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Abstract

A branching Lévy process can be seen as the continuous-time version of a branching
random walk. It describes a particle system on the real line in which particles move
and reproduce independently in a Poissonian manner. Just as for Lévy processes, the
law of a branching Lévy process is determined by its characteristic triplet (σ2, a,Λ),
where the branching Lévy measure Λ describes the intensity of the Poisson point
process of births and jumps. We establish a version of Biggins’ theorem in this
framework, that is we provide necessary and sufficient conditions in terms of the
characteristic triplet (σ2, a,Λ) for additive martingales to have a non-degenerate limit.
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1 Introduction and main result

We start by introducing some notation. We denote by x = (xn)n≥1 a generic non-
increasing sequence in [−∞,∞) with limn→∞ xn = −∞. We view x as a ranked sequence
of positions of particles in R, with the convention that possible particles located at −∞
should be thought of as non-existing (so particles never accumulate in R and the number
of particles may be finite or infinite). We thus often identify x with a locally finite point
measure on R,

∑
δxn , where, by convention, the possible atoms at −∞ are discarded in

this sum. We write P for the space of such sequences or point measures.
Then let (Zn)n≥0 be a branching random walk with reproduction law π, where π is

some probability measure on P. In words, this process starts at generation 0 with a
single particle at 0 and the law of Z1 is given by π. For every particle at generation n ≥ 1,
say at position x ∈ R, the sequence of positions of the children of that particle is given by
x+ Y , where Y has the law π, and to different particles correspond independent copies
of Y with law π.
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Biggins’ martingale convergence for branching Lévy processes

A classical assumption made to ensure the well-definition of (Zn), i.e. that for all
n ∈ N there are only finitely many particles in the positive half-line, is that there exists
θ ≥ 0 such that

m(θ) :=

∫
P
〈x, eθ〉π(dx) = E (〈Z1, eθ〉) < ∞ (1.1)

where we denote by 〈x, g〉 =
∑

n≥1 g(xn) for all measurable nonnegative functions g, and

eθ : x ∈ R 7→ eθx. In particular, we have 〈x, eθ〉 =
∑

eθxn . It is common knowledge –and
a simple application of the branching property– that E(〈Zn, eθ〉) = m(θ)n and that the
process

Wn := m(θ)−n〈Zn, eθ〉, n ≥ 0

is a nonnegative martingale. The question of whether its terminal value W∞ is non-
degenerate has a fundamental importance and was solved by Biggins [6] under the
additional assumption that

m′(θ) :=

∫
P

∑
xje

θxjπ(dx) exists and is finite. (1.2)

Note that by (1.1), m can be defined, for any z ∈ C with <z = θ by

m(z) :=

∫
P
〈x, ez〉π(dx) = E (〈Z1, ez〉) ,

in which case m′(θ) is the complex derivative of the function m at point θ, justifying the
notation in (1.2).

Specifically, [6, Lemma 5] states that E(W∞) = 1, or equivalently that (Wn)n≥0 is
uniformly integrable, if and only if

θm′(θ)/m(θ) < logm(θ) and

∫
P
〈x, eθ〉 log+ 〈x, eθ〉π(dx) < ∞. (1.3)

If (1.3) does not hold, then W∞ = 0 a.s. This result has later been improved by Alsmeyer
and Iksanov [1], who obtained a necessary and sufficient condition for the uniform
integrability of (Wn)n≥0 without the additional integrability condition (1.2).

Recall that, by log-convexity of the function m, the first inequality of (1.3) entails that
m(0) = E(〈Z1, 1〉) > 1, i.e. the Galton-Watson process (〈Zn, 1〉)n≥0 is supercritical. In
particular, the branching random walk Z survives with positive probability. Biggins [6]
further pointed out that when the martingale (Wn)n≥0 is uniformly integrable, the event
{W∞ > 0} actually coincides a.s. with the non-extinction event of the branching random
walk.

The purpose of this work is to present a version of Biggins’ martingale convergence
theorem for branching Lévy processes, a family of branching processes in continuous
time that was recently introduced in [5]. Branching Lévy processes bear the same
relation to branching random walks as Lévy processes do to random walks: a branching
Lévy process (Zt)t≥0 is a point-measure valued process such that for every r > 0, its
discrete-time skeleton (Znr)n≥0 is a branching random walk. This is a natural extension of
the notion of continuous-time branching random walks1 as considered by Uchiyama [17],
or the family of branching Lévy processes considered by Kyprianou [11]; another subclass
also appeared in the framework of so-called compensated-fragmentation processes,
see [3].

The dynamics of a branching Lévy process can be described informally as follows.
The process starts at time 0 with a unique particle located at the origin. As time passes,
this particle moves according to a certain Lévy process, while making children around

1Which can be thought of as branching compound Poisson processes.
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Biggins’ martingale convergence for branching Lévy processes

its position in a Poissonian fashion. Each of the newborn particles immediately starts an
independent copy of this branching Lévy process from its current position. We stress
that a jump of a particle may be correlated with its offspring born at the same time.

The law of a branching Lévy process (Zt)t≥0 is characterized by a triplet (σ2, a,Λ),
where σ2 ≥ 0, a ∈ R and Λ is a sigma-finite measure on P without atom at {(0,−∞, ...)},
which satisfies ∫

P
(1 ∧ x2

1)Λ(dx) < ∞. (1.4)

Furthermore, we need another integrability condition for Λ that depends on a parameter
θ ≥ 0; which is henceforth fixed. Specifically, we request∫

P

(
1{x1>1}e

θx1 +
∑
k≥2

eθxk
)
Λ(dx) < ∞. (1.5)

The term σ2 is the Brownian variance coefficient of the trajectory of a particle, a is the
drift term, and the branching Lévy measure Λ encodes both the distribution of the jumps
of particles, and the branching rate and distribution of their children. The assumption
(1.5) guarantees the well-definition and the absence of local explosion in the branching
Lévy process.

The integrability conditions (1.4) and (1.5) enable us to define for every z ∈ C with
<z = θ

κ(z) :=
1

2
σ2z2 + az +

∫
P

ezx1 − 1− zx11{|x1|<1} +
∑
k≥2

ezxk

Λ(dx). (1.6)

We call κ the cumulant generating function of Z1; to justify the terminology, recall from
Theorem 1.1(ii) in [5] that for all t ≥ 0, we have

E (〈Zt, ez〉) = exp (tκ(z)) .

In particular, in terms of the (skeleton) branching random walk (Zn)n≥0 obtained by
sampling Z at integer times, we have the identities

m(θ) = exp(κ(θ)) and m′(θ) = κ′(θ) exp(κ(θ)),

where π is the law of Z1, m(θ) and m′(θ) are defined in (1.1) and (1.2), and

κ′(θ) = σ2θ + a+

∫
P

x1(e
θx1 − 1{|x1|<1}) +

∞∑
k≥2

xke
θxk

Λ(dx). (1.7)

The well-definition and finiteness of the above integral is equivalent to the well-definition
and finiteness of m′(θ). Throughout the rest of the article, we assume κ′(θ) in (1.7) to be
well-defined and finite.

We are now able to state our version of Biggins’ martingale convergence theorem in
branching Lévy processes settings.

Theorem 1.1. Let (Zt)t≥0 be a branching Lévy process with characteristic triplet
(σ2, a,Λ). The martingale W given by

Wt := exp(−tκ(θ))〈Zt, eθ〉 for all t ≥ 0,

is uniformly integrable if and only if

θκ′(θ) < κ(θ) (1.8)
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Biggins’ martingale convergence for branching Lévy processes

and ∫
P
〈x, eθ〉 (log 〈x, eθ〉 − 1)

+
Λ(dx) < ∞. (1.9)

Otherwise, the terminal value W∞ equals 0 a.s.

Remark 1.2. When the branching Lévy measure Λ is finite, the integrability condition
(1.9) is equivalent to the analog of (1.3), namely∫

P
〈x, eθ〉 log+ 〈x, eθ〉Λ(dx) < ∞.

However, when Λ is an infinite measure, the inequality above is a strictly stronger
requirement than (1.9).

Of course, the continuous time martingale W is uniformly integrable if and only
if this is the case for its discrete time skeleton (Wn)n≥0, and one might expect that
our statement should readily be reduced to Biggins’ theorem. Condition (1.8) should
certainly not come as a surprise, since it merely rephrases the first inequality in (1.3).
Thus everything boils down to verifying that Condition (1.9) is equivalent to the L log+ L

integrability condition in (1.3).
However, the latter does not seems to have a straightforward proof (at least when Λ

is infinite), the difficulty stems from the fact that there is no simple expression for the law
π of Z1 in terms of the characteristics (σ2, a,Λ). Specifically, we cannot evaluate directly
E(〈Z1, eθ〉 log+ 〈Z1, eθ〉); only expectations of linear functionals of Z1 can be computed
explicitly in terms of the characteristics of the branching Lévy process. We shall thus
rather establish Theorem 1.1 by an adaptation of the arguments of Lyons [14] for proving
Biggins’ martingale convergence for branching random walks, using a version of the
celebrated spinal decomposition, and properties of Poisson random measures.

Remark 1.3. It is well-known that for branching random walks, the law of the terminal
value W∞ is a fix point of a smoothing transform (see e.g. Liu [13]), more precisely

W∞
(d)
=
∑
j∈N

eθxj−tκ(θ)W (j)
∞ , (1.10)

where x = (xn) is a random variable in P with same law as Z1, and (W
(j)
∞ ) are i.i.d.

copies of W∞ independent of x. As observed above, the law of Z1 cannot be obtained as
a simple expression in terms of the characteristic of a branching Lévy process. However,
using classical approximation techniques, one can still get a functional equation for
the Laplace transform of W∞. More precisely, setting w(y) = E

(
exp

(
e−θyW∞

))
, (1.10)

yields

∀y ∈ R, w(y) = E

∏
j∈N

w(y − xj + tcθ)

 ,

with x sampled again with same law as Z1 and cθ = κ(θ)/θ. Using approximation by
branching Lévy processes with finite birth intensity, one can then check that w is a
solution of the equation

1

2
σ2w′′(y) + (cθ − a)w′(y) +

∫
P

∏
j∈N

w(y − xj)− w(y) + x11{|x1|<1}w
′(y)Λ(dx) = 0,

i.e. a traveling wave solution of a generalized growth-fragmentation equation. We
refer to Berestycki, Harris and Kyprianou [2] for a detailed study in the framework of
homogeneous fragmentations. In particular, observe that the law of W∞ does not depend
on the value of characteristic a of the branching Lévy process.
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Biggins’ martingale convergence for branching Lévy processes

In the same vein, recall from Theorem 1 of Biggins [7] that for p ∈ (1, 2], the martin-
gale W converges in p-th mean whenever

E(W p
1 ) < ∞ and κ(pθ) < pκ(θ).

The same approach also enables us to make this criterion explicit in terms of the
branching Lévy measure Λ.

Proposition 1.4. Let p ∈ (1, 2]. If κ(pθ) < pκ(θ),∫
P
〈x, eθ〉p1{〈x,eθ〉>2}Λ(dx) < ∞, (1.11)

and κ(qθ) < ∞ for some q > p, then the martingale W is bounded in Lp.

Remark 1.5. When the branching Lévy measure Λ is finite, (1.11) is equivalent to
the simpler

∫
P 〈x, eθ〉pΛ(dx) < ∞. However, when Λ is infinite, one always has that2

Λ(1/2 ≤ 〈x, eθ〉 ≤ 2) = ∞, which explains the role of the indicator function in (1.11). The
additional assumption that κ(qθ) < ∞ for some q > p is also needed in our proof to bound
the contribution of the infinitely many birth events with 〈x, eθ〉 ≤ 2.

We do not address here the issue of uniform convergence in the variable θ; see
Biggins [7] for branching random walks, and further Theorem 2.3 in Dadoun [8] in the
setting of compensated fragmentations. However, as observed in [7], Proposition 1.4 is a
key step in this direction.

The two statements of this Introduction are established in the next section.

2 Proofs

In this section, we start by summarizing the construction of the branching Lévy
process with characteristics (σ2, a,Λ) as a particle system, referring to Sections 4 and 5
in [5] for a detailed account. We shall then present a version of the spinal decomposition
tailored for the purpose of this proof, and finally adapt the approach of Lyons [14] to
establish Theorem 1.1 and Proposition 1.4.

We first consider a Poisson point process N (dt, dx) on [0,∞) × P with intensity
dt ⊗ Λ(dx), and an independent Brownian motion (Bt)t≥0. Thanks to the assumptions
(1.4) and (1.5), we can define

ξt := σBt + at+

∫
[0,t]×P

x11{|x1|<1}N (c)(ds,dx) +

∫
[0,t]×P

x11{|x1|≥1}N (ds,dx)

for every t ≥ 0, where the first Poissonian integral is taken in the compensated sense; see
e.g. Section 12.1 in Last and Penrose [12]. So (ξt)t≥0 is a Lévy process with characteristic
exponent Φ given by the Lévy-Khintchin formula

Φ(r) := −σ2

2
r2 + iar +

∫
P

(
eirx1 − 1− irx11{|x1|<1}

)
Λ(dx), r ∈ R,

in the sense that E(exp(irξt)) = exp(tΦ(r)).
One should view (ξt)t≥0 as describing the trajectory of the initial particle in the

process (the Eve particle in the terminology of [4]). Further, for each atom of N ,
say (t,x), we view t as the time at which the Eve particle jumps from position ξt− to
ξt = ξt− + x1, while begetting a sequence of children located at ξt− + x2, ξt− + x3, . . ..
Then, using independent copies of (N , B), we let in turn each newborn particle evolve

2Indeed, for all ε > 0, (1.4) implies that Λ (|x1| > ε) < ∞ and (1.5) that Λ
(∑∞

j=2 e
θxj > ε

)
< ∞, thus

Λ (〈x, eθ〉 6∈ [1− δ, 1 + δ]) < ∞ for all δ > 0.
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Biggins’ martingale convergence for branching Lévy processes

(starting from its own birth time and location) and give birth to its own progeny just as
the Eve particle, and so on, and so forth. The branching Lévy process Z = (Zt)t≥0 is
then obtained by letting Zt denote the random point measure whose atoms are given by
the positions of the particles in the system at time t.

We then introduce the tilted branching Lévy measure Λ̂ on P, defined by

Λ̂(dx) := 〈x, eθ〉Λ(dx),

and point first at the following elementary fact:

Lemma 2.1. If (1.9) is fulfilled, then it holds for every c > 0 that∫ ∞

0

Λ̂(〈x, eθ〉 > ect + 1)dt < ∞;

whereas if (1.9) fails, then it holds for every c > 0 and s > 0 that∫ ∞

s

Λ̂(〈x, eθ〉 > ect)dt = ∞.

Proof. Note first the identities∫ ∞

0

Λ̂(〈x, eθ〉 > et + 1)dt =

∫ ∞

0

dt

∫
P
Λ(dx)〈x, eθ〉1{〈x,eθ〉>et+1}

=

∫
P
〈x, eθ〉 (log 〈x, eθ〉 − 1)

+
Λ(dx).

Since (1.4) and (1.5) readily entail Λ̂(〈x, eθ〉 > b) < ∞ for every b > 1, the first claim
follows. The proof for the second is similar.

We next prepare some material for the spinal decomposition. We write P for the
law of (Zt)t≥0, (Ft)t≥0 for its natural filtration, and use the martingale W = (Wt)t≥0 to
introduce the tilted probability measure

P̂|Ft
= Wt.P|Ft

.

We also set

â := a+ θσ2 +

∫
P

∑
k≥1

xke
θxk1{|xk|<1} − x11{|x1|<1}

Λ(dx),

where (1.4) and (1.5) ensure that the integral above is well-defined and finite.
Then let N̂ (dt,dx) be a Poisson point process on [0,∞)×P with intensity dt⊗ Λ̂(dx),

and recall that (Bt)t≥0 denotes an independent Brownian motion. For each atom of N̂ ,
say (t,x), we sample independently of the other atoms an index n ≥ 1 with probability
proportional to eθxn and denote it by ∗, omitting the dependence in (t,x) in the notation
for the sake of simplicity. In particular P(∗ = n | N̂ ) = eθxn/〈x, eθ〉. Next note, again
thanks to (1.4) and (1.5), that∫

P

∑
n≥1

eθxn(1 ∧ x2
n)Λ(dx) < ∞.

This enables us to define the (compensated) Poissonian integrals below and set

ξ̂t := σBt + ât+

∫
[0,t]×P

x∗1{|x∗|<1}N̂ (c)(ds,dx) +

∫
[0,t]×P

x∗1{|x∗|≥1}N̂ (ds,dx)

for t ≥ 0. Plainly, ξ̂ is another Lévy process, which is referred to as the spine.
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Biggins’ martingale convergence for branching Lévy processes

Lemma 2.2. The characteristic exponent of ξ̂ is given by

Φ̂(r) := κ(θ + ir)− κ(θ), r ∈ R,

and it holds that
lim
t→∞

t−1ξ̂t = κ′(θ) a.s.

Proof. By Poissonian calculus, we get E
(
exp(irξ̂t)

)
= exp(tΦ̂(r)) with

Φ̂(r) = −σ2

2
r2 + iâr +

∫
P

∑
n≥1

eθxn
(
eirxn − 1− irxn1{|xn|<1}

)
Λ(dx)

and the first claim follows readily by substitution. Further, the random variable ξ̂1 is
integrable with expectation

â+

∫
P

∞∑
n=1

xne
θxn1{|xn|≥1}Λ(dx).

Again after substitution, we find E(ξ̂1) = κ′(θ), and we conclude applying the law of large
numbers for Lévy processes that ξ̂t ∼ κ′(θ)t as t → ∞, a.s.

We can now provide a description of the spinal decomposition for the branching Lévy
process, which is tailored for our purpose. In this direction, we construct a particle
system much in the same way as we did for branching Lévy processes, except that we
use the Poisson point process N̂ instead of N , and the trajectory ξ̂ to define the so-called
Eve particle and its offspring. Specifically, for each atom, say (t,x), of N̂ , we view t as
the time when the spine jumps to position ξ̂t− + x∗, while giving birth to a sequence of
children located at ξ̂t−+xj for all j 6= ∗. Each of the newborn particles immediately starts
an independent copy of the original branching Lévy process Z from its current position.
Writing Ẑt for the random point measure whose atoms are given by the positions of the
particles in the system at time t, we are now able to state a simple version of the spine
decomposition, and refer to Theorem 5.2 of Shi and Watson [16] for a more detailed
version in the setting of compensated fragmentations.

Lemma 2.3. The process Ẑ = (Ẑt)t≥0 above has the same law as Z under P̂.

For the reader’s convenience, we sketch a proof of this statement.

Proof. We assume in a first time that Z has a finite birth intensity, in the sense that∫
P

∑
n≥2

1{xn>−∞}Λ(dx) < ∞. (2.1)

In this case, the branching Lévy process is of the type considered by Kyprianou [11], it
can be viewed as a classical Uchiyama-type branching random walk to which independent
spatial displacements are superposed. Specifically, each particle moves according to an
independent Lévy process until an exponential time of parameter Λ(x1 = −∞ or x2 >

−∞) at which a death or reproduction event occurs. Lemma 2.3 is then a simple instance
of the spinal decomposition for branching Markov processes, that can be found in [10]
(see also [15, Section 3] for an overview of similar results).

To treat the general case, we use the observation made in [5, Section 5] that any
branching Lévy process can be constructed as the increasing limit of branching Lévy
processes with finite birth intensity. Specifically, for any n ∈ N and x ∈ P, we set

πn(x) = (xj −∞1{xj<−n}, j ∈ N),
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Biggins’ martingale convergence for branching Lévy processes

that is, πn(x) is obtained from x by deleting every particle located in (−∞,−n). We
denote by Z(n) the branching Lévy process obtained from Z using the image of the
point measure N by (t,x) 7→ (t, πn(x)). In words, Z(n) is obtained from Z by killing each
particle (of course together with its own descent) at the time it makes a jump smaller
than −n. We write κ(n) for the cumulant generating function of Z(n) and W (n) for the
additive martingale

W
(n)
t = exp(−tκ(n)(θ))〈Z(n)

t , eθ〉.
We construct Ẑ(n) in a similar way, that is by killing every particle in Ẑ at the time it

makes a jump smaller than −n. Beware that Ẑ(n) is different from the point measure

valued process Ẑ(n) which is associated the branching Lévy process Z(n), as described
earlier in this section. Nevertheless, there is a simple connection between the two: if we
write

T
(n)
∗ := inf{t > 0 : ξ̂t − ξ̂t− < −n},

for the time at which the spine particle of Ẑ is killed in Ẑ(n), then for every t ≥ 0, the

processes (Ẑ
(n)
s : 0 ≤ s ≤ t) and (Ẑ

(n)
s : 0 ≤ s ≤ t) have the same law conditionally on

T
(n)
∗ > t.
Indeed, observe that the waiting time T

(n)
∗ can be rewritten

T
(n)
∗ = inf{t > 0 : (t,x) atom of N̂ with x∗ < −n},

hence, conditionally on T
(n)
∗ > t, N̂ is a Poisson point process conditioned on the fact

that each atom (s,x) with s < t satisfies x∗ ≥ −n. By classical Poissonian properties,
the image measure of this process by (Id, πn) is a Poisson point process with intensity

dtΛ̂(n)(dx), where Λ(n) is the image measure of Λ by πn. Moreover, note that for each
atom (s,x(n)) of that censored Poisson point process, the mark is sampled at random,

and we have ∗ = j with probability eθx
(n)
j /〈x(n), eθ〉.

The branching Lévy process Z(n) has finite birth intensity, and we now see from its
spinal decomposition that the law of Ẑ(n) on Ft conditionally on T

(n)
∗ > t, is the same as

W
(n)
t .P|Ft

. Since limn→∞ T
(n)
∗ = ∞ a.s., and limn→∞ W

(n)
t = Wt in L1(P) (by monotone

convergence), we easily conclude that the spinal decomposition also holds for Z.

By a classical observation (see Exercice 3.6 in [9, p. 210]), the proof of Theorem 1.1
amounts to establishing that P̂-a.s., lim supt→∞ Wt < ∞ if the conditions (1.8) and (1.9)
hold, and lim supt→∞ Wt = ∞ otherwise. As a consequence of Lemma 2.3, if we write

Ŵt := e−tκ(θ)〈Ẑt, eθ〉,

then the process Ŵ has the same law as W under P̂, so the next statement entails the
second part of Theorem 1.1.

Lemma 2.4. If (1.9) fails, then lim supt→∞ Ŵt = ∞ a.s.

Proof. From the construction of Ẑ, we observe for every atom (t,x) of N̂ , by focusing on
the spine and its children which are born at time t, that there is the bound

Ŵt ≥ exp(θξ̂t− − tκ(θ))〈x, eθ〉.

Fix c > 0 with −c < θκ′(θ) − κ(θ), and recall from Lemma 2.1 that the failure of (1.9)
entails that ∫ ∞

s

Λ̂(〈x, eθ〉 > ect)dt = ∞ for every s > 0.

This implies that the set of times t ≥ 0 such that the Poisson point process N̂ has an
atom (t,x) with 〈x, eθ〉 > ect is unbounded a.s., and an appeal to Lemma 2.2 completes
the proof.
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Biggins’ martingale convergence for branching Lévy processes

Since we already know from Biggins’ theorem that W∞ = 0 a.s. when (1.8) fails, we
may now turn our attention to the situation where (1.8) and (1.9) both hold, and recall
that our goal is then to prove that lim supt→∞ Ŵt < ∞ a.s. In this direction, we first write

Ŵt = exp(θξ̂t − tκ(θ)) + (Ŵt − exp(θξ̂t − tκ(θ))). (2.2)

Thanks to Lemma 2.2 and (1.8), we know that

lim
t→∞

exp(θξ̂t − tκ(θ)) = 0 a.s.

We then write σ̂ for the sigma-field generated by the Poisson point process N̂ and the
random indices ∗ which are selected for each of its atoms. Viewing the second term
in the right-hand side of (2.2) as the contribution of the descendants of the children of
the spine which were born before time t, we get from the spinal decomposition and the
martingale property of W for the branching Lévy process, that there is the identity

W ∗
t := E

(
Ŵt − exp(θξ̂t − tκ(θ))

∣∣∣σ̂)
=

∫
[0,t]×P

∑
k 6=∗

exp(θ(ξ̂s− + xk)− sκ(θ))N̂ (ds,dx). (2.3)

By the conditional Fatou lemma, it now suffices to verify that the process W ∗ remains
bounded a.s. The lemma below thus completes the proof of Theorem 1.1.

Lemma 2.5. If (1.8) and (1.9) both hold, then supt≥0 W
∗
t < ∞ a.s.

Proof. The process W ∗ has non-decreasing paths, so we have to check that W ∗
∞ < ∞ a.s.

Thanks to (1.9), we pick c > 0 sufficiently small so that θκ′(θ)− κ(θ) < −c, and then,
thanks to Lemma 2.2, we know that the probability of the event

Ωb := {exp(θξ̂s− − sκ(θ)) ≤ be−cs for all s ≥ 1}

converges to 1 as b → ∞. Therefore, we conclude that

sup
s≥0

exp(θξ̂s− − sκ(θ))

e−cs
< ∞, a.s.

Hence we only need to check the finiteness of the Poissonian integral∫
[0,∞)×P

e−cs
∑
k 6=∗

eθxkN̂ (ds,dx).

In this direction, fix 0 < c′ < c. Since N̂ is a Poisson point process with intensity
ds⊗ Λ̂(dx), it follows from Lemma 2.1 that the set of times s ≥ 0 such N̂ has an atom
(s,x) with 〈x, eθ〉 > ec

′s + 1 is finite a.s., and a fortiori∫
[0,∞)×P

e−cs
∑
k 6=∗

eθxk1{〈x,eθ〉>ec′s+1
}N̂ (ds,dx) < ∞ a.s.
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Biggins’ martingale convergence for branching Lévy processes

On the other hand, again by Poissonian calculus,

E

∫
[0,∞)×P

e−cs
∑
k 6=∗

eθxk1{〈x,eθ〉≤ec′s+1
}N̂ (ds,dx)


=

∫ ∞

0

ds e−cs

∫
P
Λ(dx)

∑
j≥1

eθxj

∑
k 6=j

eθxk1{〈x,eθ〉≤ec′s+1
}

≤
∫ ∞

0

ds e−cs

∫
P
Λ(dx)1{〈x,eθ〉≤ec′s+1

}
eθx1

∑
k≥2

eθxk +
∑
j≥2

eθxj 〈x, eθ〉


≤
∫ ∞

0

ds e−cs

∫
P
Λ(dx)2(ec

′s + 1)
∑
k≥2

eθxk ,

where we used that the conditional probability given x that ∗ = j equals eθxj/〈x, eθ〉
for the first equality and that the Poisson random measure N̂ (ds,dx) has intensity
〈x, eθ〉dsΛ(dx). By (1.5), the right-hand side is finite, which completes the proof.

Finally, we turn our attention to the proof of Proposition 1.4.

Proof of Proposition 1.4. Thanks to Theorem 1 of Biggins [7], it is enough to check that,
under the assumptions of the statement, one has E(W p

1 ) < ∞, or equivalently, that

Ê(W p−1
1 ) = E(Ŵ p−1

1 ) < ∞.

In this direction, we use the decomposition (2.2) and note first, using Lemma 2.2, that

E
(
exp((p− 1)(θξ̂1 − κ(θ))

)
= exp (κ(pθ)− pκ(θ)) < 1. (2.4)

Recall that W ∗
t denotes the conditional expectation of the second term of the sum

in the right-hand side of (2.2) given the sigma-field generated by the Poisson point
process N̂ and the random indices ∗ which are selected for each of its atoms. Since
0 < p− 1 < 1, thanks to the conditional version of Jensen’s inequality, it suffices to check
that E((W ∗

1 )
p−1) < ∞.

In this direction, we use (2.3) and further distinguish the atoms (s,x) of N̂ depending
on whether 〈x, eθ〉 ≤ 2 or not, and write

W ∗
1 ≤ AB + C (2.5)

where

A = sup{exp((θξ̂s− − κ(θ)s)) : 0 ≤ s ≤ 1},

B =

∫
[0,1]×{〈x,eθ〉≤2}

∑
i 6=∗

eθxiN̂ (ds,dx),

C =

∫
[0,1]×{〈x,eθ〉>2}

exp(θξ̂s− − κ(θ)s)
∑
i 6=∗

eθxiN̂ (ds,dx).

First, it follows from Lemma 2.2 that the process

Ms = exp((p− 1)θξ̂s − (κ(pθ)− κ(θ))s), s ≥ 0

is a martingale. From our assumption κ(qθ) < ∞ for some q > p, we further see that

E(M
(q−1)/(p−1)
1 ) < ∞,
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Biggins’ martingale convergence for branching Lévy processes

and then, from Doob’s inequality, that

E

(
sup

0≤s≤1
exp((q − 1)θξ̂s)

)
< ∞.

This proves that
E(Aq−1) < ∞. (2.6)

We next check that B has a finite exponential moment. Observe from a combination
of the formula for the Laplace transform of Poissonian integrals and Campbell’s formula
(see, e.g. Sections 2.2 and 3.3 in [12]), that for every Poisson random measure N and
every nonnegative function f , there is the identity

E

(
exp

(∫
f(y)N(dy)

))
= exp

(
E

(∫
(ef(y) − 1)N(dy)

))
.

This gives

logE (exp(B)) = E

∫
[0,1]×{〈x,eθ〉≤2}

exp

∑
i6=∗

eθxi

− 1

 N̂ (ds,dx)


≤ e2E

∫
[0,1]×{〈x,eθ〉≤2}

∑
i 6=∗

eθxiN̂ (ds,dx)

 .

Since N̂ is a Poisson random measure with intensity ds×〈x, eθ〉Λ(dx), another application
of Campbell’s formula enables us to express the last quantity in the form

e2
∫
{〈x,eθ〉≤2}

∑
k≥1

eθxk

∑
j 6=k

eθxjΛ(dx)

≤ e2
∫
{〈x,eθ〉≤2}

eθx1

∑
j≥2

eθxj +
∑
k≥2

eθxk〈x, eθ〉

Λ(dx)

≤ 4e2
∫
P

∑
j≥2

eθxjΛ(dx).

By (1.5) the last quantity is finite. This entails E(exp(B)) < ∞, and a fortiori that
E(B(p−1)(q−1)/(q−p)) < ∞. We conclude by Hölder’s inequality from (2.6) that

E((AB)p−1) < ∞. (2.7)

Finally, we turn our attention to C. Since 0 < p− 1 ≤ 1 and N̂ (ds,dx) is a (random)
point measure, for every nonnegative process (Hs)s≥0, the inequality(∫

[0,1]×P
HsN̂ (ds,dx)

)p−1

≤
∫
[0,1]×P

Hp−1
s N̂ (ds,dx)

holds, as ‖y‖1/(p−1) ≤ ‖y‖1 for all real-valued sequences y. Hence, there is the inequality

Cp−1 ≤
∫
[0,1]×{〈x,eθ〉>2}

exp((p− 1)(θξ̂s− − κ(θ)s))

∑
i 6=∗

eθxi

p−1

N̂ (ds,dx).

The left-continuous process s 7→ exp((p− 1)(θξ̂s− − κ(θ)s)) is predictable; recall further
that the conditional probability given x that ∗ = k equals eθxk/〈x, eθ〉, and that the
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Biggins’ martingale convergence for branching Lévy processes

Poisson point measure N̂ (ds,dx) has intensity 〈x, eθ〉dsΛ(dx). We now see that E
(
Cp−1

)
can be bounded from above by∫

{〈x,eθ〉>2}

∑
k≥1

eθxk

∑
i 6=k

eθxi

p−1

Λ(dx)× E
(∫ 1

0

e(p−1)(θξ̂s−−κ(θ)s))ds

)
.

Finally, recall from (2.4) that

E(e(p−1)(θξ̂s−−κ(θ)s))) = E(e(p−1)(θξ̂s−κ(θ)s))) ≤ 1 for all s ≥ 0,

thus E
(
Cp−1

)
≤
∫
{〈x,eθ〉>2} 〈x, eθ〉

p
Λ(dx). We conclude from (1.11) that E(Cp−1) < ∞,

and hence, from (2.5) and (2.7), that E((W ∗
1 )

p−1) < ∞. This completes the proof.

References

[1] Gerold Alsmeyer and Alexander Iksanov, A log-type moment result for perpetuities and its
application to martingales in supercritical branching random walks, Electron. J. Probab. 14
(2009), no. 10, 289–312. MR-2471666

[2] J. Berestycki, S. C. Harris, and A. E. Kyprianou, Traveling waves and homogeneous fragmen-
tation, Ann. Appl. Probab. 21 (2011), no. 5, 1749–1794. MR-2884050

[3] Jean Bertoin, Compensated fragmentation processes and limits of dilated fragmentations,
Ann. Probab. 44 (2016), no. 2, 1254–1284. MR-3474471

[4] Jean Bertoin, Markovian growth-fragmentation processes, Bernoulli 23 (2017), no. 2, 1082–
1101. MR-3606760

[5] Jean Bertoin and Bastien Mallein, Infinitely ramified point measures and branching Lévy
processes, Ann. Probab. (2018), To appear.

[6] J. D. Biggins, Martingale convergence in the branching random walk, J. Appl. Probability 14
(1977), no. 1, 25–37. MR-0433619

[7] J. D. Biggins, Uniform convergence of martingales in the branching random walk, Ann. Probab.
20 (1992), no. 1, 137–151. MR-1143415

[8] Benjamin Dadoun, Asymptotics of self-similar growth-fragmentation processes, Electron. J.
Probab. 22 (2017), Paper No. 27, 30. MR-3629871

[9] Richard Durrett, Probability: theory and examples, second ed., Duxbury Press, Belmont, CA,
1996. MR-1609153

[10] Robert Hardy and Simon C. Harris, A spine approach to branching diffusions with applications
to Lp-convergence of martingales, Séminaire de Probabilités XLII, Lecture Notes in Math.,
vol. 1979, Springer, Berlin, 2009, pp. 281–330. MR-2599214

[11] A. E. Kyprianou, A note on branching Lévy processes, Stochastic Process. Appl. 82 (1999),
no. 1, 1–14. MR-1695066

[12] Günter Last and Mathew Penrose, Lectures on the Poisson process, Institute of Mathematical
Statistics Textbooks, vol. 7, Cambridge University Press, Cambridge, 2018. MR-3791470

[13] Quansheng Liu, Fixed points of a generalized smoothing transformation and applications to
the branching random walk, Adv. in Appl. Probab. 30 (1998), no. 1, 85–112. MR-1618888

[14] Russell Lyons, A simple path to Biggins’ martingale convergence for branching random walk,
Classical and modern branching processes (Minneapolis, MN, 1994), IMA Vol. Math. Appl.,
vol. 84, Springer, New York, 1997, pp. 217–221. MR-1601749

[15] Pascal Maillard, Speed and fluctuations of N -particle branching Brownian motion with spatial
selection, Probab. Theory Related Fields 166 (2016), no. 3–4, 1061–1173. MR-3568046

[16] Quan Shi and Alex Watson, Probability tilting of compensated fragmentations,
arXiv:1707.00732, jul 2017.
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