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Abstract

We revisit Föllmer’s concept of quadratic variation of a càdlàg function along a
sequence of time partitions and discuss its relation with the Skorokhod topology. We
show that in order to obtain a robust notion of pathwise quadratic variation applicable
to sample paths of càdlàg processes, one must reformulate the definition of pathwise
quadratic variation as a limit in Skorokhod topology of discrete approximations along
the partition. One then obtains a simpler definition which implies the Lebesgue
decomposition of the pathwise quadratic variation as a result, rather than requiring it
as an extra condition.
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1 Quadratic variation along a sequence of partitions

In his seminal paper Calcul d’Itô sans probabilités [14], Hans Föllmer introduced a
pathwise concept of quadratic variation and used it to provide a pathwise proof of the
Itô formula. Föllmer showed that if a function x ∈ D([0, T ],R) has quadratic variation
along a sequence πn = (tn0 = 0 < .. < tnj < ... < tnm(n) = T ) of time partitions of [0, T ] in
the sense that for each t ∈ [0, T ] the limit

µn :=
∑

[tnj ,t
n
j+1]∈πn

δ(· − tj) |x(tnj+1)− x(tnj )|2 (1.1)
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On pathwise quadratic variation for càdlàg functions

converges weakly to a Radon measure µπ such that

[x]cπ : t 7→ µπ([0, t])−
∑
s≤t |∆x(s)|2 is a continuous increasing function, (L)

then a pathwise Itô formula may be obtained for functions of x [14]: for any f ∈ C2(R,R),

f(x(t))− f(x(0)) =
∫ t
0
f ′(x)dπx+ 1

2

∫ t
0
f ′′(x(s))d[x]cπ(s)

+
∑

0≤s≤t ( f(x(s))− f(x(s−))− f ′(x(s−))∆x(s) ) (1.2)

where
∫ t
0
f ′(x)dπx is a pathwise integral defined as a limit of left Riemann sums computed

along the partition:∫ t

0

g(x)dπx := lim
n→∞

∑
πn

g(x(tnj )).
(
x(tnj+1)− x(tnj )

)
. (1.3)

The quantity
[x]π(t) = µπ([0, t]) = [x]cπ(t) +

∑
s≤t

|∆x(s)|2

is called the quadratic variation of x along π. This result has many interesting applica-
tions and has been extended to less regular functions [2, 8, 11, 19] and path-dependent
functionals [1, 4, 5, 6, 8]. With the exception of [6, 22, 18], these extensions have focused
on continuous paths.

Föllmer’s definition [14] contains the condition (L) on the Lebesgue decomposition
of the limit µπ: the atoms of µπ should correspond exactly to the jumps of x and their
mass should be |∆x(t)|2 or, equivalently, the discontinuity points of [x]π should coincide
with those of x, with ∆[x]π(t) = |∆x(t)|2. This condition can not be removed: as shown
by Coquet et al. [9], there are counterexamples of continuous functions x such that (1.1)
converges to a limit with atoms. Conversely, one can give examples of discontinuous
functions for which (1.1) converges to an atomless measure. If this condition is not
satisfied, then the pathwise integral (1.3) fails to satisfy

∆

(∫ t

0

x(s−)dx(s)

)
(t) = x(t−)∆x(t),

at each t where condition (L) is not met. On the other hand, this condition (L) is not easy
to check and seems to require a link between the path x and the sequence of partitions
π, making it difficult to apply to sample paths of stochastic processes.

In this work, we revisit Föllmer’s concept of pathwise quadratic variation along
a sequence of partitions and show that it has hitherto unsuspected links with the
Skorokhod topology. In particular, we show that in order to obtain a robust notion of
pathwise quadratic variation applicable to sample paths of càdlàg processes, one must
reformulate the definition of the quadratic variation as a limit, in Skorokhod topology, of
discrete approximations defined along the partition. This leads to a simpler definition of
pathwise quadratic variation which holds in any dimension and, rather than requiring
the Lebesgue decomposition of the pathwise quadratic variation as an extra condition,
yields it as a consequence.

Outline We begin by recalling Föllmer’s definition of pathwise quadratic variation
and variations of it which have been used in the literature. We then introduce a new
definition of quadratic variation for real-valued càdlàg functions based on the Skorokhod
topology and prove equivalence among the various definitions. Section 3 extends the
results to vector-valued functions: we show that, unlike Föllmer’s original definition in
which the one dimensional case plays a special role, our definition applies regardless
of dimension, thus simplifying various statements regarding quadratic variation for
vector-valued functions. Finally, in Section 4, we show that our approach leads to simple
proofs for various properties of pathwise quadratic variation.
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On pathwise quadratic variation for càdlàg functions

2 Pathwise quadratic variation for cadlag functions

Let π := (πn)n≥1 be a sequence of partitions πn = (tn0 , ..., t
n
kn

) of [0,∞) into intervals
0 = tn0 < ... < tnkn <∞; tnkn ↑ ∞ with vanishing mesh |πn| ↓ 0 on compacts. By convention,
max(∅ ∩ πn) := 0, min(∅ ∩ πn) := tnkn .

Denote D := D([0,∞),R) the space of cadlag functions and C := C([0,∞),R) the
subspace of real-valued continuous functions. We equip D with a metric d which induces
the Skorokhod J1 topology [16, Ch. VI]. Denote D+

0 ⊂ D to be the subset of non-negative
increasing right-continuous functions null at 0.

Definition 2.1 (Föllmer 1981). x ∈ D has (finite) quadratic variation [x]π along π if the
sequence of measures

µn :=
∑
tni ∈πn

(x(tni+1)− x(tni ))2δ(tni ) (2.1)

converges vaguely on [0,∞) to a Radon measure µ with [x]π(t) = µ([0, t]), such that
[x]cπ defined by [x]cπ(t) := µ([0, t]) −

∑
s≤t(∆xs)

2 is a continuous increasing function.
[x]π(t) = µ([0, t]) is then called the quadratic variation of x along π, and admits the
following Lebesgue decomposition:

[x]π(t) = [x]cπ(t) +
∑
s≤t

|∆x(s)|2. (2.2)

We denote Qπ0 the set of x ∈ D satisfying these properties.

At this point let us point out a link between vague and weak convergence of Radon
measures on [0,∞), a link which is well known in the case where the measures are
sub-probability measures:

Lemma 2.2. Let vn and v be non-negative Radon measures on [0,∞) and J ⊂ [0,∞) be
the set of atoms of v, the followings are equivalent:

(i) vn → v vaguely on [0,∞).
(ii) vn → v weakly on [0, T ] for every T /∈ J .

Proof. Let f ∈ CK([0,∞)) be a compactly supported continuous function. Since J

is countable, ∃ T /∈ J ; supp(f) ⊂ [0, T ]. Now (ii) ⇒
∫∞
0
fdvn =

∫ T
0
fdvn −→

∫ T
0
fdv =∫∞

0
fdv ⇒ (i). Suppose (i) holds, let T /∈ J and f ∈ C ([0, T ], ‖ · ‖∞). Since f = (f)+−(f)−,

we may take f ≥ 0 and define the following extensions:

f
ε
(t) := f(t)1I[0,T ](t) + f(T )

(
1 +

T − t
ε

)
1I(T,T+ε](t)

f ε(t) := f(t)1I[0,T−ε](t) + f(T )

(
T − t
ε

)
1I(T−ε,T ](t),

then f
ε
, f ε ∈ CK([0,∞)), 0 ≤ f ε ≤ f1I[0,T ] ≤ f

ε ≤ ‖f‖∞ and we have∫ ∞
0

f εdvn ≤
∫ T

0

fdvn ≤
∫ ∞
0

f
ε
dvn.

Since vn → v vaguely and T /∈ J , thus, as n→∞ we obtain

0 ≤ lim sup
n

∫ T

0

fdvn − lim inf
n

∫ T

0

fdvn ≤
∫ ∞
0

f
ε − f εdv

≤ ‖f‖∞v ((T − ε, T + ε])
ε−→ 0,
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On pathwise quadratic variation for càdlàg functions

hence by monotone convergence

lim
n

∫ T

0

fdvn = lim
ε

∫ ∞
0

f εdv =

∫ T

0

fdv

and (ii) follows.

Proposition 2.3. If x ∈ Qπ0 , then the pointwise limit s of

sn(t) :=
∑
ti∈πn

|x(ti+1 ∧ t)− x(ti ∧ t)|2 (2.3)

exists, s = [x]π and s admits the Lebesgue decomposition:

s(t) = sc(t) +
∑
s≤t

(∆xs)
2. (2.4)

Proof. If x ∈ Qπ0 , define

qn(t) :=
∑

πn3ti≤t

(x(ti+1)− x(ti))
2,

the distribution function of µn in (2.1). Since µn → µ vaguely, we have qn → [x] pointwise
at all continuity points of [x] (Lemma 2.2 & [12, X.11]). Let I be the set of continuity
points of [x]. Observe (qn) is monotonic in [0,∞) and I is dense in [0,∞), if t /∈ I, it
follows [12, X.8] that

[x](t−) ≤ lim inf
n

qn(t) ≤ lim sup
n

qn(t) ≤ [x](t+) = [x](t).

Thus, we may take any subsequence (nk) such that limk qnk(t) =: q(t). Since x ∈ Qπ0 and
the Lebesgue decomposition (2.2) holds on [x], we have

≥0
([x](t+ ε)− q(t)) +

≥0
(q(t)− [x](t− ε))= [x](t+ ε)− [x](t− ε) ε→0→ |∆x(t)|2. (2.5)

If t± ε ∈ I, π̃k := πnk and t(k)j := max{π̃k ∩ [0, t)}, the second sum in (2.5) is

lim
k

∑
ti∈π̃k;

t−ε<ti≤t

(x(ti+1)− x(ti))
2 = lim

k

∑
ti∈π̃k;

t−ε<ti<t(k)j

≥0
(x(ti+1)− x(ti)

2 +(∆x(t))2 ≥ (∆x(t))2

by the fact that x is càdlàg and that t /∈ I.
We see from (2.5) that q(t) = [x](t) as ε → 0. Since the choice of the convergent

subsequence is arbitrary, we conclude that qn → [x] pointwise on [0,∞). Observe that
the pointwise limits of (sn) and (qn) coincide i.e.

|sn(t)− qn(t)| = (x
t
(n)
i+1
− x(t))2 + 2(x

t
(n)
i+1
− x(t))(x(t)− x

t
(n)
i

) (2.6)

converges to 0 by the right-continuity of x, where t(n)i := max {πn ∩ [0, t]} and that x ∈ Qπ0 ,
Prop. 2.3 follows.

Denote Qπ1 the set of x ∈ D such that (sn) defined in (2.3) has a pointwise limit s with
Lebesgue decomposition given by (2.4). Then Qπ0 ⊂ Qπ1 and we have:
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On pathwise quadratic variation for càdlàg functions

Proposition 2.4. If x ∈ Qπ1 , then the pointwise limit q of

qn(t) :=
∑

πn3ti≤t

(x(ti+1)− x(ti))
2 (2.7)

exists. Furthermore q = s and admits the Lebesgue decomposition:

q(t) = qc(t) +
∑
s≤t

(∆xs)
2. (2.8)

Proof. Since the pointwise limits of (sn) and (qn) coincide by (2.6). Prop. 2.4 now follows
from x ∈ Qπ1 .

Denote Qπ2 the set of x ∈ D such that the quadratic sums (qn) defined in (2.7) have a
pointwise limit q with Lebesgue decomposition (2.8). Then Qπ0 ⊂ Qπ1 ⊂ Qπ2 and we have:

Proposition 2.5. If x ∈ Qπ2 , then qn → q in the Skorokhod topology.

Proof. Since x ∈ Qπ2 , we have qn → q pointwise on [0,∞) and that (qn), q are elements in
D+

0 . By [16, Thm.VI.2.15], it remains to show that∑
s≤t

(∆qn(s))2
n→∞−→

∑
s≤t

(∆q(s))2

on a dense subset of [0,∞). Let t > 0, define Jε := {s ≥ 0|(∆Xs)
2 ≥ ε

2}, J
ε
n := {ti ∈

πn|∃s ∈ (ti, ti+1]; (∆Xs)
2 ≥ ε

2} ⊂ πn and observe that∑
s≤t

(∆qn(s))2 =
∑

πn3ti≤t

(x(ti+1)− x(ti))
4

=
∑

Jεn3ti≤t

(x(ti+1)− x(ti))
4 +

∑
(Jεn)

c3ti≤t

(x(ti+1)− x(ti))
4. (2.9)

Since x is càdlàg and that |πn| ↓ 0 on compacts, the first sum in (2.9) converges to∑
Jε3s≤t(∆xs)

4 and the second sum in (2.9)

∑
(Jεn)

c3ti≤t

(x(ti+1)− x(ti))
4 ≤

(
sup

(Jεn)
c3ti≤t

(x(ti+1)− x(ti))
2

) ∑
(Jεn)

c3ti≤t

(x(ti+1)− x(ti))
2

≤ εq(t)

for sufficiently large n [6, Appendix A.8] hence

lim
n

∑
s≤t

(∆qn(s))2 =
∑

Jε3s≤t

(∆xs)
4 +

≤εq(t)︷ ︸︸ ︷
lim sup

n

∑
(Jεn)

c3ti≤t

(x(ti+1)− x(ti))
4 .

By the Lebesgue decomposition (2.8), we observe
∑
Jε3s≤t(∆xs)

4 ≤ q(t)2 and that

lim
n

∑
s≤t

(∆qn(s))2 =
∑
s≤t

(∆xs)
4 =

∑
s≤t

(∆q(s))2

as ε→ 0.

Denote Qπ the set of càdlàg functions x ∈ D such that the limit q̃ of (qn) exists in
(D, d). Then Qπ0 ⊂ Qπ1 ⊂ Qπ2 ⊂ Qπ and we have:

Proposition 2.6. Qπ ⊂ Qπ0 and q̃ = [x]π.
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Proof. Let x ∈ Qπ and I be the set of continuity points of q̃. [16, VI.2.1(b.5)] implies that
qn → q̃ pointwise on I. Since qn ∈ D+

0 and I is dense on [0,∞), it follows q̃ ∈ D+
0 . Denote

µ to be the Radon measure of q̃ on [0,∞), observe the set of atoms of µ is J := [0,∞)\I
and that (qn) are the distribution functions of the discrete measures (µn) in (2.1). Thus,
by (Lemma 2.2 & [12, X.11]), we see that µn −→ µ vaguely on [0,∞).

If t > 0, put t(n)i := max{πn ∩ [0, t)}. Since |πn| ↓ 0 on compacts, we have t
(n)
i < t,

t
(n)
i ↑ t and t(n)i+1 ↓ t. Observe that

∆qn(t) =

{
(x(ti+1)− x(ti))

2
, if t = ti ∈ πn.

0, otherwise.
(2.10)

If ∆q̃(t) = 0, [16, VI.2.1(b.5)] implies that ∆qn(t
(n)
i )→ ∆q̃(t). Hence, by the fact that x

is càdlàg , (∆x(t))2 = limn ∆qn(t
(n)
i ) = ∆q̃(t). If ∆q̃(t) > 0, there exists [16, VI.2.1(a)]

a sequence t′n → t such that ∆qn(t′n) → ∆q̃(t) > 0. Using the fact that x is càdlàg ,

t′n → t, (2.10) and [16, VI.2.1(b)], we deduce that (t′n) must coincide with (t
(n)
i ) for all n

sufficiently large, else we will contradict ∆q̃(t) > 0. Thus, (∆x(t))2 = limn ∆qn(t
(n)
i ) =

limn ∆qn(t′n) = ∆q̃(t) and the Lebesgue decomposition (2.2) holds on q̃.
By Def.2.1, we have q̃ = [x]π hence Qπ ⊂ Qπ0 .

Theorem 2.7. Let

• Qπ0 be the set of x ∈ D satisfying Definition 2.1.

• Qπ1 the set of x ∈ D such that (sn) defined in (2.3) has a pointwise limit s with
Lebesgue decomposition given by (2.4).

• Qπ2 the set of x ∈ D such that the quadratic sums (qn) defined by (2.7) have a
pointwise limit q with Lebesgue decomposition (2.8).

• Qπ the set of càdlàg functions x ∈ D such that the limit q̃ of (qn) exists in (D, d).

Then:

(i) Qπ0 = Qπ1 = Qπ2 = Qπ.

(ii) If x ∈ Qπ0 , then [x]π = s(x) = q(x) = q̃(x).

(iii) x has finite quadratic variation along π if and only if the sequence (qn)n≥1 defined
by

qn(t) :=
∑

πn3ti≤t

(x(ti+1)− x(ti))
2

converges in (D, d).

(iv) If (qn)n≥1 converges in (D, d), the limit is equal to [x]π.

Proof. These results are a consequence of Prop. 2.3, 2.4, 2.5 and 2.6.

We see that the two defining properties of [x] in Def. 2.1 are consequences per
Thm. 2.7. The following corollary treats the special case of continuous functions.

Corollary 2.8. Let x ∈ Qπ, sn defined as in (2.3), (qn) defined by (2.7).

i qn → [x] uniformly on compacts in [0,∞) if and only if x is continuous.

ii If qn → [x]π uniformly on compacts in [0,∞), then sn → [x]π uniformly on compacts.
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Proof. (i): The if part follows from Prop. 2.6, (2.2) and [16, VI.1.17(b)]. The only if part:
Let t ≥ 0, it is well known that

∆qn(t)→ ∆[x]π(t)

by uniform convergence. Put t′n := max{ti < t|ti ∈ πn}, since qn → [x] in the Skorokhod
topology, we also have

∆qn(t′n)→ ∆[x]π(t)

by (2.10) and [16, VI.2.1(b)]. If ∆[x](t) > 0, then [16, VI.2.1(b)] implies t′n must coincide
with t for all n large enough, but t′n < t for all n, hence ∆[x](t) = 0 which implies
∆x(t) = 0 by Prop. 2.6 and (2.2). Since t is arbitrary, we conclude that x ∈ C.

(ii): Let T > 0, ‖ · ‖(t) the supremum norm on D([0, T ]) and observe that

‖sn − [x]‖(t) ≤ ‖qn − [x]‖(t) + ‖sn − qn‖(t).

Since (i) implies x ∈ C, (ii) now follows from uniform continuity of x and (2.8).

Remark 2.9. The converse of (ii) is not true in general.

Remark 2.10. The above conditions cannot be replaced by the pointwise convergence
of

pn(t) :=
∑

πn3ti+1≤t

(x(ti+1)− x(ti))
2

together with the Lebesgue decomposition (2.2). To see why, take t0 /∈ π, put x(t) :=

1I[t0,∞)(t) then obviously [x](t0) = lim sn(t0) = lim qn(t0) = 1 but lim pn(t0) = 0.

Remark 2.11. Vovk [22, Sec. 6] proposes a different notion of pathwise quadratic
variation along a sequence of partitions, which is shown to coincide with Föllmer’s
definition under the additional assumption that the sequence of partitions π is refining
and exhausts all discontinuity points of the path [22, Prop. 6.3 & 6.4].

This requirement of exhausting all jumps can always be satisfied for a given càdlàg
path by adding all discontinuity points to the sequence of partitions. However if one is
interested in applying this definition to a process, say a semimartingale, then in general
there may exist no sequence of partitions satisfying this condition almost surely across
sample paths. And, if this requirement of exhausting all discontinuity points is removed,
then Vovk’s definition differs from Föllmer’s (and therefore, fails to satisfy the Ito formula
(1.2) in general).

By contrast, our definition does not require such a condition and easily carries over
to stochastic processes without requiring the use of random partitions (see Theorem
4.1).

3 Quadratic variation for multidimensional functions

Denote Dm := D([0,∞),Rm) and Dm×m := D([0,∞),Rm×m) to be the Skorokhod
spaces [3, 21, 17], each of which equipped with a metric d which induces the correspond-
ing Skorokhod J1 topology [16, Ch. VI]. Cm := C([0,∞),Rm) the subspace of continuous
functions in Dm. We recall Theorem 2.7 from the one dimensional case n = 1 that
(Def. 2.1) and (Thm. 2.7.iii) are equivalent.

It is known that x, y ∈ Qπ does not imply x+y ∈ Qπ [7, 20] so one cannot for instance
define a quadratic covariation [x, y]π of two such functions in the obvious way. This
prevents a simple componentwise definition of the finite quadratic variation property for
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vector-valued functions. Therefore, the notion of quadratic variation in the multidimen-
sional setting was originally defined in [14] as follows:

Definition 3.1 (Föllmer 1981). We say that x := (x1, . . . , xm)T ∈ Dm has finite quadratic
variation along π if all xi, xi + xj (1 ≤ i, j ≤ m) have finite quadratic variation.

The quadratic (co)variation [xi, xj ] is then defined as

[xi, xj ]π(t) :=
1

2

(
[xi + xj ]π(t)− [xi]π(t)− [xj ]π(t)

)
, (3.1)

which admits the following Lebesgue decomposition:

[xi, xj ]π(t) = [xi, xj ]cπ(t) +
∑
s≤t

∆xi(s)∆xj(s). (3.2)

The function [x]π := ([xi, xj ])1≤i,j≤m, which takes values in the cone of symmetricsemidef-
inite positive matrices, is called the quadratic (co)variation of x.

Note Def. 3.1 requires first introducing the case m = 1. The following definition,
by contrast, avoids this and directly defines the concept of multidimensional quadratic
variation in any dimension:

Definition 3.2. x ∈ Dm has finite quadratic variation [x]π along π if

qn(t) :=
∑

πn3ti≤t

(x(ti+1)− x(ti))(x(ti+1)− x(ti))
T

converges to [x]π in (Dm×m, d).

We shall now prove the equivalence of these definitions.
Define, for u, v, w ∈ D

q(u,v)n (t) :=
∑

πn3ti≤t

(uti+1
− uti)(vti+1

− vti)

and q(w)
n := q

(w,w)
n . Note that the Skorokhod topology on (Dm, d) is strictly finer than the

product topology on (D, d)m [16, VI.1.21] and that (D, d) is not a topological vector space
[16, VI.1.22]. The following lemma is essential:

Lemma 3.3. Let t > 0. There exists a sequence tn → t such that for all u, v ∈ D, if
(q

(u,v)
n ) converges in (D, d) then

lim
n

(
∆q(u,v)n (tn)

)
= ∆

(
lim
n
q(u,v)n

)
(t).

Note that the sequence tn is chosen from the partition points of πn, independently of
u, v ∈ D.

Proof. Define t
(n)
i := max{πn ∩ [0, t)}. Since |πn| ↓ 0 on compacts, we have t

(n)
i < t,

t
(n)
i ↑ t and t(n)i+1 ↓ t. Observe that

∆q(u,v)n (t) =

{(
uti+1

− uti
) (
vti+1

− vti
)
, if t = ti ∈ πn.

0, otherwise.
(3.3)

Put q̃ := limn q
(u,v)
n . If ∆q̃(t) = 0, [16, VI.2.1(b.5)] implies that ∆q

(u,v)
n (t

(n)
i ) → ∆q̃(t). If

∆q̃(t) > 0, there exists [16, VI.2.1(a)] a sequence t′n → t such that ∆q
(u,v)
n (t′n)→ ∆q̃(t) > 0.

Using the fact that u, v are càdlàg , t′n → t and (3.3), we deduce that (t′n) must coincide

with (t
(n)
i ) for n sufficiently large, else we will contradict ∆q̃(t) > 0. Put tn := t

(n)
i .
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Proposition 3.4. Let x, y ∈ Qπ, then (q
(x+y)
n ) converges in (D, d) if and only if (q

(x,y)
n )

does. In this case, x+ y ∈ Qπ and limn q
(x,y)
n = 1

2 ([x+ y]− [x]− [y]).

Proof. Since

q(x+y)n = q(x)n + q(y)n + 2q(x,y)n

and that x, y ∈ Qπ, Prop. 3.4 follows from Lemma 3.3 and [16, VI.2.2(a)].

Proposition 3.5. (qn) converges in (Dm×m, d) if and only if it converges in (D, d)m×m.

Proof. Since the Skorokhod topology on (Dm×m, d) is strictly finer than the product
topology on (D, d)n×n [16, VI.1.21], we have (Dm×m, d) convergence implies (D, d)m×m

convergence. The other direction follows from the observation that

qn =
(
q(x

i,xj)
n

)
1≤i≤j≤n

, (3.4)

satisfies Lemma 3.3 and [16, VI.2.2(b)].

Theorem 3.6. Definitions 3.1 and 3.2 are equivalent.

Proof. This is a consequence of (3.1), (3.4), Prop. 3.4 & 3.5 and Thm. 2.7

Corollary 3.7. If x ∈ Dm has finite quadratic variation, then

(i) qn → [x] locally uniformly on [0,∞) if and only if x ∈ Cn.
(ii) F (qn)→ F ([x]) for all functionals F : Dm → R which are J1-continuous at [x].

Proof. This is a consequence of Thm.3.6, (3.2) and [16, VI.1.17.b].

Remark 3.8. For x to have finite quadratic variation, it is sufficient that (qn) converges
in (D, d)m×m due to Prop. 3.5. (i.e. component-wise convergence)

4 Some applications

We now show that our approach yields simple proofs for some properties of pathwise
quadratic variation, which turn out to be useful in the study of pathwise approaches to
Ito calculus.

Denote D := D([0,∞),R) and Dd×d := D([0,∞),Rd×d) to be the Skorokhod spaces,
each of which equipped with a complete metric δ which induces the corresponding
Skorokhod (a.k.a J1) topology. Denote F to be the J1 Borel sigma algebra of D (a.k.a the
canonical sigma algebra generated by coordinates). Recall that Qπ0 is the set of paths
with finite quadratic variation along π in the sense of Def. 2.1.

Our first application is to give a criterion for a function x ∈ D to have finite quadratic
variation. In Def. 2.1, one needs to verify the condition (2.2) on the Lebesgue decom-
position of the limit µ. The following characterization, by contrast, does not refer to µ:

Property 1. x ∈ Qπ0 if and only if (qn) defined by (2.7) is a Cauchy sequence in (D, δ).

Proof. This is a consequence of Thm. 2.7 and the completeness of (D, δ).

One of the main advantages of having convergence in the J1 topology is that it ensures
convergence of jumps in a regulated manner. It comes in handy when accessing the limit
of qn(tn) as n→∞.
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Property 2. Let x ∈ Qπ0 , for each t ≥ 0, we define t′n := max{ti < t|ti ∈ πn}, then

tn −→ t; tn ≤ t′n =⇒ qn(tn−)−→[x]π(t−),

tn −→ t; tn < t′n =⇒ qn(tn) −→[x]π(t−),

tn −→ t; tn ≥ t′n =⇒ qn(tn) −→[x]π(t),

tn −→ t; tn > t′n =⇒ qn(tn−)−→[x]π(t).

In particular, the sequence (t′n) is asymptotically unique in the sense that any other
sequence (t′′n) meeting the above properties coincides with (t′n) for n sufficiently large.

Proof. This is a consequence of Thm. 2.7 and [16, VI.2.1].

Given a càdlàg process X (i.e. a (D,F)-measurable random variable), a natural
quantity to consider is P(X ∈ Qπ0 ). This only makes sense however ifQπ0 is F -measurable.
This ’natural’ property, not easy to show using the original definition (Def. 2.1), becomes
simple thanks to Theorem. 2.7:

Property 3 (Measurability of Qπ0 ). Qπ0 is F -measurable.

Proof. By Thm. 2.7, Qπ0 = Qπ and by definition, Qπ is the J1 convergence set of

x 7−→
∑

πn3ti≤·

(x(ti+1)− x(ti))
2,

n ≥ 1 on D. Since D is completely metrisable, the claim follows from [12, V.3].

Föllmer introduced in [14, 15] the class of processes with finite quadratic variation
(’processus à variation quadratique’), defined as càdlàg processes such that the sequence

Sn(t) :=
∑

πn3ti≤t

(X(ti+1)−X(ti))
2

converges in probability for every t to an increasing process [X] with Lebesgue decom-
position:

[X](t) = [X]c(t) +
∑
s≤t

∆X(s)t∆X(s).

The pathwise Itô formula (1.2) can be applied to this class of processes, which is strictly
larger than the class of semimartingales [10].

Theorem 4.1. Let X be an Rd-valued càdlàg process, define a sequence of (Dd×d, δ)-
valued random variables (qn) by

qn(t) :=
∑

πn3ti≤t

(X(ti+1)−X(ti))(X(ti+1)−X(ti))
T

then the following properties are equivalent:

(i) X is a process with finite quadratic variation.

(ii) (qn) converges in probability.

(iii) (qn) is a Cauchy sequence in probability.

In addition,

ECP 23 (2018), paper 85.
Page 10/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP186
http://www.imstat.org/ecp/


On pathwise quadratic variation for càdlàg functions

iv If (qn) converges in probability, the limit is [X].

v The convergence of (qn) to [X] is UCP if and only if X is a continuous process of
quadratic variation [X].

vi (qn) converges (resp. is a Cauchy sequence) in probability if and only if each
component sequence of (qn) converges (resp. is a Cauchy sequence) in probability.

Proof. We first remark that (Dd×d, δ) is a complete separable metric space [16], hence by
[13, Lemma 9.2.4], the Cauchy property is equivalent to convergence in probability. By
[13, Thm. 9.2.1], we can pass to subsequences and apply Prop. 3.5, Thm. 3.6 & Cor. 3.7
pathwise to X, the claims follow.
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