then E[αX − Y ] := +∞; if E[Y ] = +∞ > E[X] then E[αX − Y ] :=

−∞ for all α ∈ [0, 1].
We define the critical parameter:

fc := inf{f ∈ R : F (f) > E[Y ]/E[X]} (2.2)

Note that when E[Y ] ≥ E[X] then fc = +∞, otherwise fc is the only solution of F (fc) ≥
E[Y ]/E[X] ≥ F (f−c ), where both inequalities turn into equalities if and only if µ({fc}) = 0.

When E[Y ] < E[X] < +∞, we define the following probability measure (on Borel sets
A ⊆ [0, 1]) and its cumulative distribution function

P∞(A) :=
µ(A ∩ (fc, 1])E[X] + 1lA(fc)E[µ([0, fc])X − Y ]

E[X − Y ]
,

F∞(f) :=

{
0 f < fc,
E[F (f)X−Y ]
E[X−Y ] f ≥ fc.

(2.3)

Definition 2.1. Let A ⊆ [0, 1]. We say that
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(i) there is extinction in A if and only if Zn(A) = 0 infinitely often a.s.;

(ii) there is survival in A if and only if Zn(A) is eventually positive as n→ +∞ a.s.;

(iii) there is persistence in A if and only if for all even n ∈ N we have P(Zm(A) >

0,∀m ≥ n|Zn(A) > 0) > 0.

When A = {f} we speak of extinction, survival and persistence of the fitness f .

As a consequence of Theorem 2.2, for every Borel set A, either there is extinction in
A or there is survival (and Zn(A)→ +∞ almost surely). Moreover, persistence can be
proved also for sets A such that P(Zn(A) > 0) = 0 (such as some singletons for instance);
clearly if P(Zn(A) > 0) > 0 for some even n then persistence implies survival.

Theorem 2.2 (Limit Distribution Theorem).

(1) For all sets A ⊆ [0, 1] such that µ(A \ [0, fc)) = 0, there is extinction in A and

Zn(A)/n
n→+∞−→ 0 uniformly with respect to A almost surely. If F (fc) = E[Y ]/E[X]

then the same holds for all A ⊆ [0, 1] such that µ(A \ [0, fc]) = 0.

(2) If, for every n, {fn,i}i∈N are i.i.d and E[X] = +∞ > E[Y ] then we have that

Zn/n
n→+∞−→ ∞ and Zn(A)/Zn

n→+∞−→ µ(A) a.s. (for Borel sets A such that µ(A) > 0).

(3) If E[X − Y ] ∈ (0,+∞) then Zn/n
n→+∞−→ E[X − Y ]/2 a.s. and

P
(Zn(A)

Zn

n→+∞−→ P∞(A), for every Borel set A ⊆ [0, 1]
)

= 1. (2.4)

Moreover

sup
f∈[0,1]

∣∣∣Zn([0, f ])

Zn
− F∞(f)

∣∣∣→ 0, as n→ +∞, a.s.

It is worth noting that, as a consequence of Theorem 2.2(1), whenever E[µ(I)X−Y ] ∈
[−∞, 0] for some left interval I, then Z2n(I) = 0 infinitely often a.s.; nevertheless Z2n(I)

has a non-trivial limit in law (see Proposition 4.1(3) for details). This implies that when
E[X] < +∞ and E[X] ≤ E[Y ] ≤ +∞ then all fitness go extinct.

The example given in Section 3.2 shows that, if {fn,i}i∈N are just dependent, then
the conclusion in Theorem 2.2(2) does not hold in general. Nevertheless, independence
is not necessary as explained at the end of Section 3.2.

The following theorem describes the long-term behaviour of a fixed fitness. Note
that all f > fc belong to case (1), while all f < fc belong to (2). If f = fc, then case (2)
applies if and only if F (fc) = E[Y ]/E[X].

Theorem 2.3 (Extinction, survival and persistence). Let f ∈ [0, 1].

(1) If E[F (f)X − Y ] ∈ (0,+∞] then there is persistence and survival in [0, f ] and the
fitness f is persistent. Moreover, limn→∞ Zn([0, f ]) =∞ a.s. and, if, µ({f}) > 0 then
limn→∞ Zn({f}) =∞ almost surely.

(2) If E[F (f)X − Y ] ∈ [−∞, 0] then there is extinction in [0, f ].

It could be shown that if P(Y = 0) > 0 then the persistence in Theorem 2.3 holds in a
stronger way, namely by removing the request of “even n” in Definition 2.1(iii). Indeed,
in this case, given any A, P(Z2i+2(A) > 0|Z2i+1(A)) ≥ P(Y = 0) > 0 and Theorem 2.3
applies.
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Denote by Kn(A) the number of species killed in A up to time n and by τn(A) the
total number of epochs that there are no species in A up to time n. From Theorem 2.2, if
E[X − Y ] > 0 then, as n→ +∞,

Kn(A)

n
=

∑b(n+1)/2c
i=1 X̃i − Zn(A)

n
∼ 1

2
µ(A∩[0, fc])E[X]− 1

2
1lA(fc)E[µ([0, fc])X−Y ] a.s.

(2.5)
where X̃n is the number of species created in the Borel set A (see equation (2.1)).

Corollary 2.4. If E[X − Y ] > 0 then

(1) lim
n→+∞

Kn((fc, 1])/n = 0 a.s.;

(2) Kn([fc, 1])→ +∞ a.s.;

(3) If F (fc) > E[Y ]/E[X] then sup
n∈N

Kn((fc, 1]) < +∞ a.s., otherwise lim
n→+∞

Kn((fc, 1]) =

+∞ a.s.;

(4) If F (f−c ) < E[Y ]/E[X] then lim
n→+∞

Kn([fc, 1])/n > 0 a.s., otherwise lim
n→+∞

Kn([fc, 1])/

n = 0 a.s.;

(5) If f > fc then sup
n∈N

Kn([f, 1]) < +∞ almost surely.

Here is a more explicit description. First of all, by (5) a.s. there are no more species
killed in [f, 1] eventually as n → +∞ but by (2) the number of species killed in [fc, 1]

diverges almost surely.
If µ({fc}) = 0 then F (fc) = E[Y ]/E[X] = F (f−c ), so that by (4) Kn([fc, 1])/n goes to

zero a.s. and τn([0, fc])/n→ 0 almost surely as n→ +∞ (see Proposition 4.1(2)).
If µ({fc}) > 0 then we have the following possibilities:

• F (fc) > E[Y ]/E[X] = F (f−c ) then by (4) Kn([fc, 1])/n goes to zero almost surely.
Moreover, by Theorem 2.3(1) we have Zn({fc})→ +∞ almost surely as n→ +∞,
implying that the species killed in [fc, 1] eventually will have fitness fc almost surely.
Even though the number of species of fitness fc which are killed diverges, by
equation (4.2) Zn({fc})/n converges to (F (fc) − E[Y ]/E[X]) · E[X]/2 > 0. Also,
τn([0, fc))/n goes to 0 (see again Proposition 4.1(2)).

• F (fc) > E[Y ]/E[X] > F (f−c ) then, just as before, a.s. the species killed in [fc, 1]

eventually will have fitness fc and the fraction of species alive with fitness fc
converges to the same positive limit. This time Kn({fc})/n has a positive limit:
−E[F (f−c )X − Y ]/2 and τn([0, fc))/n converges to a positive limit almost surely as
n→ +∞ (see Proposition 4.1(3)).

• F (fc) = E[Y ]/E[X] > F (f−c ) then, by Theorem 2.2, every species with fitness fc is
eventually killed a.s. and Kn([fc, 1])/n converges to −E[F (f−c )X − Y ]/2 > 0. But
Kn((fc, 1])/n tends to 0, a.s., thus outside a negligible proportion, the killed species
all have fitness fc, whence Kn({fc})/n has the same positive limit as before. Finally,
τn([0, fc])/n→ 0 almost surely as n→ +∞ (see Proposition 4.1(2)).

2.1 Comparison with previous works

Our process extends those appeared in [2, 7, 10]. Aside from our general choice for
the fitness law, the birth-and-death mechanism that we study is more general than those
adopted in these papers.

One way to see the original GMS (see [7]) as a particular case of our process is to
consider the variables (Xn, Yn) taking only the values (1, 0) and (0, 1) with probability p
and 1− p respectively.
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A different way to describe the GMS by means of our framework is by observing
that the random sequences of consecutive births Xk and consecutive deaths Yk have
right-shifted Geometric distribution with parameter 1− p and p respectively.

In general, consider a process {Zn}n∈N where at each step either a species is created
(along with its fitness) or the least-fit species, if any, is removed. Denote by X1 > 0

the length of the first stretch of “creations”, followed by a stretch of “annihilations” of
length Y1 > 0, then another stretch of “creations” of length X2 followed by a stretch of Y2
“annihilations” and so on. Suppose that {Xn}n∈N and {Yn}n∈N are two i.i.d. sequences.
It is clear that there is a connection between our process and this one, namely for every
set A, Zn(A) = ZNn

(A) where Nn =
∑b(n+1)/2c
i=1 Xi +

∑bn/2c
i=1 Yi.

In particular if n is even and k ∈ (Nn, Nn+1), then Zk(A) is nondecreasing, while if
k ∈ (Nn+1, Nn+2), then Zk(A) is nonincreasing. Proposition 4.2 shows that for every left
interval I

Zn(I)

n
=
ZNn

(I)

n
→ E[µ(I)X − Y ] ∨ 0

2
, a.s.

When E[X + Y ] <∞, then the monotonicity of Zk between Nn and Nn+1, implies

Zn(I)

n
→ E[µ(I)X − Y ]

2

2

E[X + Y ]
=
E[µ(I)X − Y ]

E[X + Y ]
, a.s.

Therefore, the long-term behaviour of {Zn(I)}n∈N can be derived simply by studying
{Zn(I)}n∈N.

Our work can also be considered as a generalization of [2] and [10] whose models
are essentially equivalent. Indeed, in [2], a single family of Z-valued variables {Un}n∈N
is considered. In this process, Un > 0 means that Un species are created, while Un < 0

means that −Un species are killed. In this case the laws of length of a “creation” stretch
Xi and “annihilation” stretch Yi are necessarily geometric random convolutions of the
law of Un conditioned on {Un > 0} and {Un < 0} respectively. Moreover, the sum of the
parameters of these geometric convolutions must be 1− P(U1 = 0). Therefore, a model
constructed from the variables {Un}n∈N can be considered as a particular case of our
model: take for instance Xn := Un1l{Un>0}, Yn := −Un1l{Un<0} and consider the process
{Z2n(A)}n∈N. In Section 3.1 we consider a particular case of our process which cannot
be obtained with a single family of variables describing simultaneously creations and
annihilations.

Observe that in Theorem 2.2 we used Zn as a normalizing factor for Zn(A) but there
are two other natural choices: n (to compare with [2, 10]) and Nn (to compare with
[3, 7]).
If E[Xi+Yi] < +∞ then, by the Strong Law of Large Numbers (SLLN), Nn ∼ nE[X+Y ]/2

almost surely as n→ +∞. If, in addition, E[X − Y ] ∈ (0,+∞) then by Proposition 4.2 we
have

Zn ∼ nE[X − Y ]/2 ∼ Nn
E[X − Y ]

E[X + Y ]
a.s.

as n→ +∞. Hence Theorem 2.2(3) can be equivalently written in terms of the timescale
n or Nn (in this last case we obtain a generalization of Proposition 4.2(1) to Borel sets).
If E[X] = +∞ > E[Y ] then Zn ∼ Nn almost surely as n → +∞. Indeed one can use
the same kind of arguments used in the proof of Theorem 2.2(2), to prove that Zn and∑b(n+1)/2c
i=1 Xi are asymptotic and the remaining terms are negligible. Roughly speaking,

changing timescale turns out to be just a linear rescaling.
We note that for the GMS model and its generalizations, with µ ∼ U([0, 1]) (where

U(I) is the uniform distribution on I), the fraction of surviving species in any I ⊆ [fc, 1]

is proportional to µ(I). This is still true in our case when I ⊆ (fc, 1], but it does not
hold for instance if I = [fc, b] and F (f−c ) < E[Y ]/E[X]. Moreover if µ ∼ U([0, 1]) then
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Kn([fc, 1])/n → 0 (the exact rate of convergence for the GMS is studied in [3]), while
again this needs not to be true if fc is an atom for µ.

Remark 2.5. Consider our model with a different killing strategy: given Yn species to
be killed, for each one, independently, we choose to remove either the least fit species
(with probability r) or one of the species chosen uniformly at random (with probability
1 − r). We conjecture that fc = inf{f ∈ R : E[F (f)X − rY ] > 0} and Theorem 2.2 still
holds.

3 Examples and counterexamples

3.1 The Markov case

Let the birth-death process be a Markov chain with transition matrix(
p 1− p

1− q q

)
starting from a birth. Thus the probability of a birth after the birth P++ = p, the
probability of death after the birth is P+− = 1 − p and so on. This can be seen as a
particular case of our process where X has a geometric law G(1 − p) while Y has a
geometric law G(1− q). We assume that p > q; clearly E[Y ]/E[X] = (1− p)/(1− q).

We choose µ := αδ1/2 +(1−α)ν (where ν ∼ U([0, 1])); thus the cumulative distribution
function is F (f) = (1− α)f + α1l[1/2,1](f).

Now E[µ(I)X − Y ] = µ(I)/(1 − p) − 1/(1 − q) and, according to equation (2.3),
Zn([0, f ])/Zn → 1l[fc,1](f)(F (f) 1−q

p−q −
1−p
p−q ) as n→ +∞, where fc is given by equation (2.2)

and it is the unique solution in [0, 1] of F (fc) ≥ E[Y ]/E[X] = (1− p)/(1− q) ≥ F (f−c ).
To avoid useless complications, we discuss just the “fair coin” case α = 1/2. In this

case we have

fc =


2(1− p)/(1− q) (q + 3)/4 < p ≤ 1

1/2 (1 + 3q)/4 ≤ p ≤ (3 + q)/4

(1 + q − 2p)/(1− q) q < p < (1 + 3q)/4.

There are five typical situations represented by the five examples in the following table.

(p, q) fc F (fc) F (f−c ) E[F (fc)X − Y ] E[F (f−c )X − Y ] limn→+∞ Zn([0, f ])/Zn
c.d.f. Law

(2/9, 1/9) 3/4 7/8 7/8 0 0 (4f − 3)1l[3/4,1](f) U([3/4, 1])

(2/5, 1/5) 1/2 3/4 1/4 0 −5/6 (2f − 1)1l[1/2,1](f) U([1/2, 1])

(3/4, 1/2) 1/2 3/4 1/4 3/4 −3/4 f1l[1/2,1](f) 1
2δ1/2 + 1

2U([1/2, 1])

(5/6, 1/3) 1/2 3/4 1/4 3 0 2f+1
3 1l[1/2,1]

2
3δ1/2 + 1

3U([1/2, 1])

(9/10, 1/5) 1/4 1/8 1/8 0 0 4f−1
7 1l[1/4,1](f) + 4

71l[1/2,1](f) 4
7δ1/2 + 3

7U([1/4, 1])

3.2 Counterexample of Theorem 2.2(2) for dependent {fn,i}i∈N
We define Yn := 1 a.s. and fn,i := fn,1 for all i > 1 and n ∈ N (where {fn,1}n∈N is

an i.i.d. sequence distributed according to µ). We construct the sequence {Xn}n∈N as
Xn := g(Hn), for a suitable choice of an i.i.d. sequence {Hn}n∈N and a function g.

Let {Hn}n∈N be an i.i.d. sequence such that P(Hn = i) := 1/2i for all i ∈ N \ {0}. We
define ni := i(i + 1)/2 for all i ∈ N, hence P(Hn ≤ ni+1|Hn > ni) = 1 − 1/2i+1 for all
i ∈ N.

Let us define Tk := min{i : Hi > nk} for all k ∈ N (clearly T0 = 1); note that
Tk ∼ G(1/2nk). Since limm→+∞P(Tk ≤ m,HTk

≤ nk+1) = P(HTk
≤ nk+1) = 1 − 1/2k+1

then there exists τk ∈ N such that P(Tk ≤ τk, HTk
≤ nk+1) ≥ 1 − 1/2k. The sequence

{τk}k≥1 can be always constructed iteratively as a nondecreasing sequence. It is not
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difficult to prove, by using the Borel-Cantelli Lemma, that the event Ω0 :=
⋂
k∈N{HTk

≤
nk+1, Tk ≤ τk} has positive probability.

We are now ready to define g(i) := (k + 1)!
∏k
j=0 τj for all i = nk + 1, . . . , nk+1 (for all

k ∈ N); Xn := g(Hn) for all n ∈ N. On Ω0 we have

XTk∑Tk

i=1Xi

≥ XTk

(Tk − 1)g(nk) +XTk

≥
(k + 1)!

∏k
j=0 τj

τk k!
∏k−1
j=0 τj + (k + 1)!

∏k
j=0 τj

≥ k + 1

k + 2
.

Roughly speaking, this means that, on Ω0, for every ε > 0 infinitely often the last
generation represents at least a fraction 1− ε of the entire population. Whence due to
our choice of {fn,i}i∈N, on Ω0, for every Borel set A ⊆ [0, 1] such that µ(A) > 0 and for
every ε > 0, we have Zn(A)/Zn ≥ 1− ε infinitely often.

It is worth noting, though, that independence is not necessary for the limit in The-
orem 2.2(2) to hold. Indeed, consider a variable X taking just even, strictly positive
values. Suppose that fn,2i+1 = fn,2i+2 for all i ≥ 0 but {fn,2i+1}i∈N are independent;
roughly speaking, a random number of “coupled” species are generated and inside each
couple the same random fitness is assigned. It is easy to show that Zn(A)/Zn → µ(A) by
the same argument used in the independent case (see the proof of Theorem 2.2(2)).

4 Proofs

We note that, for any fixed left interval I, {Z2n(I)}n∈N is a random walk on N (with
increments depending on the position). More precisely it is the queuing process (see
[5, Ch.VI.9]) associated to the increments X̃n − Yn, as defined in equation (2.1). More
precisely

Z2n+2(I)− Z2n(I) = max(−Z2n(I), X̃n+1 − Yn+1).

We denote by {Sn(I)}n∈N the random walk with independent increments, where Sn(I) :=∑n
i=1(X̃i − Yi). The drift of this random walk is E[X̃i − Yi] = E[µ(I)Xi − Yi] which is

independent of i.

At time 0 we have S0 = Z0(I) = 0 and for all n

Z2n(I) = Sn(I)−min
i≤n

Si(I) = max
i≤n

n∑
k=i+1

(X̃k − Yk), ∀n ∈ N. (4.1)

By the duality principle of random walks, using that S0(I) = 0, the paths (0, S1(I),

S2(I), . . . , Sn(I)) and (0, Sn(I)− Sn−1(I), Sn(I)− Sn−2(I), . . . , Sn(I)) have the same law
(note that it follows from time-reversal of the increments, see also [4, Ch.III.8]). Thus,
by equation (4.1), Z2n(I) and maxk≤n Sk(I) have the same law. Since S0(I) = 0 then
mini≤n Si(I) ≤ 0, hence Z2n(I) ≥ Sn(I) for all n ∈ N.

Define d := GCD(n ∈ Z : P(X̃ − Y = n) > 0); by elementary number theory it is
easy to show that, since E[X]E[Y ] > 0, when µ(I) > 0 the random walk {Z2n(I)}n∈N
(resp. {Sn(I)}n∈N) is irreducible on the set {dn : n ∈ N} (resp. {dn : n ∈ Z}).

We start with the classification of the random walk {Z2n(I)}n∈N.

Proposition 4.1 (Recurrence and transience). Let I be a left interval such that
P(X̃ 6= Y ) > 0. Denote by τn the time spent at 0 by the random walk {Z2i(I)}i∈N up to
time n. The random walk is

(1) transient if and only if E[µ(I)X − Y ] ∈ (0,+∞], in this case P(supn∈N τn < +∞) = 1;

(2) null recurrent if and only if E[µ(I)X − Y ] = 0, in this case P(limn→+∞ τn/n = 0) = 1;
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(3) positive recurrent if and only if E[µ(I)X − Y ] ∈ [−∞, 0), in this case P(limn→+∞ τn/

n > 0) = 1. Moreover, as n→ +∞

Z2n(I)
dist→ S∞(I), a.s., where S∞(I) := sup

n≥0
Sn(I) <∞, a.s..

Note that the case where P(X̃ = Y ) = 1 is trivial, since it means that µ(I) = 1 and
X = Y = c ∈ (0,+∞) a.s.; thus, Zn(I) equals c when n is odd and 0 when n is even.

Proof. Recall the relation between the random walks {Sn(I)}n∈N and {Z2n(I)}n∈N given
by equation (4.1). In particular the return times to 0 of the second process are the weak
descending ladder times of the first one, that is, the times n such that Sn(I) ≤ Si(I)

for all i ≤ n. We denote by {Ti}i∈N the sequence of intervals between two consecutive
weak descending ladder times of {Sn(I)}n∈N (that is, the times between two consecutive
returns at 0 of {Z2n(I)}n∈N). Note that {Ti}i∈N are i.i.d random variables and T1 =

min{n ≥ 1 : Sn ≤ 0}.
(1) If E[µ(I)X − Y ] > 0 (either finite or infinite) then, by the SLLN, Sn(I) → +∞
a.s., hence the same happens to the process {Z2n(I)}n∈N since Z2n(I) ≥ Sn(I) for all
n ∈ N (see equation (4.1) and the remark afterwards). This implies that infn≥0 Sn(I) =:

S−∞ > −∞ a.s. and the Markov chain {Z2n(I)}n∈N is transient. As a consequence
P(supn∈N τn < +∞) = 1.

(2) When the distribution of X̃n−Yn is not degenerate (that is, it is not δ0) then according
to [5, Theorem 4, Ch.VI.10] {Sn(I)}n∈N is a recurrent random walk on the set {dn : n ∈
Z}. Since there are infinitely many reachable states on the left (as well as on the right) of
the origin, we have P(T1 <∞) = 1 so that {Z2n(I)}n∈N is recurrent. Moreover E[T1] =

+∞ (see [5, Theorem 2(i), Ch.XII.2]) and this implies the null recurrence of {Z2n(I)}n∈N.
It is well known that, for a recurrent random walk P(limn→+∞ τn/n = 1/E[T1]) = 1

where, in this case, 1/E[T1] = 0.
(3) We apply again the SLLN to {Sn(I)}n∈N to deduce that Sn(I) → −∞ a.s., hence
supn≥0 Sn(I) =: S∞(I) < +∞ and E[T1] is finite (see [5, Theorem 2(ii), Ch.XII.2]). Thus,
{Z2n(I)}n∈N is positive recurrent. As before P(limn→+∞ τn/n = 1/E[T1]) = 1 where, in
this case, 1/E[T1] > 0.

It is clear that maxi≤n Sn(I) ↑ S∞(I) a.s. and the conclusion follows by equation (4.1)
(see also [5, Ch.VI.9]).

The next proposition deals with the a.s. convergence of Zn(I)/n as n→∞.

Proposition 4.2 (Law of large numbers).

(1) For every interval I ⊆ [0, 1],

Zn(I)/n→ 1

2

(
µ(I ∩ (fc, 1])E[X] + 1lI(fc)E[µ([0, fc])X − Y ]

)
, a.s. (4.2)

(2) If E[X − Y ] ∈ [−∞, 0] then, for all sets A ⊆ [0, 1], Zn(A)/n → 0 almost surely as
n→ +∞.

(3) Let I be a left interval and J ⊆ [0, 1] be such that I∩J = ∅ and µ(J) > 0. Suppose that
E[µ(I)X − Y ] ∈ (0,+∞]. Then, a.s., Zn(J) is nondecreasing eventually as n→ +∞
and Zn(J)/n→ µ(J)E[X]/2.

Proof. (1) Equation (4.2) for a left interval I. In this case equation (4.2) becomes

Zn(I)

n
→ 1

2
E[µ(I)X − Y ] ∨ 0, a.s. (4.3)

Let ∆ := E[µ(I)X −Y ] ∈ [−∞,+∞]; by the SLLN we have that (a) Sn(I)/n→ ∆ a.s.. We
separate two cases.
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• ∆ ∈ [−∞, 0]. Since lim infn Sn(I) = −∞, then (b) for every n0 there is a larger weak
descending ladder time, i.e. n ≥ n0 such that Sn(I) ≤ Sk(I) for all k ≤ n. Hence almost
every trajectory satisfies both (a) and (b); let us consider such a trajectory.

When 0 ≥ ∆ > −∞ then for every ε > 0 there exists n0 such that for every n ≥ n0 we
have |Sn(I)/n−∆| < ε/2. Consider a weak descending ladder time n1 ≥ n0; it is clear that,
for every n ≥ n1 then mink≤n Sk(I) = Skn(I) for some kn such that n ≥ kn ≥ n1 ≥ n0.

When ∆ = 0, then for every n ≥ n1 we have, by equation (4.1),

|Z2n(I)|
n

=
∣∣∣Sn(I)

n
− mink≤n Sk(I)

n

∣∣∣ =
∣∣∣Sn(I)

n
− Skn(I)

n

∣∣∣ ≤ |Sn(I)|
n

+
|Skn(I)|
kn

· kn
n
< ε

since n ≥ n0 and n ≥ kn ≥ n0.
When −∞ < ∆ < 0, take ε ∈ (0,−2∆). For every n ≥ n1 we have

∆ + ε/2 ≥ Sn(I)

n
≥ Skn(I)

n
≥ Skn(I)

kn
≥ ∆− ε/2

since Skn(I) ≤ n(∆ + ε) < 0 (for all n > 0) and n ≥ kn ≥ n0. From the above chain of
inequalities we obtain |Skn(I)/n−∆| ≤ ε/2. Using again equation (4.1) we have

|Z2n(I)|
n

≤
∣∣∣Sn(I)

n
−∆

∣∣∣+
∣∣∣Skn(I)

n
−∆

∣∣∣ < ε.

If ∆ = −∞, consider the process {Ẑ2n}n∈N constructed by using Yk ∧M instead of Yk
in such a way that E[µ(I)X − Y ∧M ] ∈ (−∞, 0). We have 0 ≤ Z2n(I)/n ≤ Ẑ2n(I)/n→ 0

almost surely as n→∞.
We are left to prove that

Z2n+1(I)/n→ 0, a.s. (4.4)

Remember that, for all ε > 0, E[X] < ∞ iff
∑
n∈NP(X > εn) < ∞; thus, by the Borel-

Cantelli’s Lemma, E[X] <∞ implies P(lim infn{Xn ≤ εn}) = 1. Thus

|Z2n+1(I)− Zn(I)|
n

≤ Xn+1

n
→ 0, a.s. (4.5)

so that from Z2n/n→ 0, a.s., the convergence (4.4) follows.
• ∆ ∈ (0,+∞]. By the SLLN, Sn(I) → +∞ a.s. and infn≥0 Sn(I) =: S−∞ > −∞, almost
surely. By (a), using equation (4.1), we have Z2n(I) = Sn(I)−S−∞ eventually a.s., which
implies Z2n(I)/n→ E[µ(I)X − Y ], almost surely.

As before we are left to show

Z2n+1(I)/n→ E[µ(I)X − Y ], a.s. (4.6)

If E[X] <∞ then we use (4.5) to obtain (4.6).
If E[X] =∞, note that Z2n+1(I) ≥ Z2n(I), thus Z2n+1(I)/n→ +∞ almost surely.

Equation (4.2) for a generic interval I. Consider the the two left intervals I1 := {x ∈
[0, 1] : ∃y ∈ I, x ≤ y} and I2 := {x ∈ [0, 1] : x < y, ∀y ∈ I}. Clearly I2 ⊆ I1, I1 \ I2 = I,
whence Zn(I) = Zn(I1)− Zn(I2). For I1 and I2, the convergence in equation (4.3) holds.

If fc ∈ I, then I2 ⊆ [0, fc) so that E[µ(I2)X−Y ] ≤ 0 and by the result for left intervals,
Zn(I1)/n→ 0 almost surely. Therefore,

lim
n

Zn(I)

n
= lim

n

Zn(I1)

n
=
E[µ(I1)X − Y ]

2
=
E[µ(I ∪ [0, fc))X − Y ]

2
, a.s..

Suppose fc 6∈ I. If I ⊆ [0, fc), then E[µ(I1)X − Y ] ≤ 0 and Zn(I)/n→ 0 almost surely.
If, I ⊂ (fc, 1], then by equation (4.3) we have

Zn(I)

n
→ E[µ(I)X − Y ]

2
=
E[µ(I ∩ (fc, 1])X − Y ]

2
, a.s.
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and the statement now follows. This concludes the proof of (1).

(2) In this case fc = +∞. Whence Zn/n→ 0 a.s., thus the same holds for Zn(A) for every
A ⊆ [0, 1].

(3) The result follows from the fact that limn→+∞ Zn(I) = +∞ almost surely. Since
Zn(I)→ +∞, a.s. then no species with fitness from [0, 1] \ I are removed, eventually. By
the SLLN, the number of births in J (up to time n) divided by n goes to its expectation
almost surely as n→ +∞ and this yields the claim.

Proof of Theorem 2.3. (1) Take I = [0, f ] and suppose that Z2n0
(I) > 0. Since Z2n+1(I) ≥

Z2n(I) for all n, in order to check whether the process hits the origin or not, it is enough
to consider the process {Z2n(I)}n∈N. By Proposition 4.1(1) {Z2n(I)}n∈N is transient
and P(Z2n(I) > 0, ∀n > n0|Z2n0

= i) > 0 (and this probability does not depend on n0).
Therefore we have persistence and survival. Moreover Z2n(I) → ∞ a.s., thus from
Z2n+1(I) ≥ Z2n(I) we have Zn(I)→∞ almost surely.

Suppose now that there are species with fitness f alive at time n0. If Zn(I) is never
empty for n ≥ n0, then the fitness f is never removed. Thus the persistence of f is
equivalent to the persistence of I.

We now show that Zn({f})→∞. If Z2n({f}) > Z2n+2({f}) then

Z2n(I) ≥ Z2n({f}) > Z2n+2({f}) = Z2n+2(I).

For all M > 0 let n(M) be a random integer such that Z2n(I) ≥ M for all n ≥ n(M).
For every n ≥ n(M) either Z2n({f}) ≤ Z2n+2({f}) or Z2n+2({f}) ≥ M . In particular, if
Z2n1

({f}) ≥ M for some n1 > n(M), then it is true for all n ≥ n1. Consider the first
(random) time n1 ≥ n(M) when Z2n1

([0, f)] = 0. If n1 = ∞ then, from time n(M) on,
Zn({f}) is non decreasing and strictly increasing infinitely many often; indeed, species
of fitness f are created infinitely many times a.s. (since µ({f}) > 0) and these species
will be never removed after time n(M) (since Z2n([0, f)] > 0 for every n ≥ n(M)). If, on
the other hand, n1 <∞ then Z2n({f}) ≥M for all n ≥ n1 and the result follows.

(2) By Proposition 4.1, applied to I = [0, f ], the process {Z2n(I)}n∈N is recurrent and
so Zn(I) = 0 infinitely often, almost surely.

Proof of Corollary 2.4. The statement (1) follows from the equation (2.5). For every
left interval I such that E[µ(I)X − Y ] > 0 by equation (4.3) we have Zn(I) → +∞
a.s. and there are no more particles killed in Ic eventually as n → +∞. This implies
the first statement of (3) and the statement (5). Conversely, if E[µ(I)X − Y ] ≤ 0 then
by equation (2.5) we have Kn(Ic) ∼ − 1

2E[µ(I)X − Y ] almost surely as n → +∞. This
implies (4). Finally, if E[µ(I)X − Y ] = 0 then Zn(I) = 0 i.o. almost surely, whence by
E[X − Y ] > 0 it follows that Kn(Ic) → +∞ as n → +∞ almost surely. This implies the
second statement of (3) (applied to the case F (fc)E[X]− E[Y ] = 0) and the statement
(2) (applied to the case F (fc−)E[X]− E[Y ] = 0).

Proof of Theorem 2.2. (1) It is enough to consider A ⊆ [0, 1] ∩ [0, fc) since there are no
births in A \ ([0, 1] ∩ [0, fc)) almost surely. It follows immediately from Proposition 4.2(1);
the uniform convergence comes from the inequality Zn(A) ≤ Zn(I) for all A ⊆ I and
n ∈ N.

(2) By Proposition 4.2(1) we have that Zn/n→ +∞ almost surely. Recall that fn,1, fn,2, . . .
are i.i.d. We start by noting that

b(n+1)/2c∑
i=1

(X̃i − Yi) ≤ Zn(A) ≤
b(n+1)/2c∑

i=1

X̃i,
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whence ∑b(n+1)/2c
i=1 (X̃i − Yi)∑b(n+1)/2c

i=1 Xi

≤ Zn(A)

Zn
≤

∑b(n+1)/2c
i=1 X̃i∑b(n+1)/2c

i=1 (Xi − Yi)
.

Moreover, since a.s. ∑k
i=1 Yi∑k
i=1Xi

k→∞→ 0,

it suffices to prove that a.s. ∑k
i=1 X̃i∑k
i=1Xi

k→∞→ µ(A).

We recall that X̃i is a sum of Xi Bernoulli random variables of parameter µ(A) and that
the family of these Bernoulli variables is independent of the family {Xn}n∈N. Thus∑k

i=1 X̃i∑k
i=1Xi

=
B(
∑k
i=iXi, µ(A))∑k
i=1Xi

,

and we are therefore left to prove that a.s.∑Nn

i=1Wi

Nn

n→∞→ µ(A). (4.7)

This follows easily from the fact that
∑n
i=1Wi/n → µ(A) almost surely. Denote by Ω1

the set where there is convergence and, in addition, Nn → +∞ holds; clearly P(Ω1) = 1.

For all ω ∈ Ω1,
∑Nn(ω)
i=1 Wi(ω)/Nn(ω) is a subsequence of the convergent sequence∑n

i=1Wi(ω)/n.
(3) The a.s. convergence Zn/n → E[X − Y ]/2 as n → +∞ comes from Proposition 4.2.
As for the second part, if A is an interval then the claim follows trivially by applying
Proposition 4.2 to Zn(I) and Zn. Let

B := {∪ki=1[ai, bi] : a1 < b1 < a2 < b2 < · · · < bk, ai, bi ∈ Q, k = 1, 2, . . .}.

Since there are countable many intervals with rational endpoints,

P
(Zn(B)

Zn
→ P∞(B), ∀B ∈ B

)
= 1. (4.8)

By the regularity of probability measures, it is easy to see that for every Borel set A, for
every ε > 0 there exists sets B1, B2 ∈ B, both depending on ε such that B1 ⊂ A ⊂ B2 and
P∞(B2 \B1) ≤ ε. Thus, if Zn(B)/Zn → P∞(B) for every B ∈ B, then for every ε > 0

lim sup
n

Zn(A)

Zn
≤ lim sup

n

Zn(B2)

Zn
= P∞(B2) ≤ P∞(A) + ε,

lim inf
n

Zn(A)

Zn
≥ lim inf

n

Zn(B1)

Zn
= P∞(B1) ≥ P∞(A)− ε,

so that equation (4.8) implies equation (2.4).
By the above arguments, it suffices to show the following: if Pn, P∞ are probability

measures onR, so that for every Borel set A, Pn(A)→ P∞(A), then supt |Fn(t)−F∞(t)| =:

‖Fn − F∞‖∞ → 0, where Fn and F∞ are the corresponding distribution functions. Let
{xi} be the set of atoms of P∞, pi := P∞({xi}) and let H∞(t) =

∑
i piI(−∞,t](xi) be the

distribution function of the measure
∑
i piδxi

(with total mass not larger than 1). Let, for
every i, pni := Pn({xi}), by assumption pni → pi. Let Hn be the distribution function of the
measure

∑
i p
n
i δxi

. Since Pn({x1, x2, . . .}) → P∞({x1, x2, . . .}), from Scheffé’s theorem
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(see for instance [11, Lemma 5.10]), it follows that ‖Hn −H∞‖∞ → 0. Since for every t,
Fn(t) → F∞(t), we have that (Fn(t)−Hn(t)) → (F∞(t)−H∞(t)) for every t. Moreover,
since ‖Hn −H∞‖∞ → 0 we have that limt→+∞Hn(t) → limt→+∞H∞(t) which, in turn,
implies limt→+∞(Fn(t) − Hn(t)) → limt→+∞(F∞(t) − H∞(t)) as n → +∞. The latter
convergence along with the fact that function F∞(t)−H∞(t) is continuous guarantees
that the pointwise convergence implies uniform convergence. So, ‖Fn − F∞‖∞ ≤
‖Hn −H∞‖∞ + ‖(Fn −Hn)− (F∞ −H∞)‖∞ → 0.
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