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Abstract

A well-known folklore result in the MCMC community is that the Metropolis-Hastings
algorithm mixes quickly for any unimodal target, as long as the tails are not too heavy.
Although we’ve heard this fact stated many times in conversation, we are not aware of
any quantitative statement of this result in the literature, and we are not aware of any
quick derivation from well-known results. The present paper patches this small gap in
the literature, providing a generic bound based on the popular “drift-and-minorization”
framework of [19]. Our main contribution is to study two sublevel sets of the Lyapunov
function and use path arguments in order to obtain a sharper bound than what can
typically be obtained from multistep minorization arguments.
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1 Introduction

The Metropolis algorithm [16] and its generalization, the Metropolis-Hastings al-
gorithm [6], have been exceptionally successful in the numerical approximation of
analytically intractable integrals. Because these algorithms are both important and diffi-
cult to analyze, there is an enormous literature on the properties of Metropolis-Hastings
chains in the statistics, computer science, mathematics and physics communities (see
e.g. the popular textbooks [17, 14]). Despite the size of this literature, obtaining rea-
sonable quantitative bounds on the convergence rates of specific Markov chains used
in statistics can be quite difficult, even when there are good heuristic reasons that
convergence should be quick [11, 1]. Recently, the authors needed to use an “obvious”
folklore result that does not seem to be in the literature: reasonable Metropolis-Hastings
chains targetting unimodal distributions will mix quickly. The main purpose of the paper
is to provide a quantitatively useful version of this folklore result (see Theorem 3.1).

We were originally motivated by the need to prove a sharp lower bound on the
spectral gap of a Metropolis-Hastings algorithm for logistic regression in a “rare-success”
asymptotic regime (see [10]). When the standard deviation of the proposal kernel was
similar to the standard deviation of the target distribution, it was straightforward to
obtain a quantitatively strong version of the “minorization” condition required by the
“drift-and-minorization” approach of [19]. However, this argument becomes much more
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Unimodal targets

delicate when the proposal variance does not closely match the target variance. Although
we were motivated by a specific problem, similar problems appear more generally when
the proposal kernel of an MCMC algorithm is not perfectly tuned to the target. This
sort of (initial) bad tuning can be difficult to avoid in contexts such as [10] where the
posterior distribution is very far from Gaussian.

To address this technical problem, we combine pathwise arguments (as studied in
[21]) with coupling arguments to obtain reasonable estimates of mixing times inside of
compact sublevel sets of the Lyapunov function. We then apply the “drift and minoriza-
tion” approach of [19] to obtain mixing bounds on the full state space. This argument is
presented here for generic random-walk type Metropolis-Hastings, and thus should be
broadly useful.

1.1 Related work

Popular approaches for establishing bounds on convergence rates for Markov chains
include the Lyapunov-small set techniques of [12, 17, 19], and geometric inequalities
such as Poincaré, Cheeger, and log-Sobolev inequalities [2, 4, 3, 13, 20, 21]. Under
suitable conditions on the tails of the target and the proposal kernel, drift and minoriza-
tion arguments show that the Metropolis-Hastings algorithm will converge to the target
at an exponential rate [15, 9, 7]. The paper [8] studies essentially the same question
addressed in the present paper using Cheeger inequalities, but restricts their attention
only to log-concave target distributions.

2 Notation and standing assumptions

Consider a Markov kernel P with a unique invariant measure µ : µP = µ. The
spectrum of P is the set S

S(P) = {λ ∈ C \ {0} : (λI − P)−1 is not a bounded linear operator on L2(µ)},

and the spectral gap is defined to be

α = 1− sup{|λ| : λ ∈ S, λ 6= 1}

when the eigenvalue 1 has multiplicity 1, and α = 0 else. Define the relaxation time
τrel(P) ≡ α−1, and the mixing time τ of P on a set Θ,

τ ≡ min{t : sup
x∈Θ

‖δxPt − µ‖TV < 1/4},

which need not be finite.
The following is a strong notion of unimodality on a set:

Definition 2.1. Fix an interval [a, b] ⊂ R. Call a function f : [a, b] → R unimodal with
mode m ∈ I if f is monotonely increasing on [a,m] and monotonely decreasing on [m, b].

Definition 2.2. Fix a closed convex subset Θ ⊂ Rd. Call a continuous function f : Θ →
R multivariate unimodal if, for all x ∈ Θ and v ∈ Rd, the function fx,v(s) ≡ f(x+ sv) is
unimodal.

Note that f will have a (possibly non-unique) maximum M ; we call any point m

satisfying f(m) = M a mode of f .

Throughout the remainder of the paper, we fix scale ε > 0 for typical step sizes of P,
in a way that is made concrete in the context of the following assumptions on P:
Assumption 2.3. The Markov kernel of interest P is a Metropolis-Hastings kernel with
target distribution µ and proposal kernel Q that satisfies

ECP 23 (2018), paper 71.
Page 2/9

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP170
http://www.imstat.org/ecp/


Unimodal targets

1. Q(x, ·) has density q(x, ·) and µ has density p(·) with respect to Lebesgue measure.
2. q is isotropic, i.e. it is of the form q(x, y) = q(‖x − y‖) for some density q that is

unimodal.
3. For some δ1, c1, c2 > 0, q satisfies

q(x) ≥ δ11‖x‖≤ε (2.1)

q(x) ≤ c1e
− c2‖x‖

ε .

4. There exist constants γ ∈ (0, 1) and 0 ≤ K < ∞ and a Lyapunov function V : Rd →
[0,∞) satisfying

(PV )(x) ≤ γV (x) +K. (2.2)

The first three assumptions hold for most Metropolis-Hastings proposal kernels used
in practice, and we expect them to be easy to verify. The last condition is stronger,
and it can be difficult to verify that the condition holds with reasonably small constants
γ,K. However, Lyapunov functions do exist under fairly mild conditions that have been
well-studied (see e.g. [15], [9]).

For chains of this form, define the Metropolis-Hastings acceptance probability by

α(x, y) ≡ 1 ∧ p(y)q(y, x)

p(x)q(x, y)
.

3 Main result

For any Θ ⊂ Rd with µ(Θ) > 0, denote by µΘ and pΘ the usual restrictions of µ, p to
Θ:

µΘ(A) =
µ(Θ ∩A)

µ(Θ)
, pΘ(x) =

1

µ(Θ)
p(x)1x∈Θ.

Similarly, denote by PΘ the usual restriction of P to Θ. That is, PΘ is a Metropolis-
Hastings chain with proposal kernel Q and target distribution µΘ. Denote by Br(x) a
Euclidean ball of radius r centered at x ∈ Rd. Our main result is the following

Theorem 3.1. Let P be a Metropolis-Hastings transition kernel on R satisfying the
conditions of Assumption 2.3. Let Θ ⊂ R be a set satisfying

1. 0 < p < ∞ is unimodal on Θ with mode m ∈ Θ, and Θ ⊆ BL(m) for some constant
L > 0.

2. p satisfies

inf
x∈B2ε(m)

p(x) >
15

16
p(m), (3.1)

i.e. it is “almost constant” on a ball of radius 2ε around the mode.

Then there exists a constant C = C(c1, c2, δ1) < ∞ such that the mixing time τ of PΘ

satisfies

τ < Cε−3δ−1
1 L4pΘ(m). (3.2)

If the set Θ is “small but not too small”, i.e.

Θ ⊃
{
x ∈ Rd : V (x) ≤ 8

1− γ

(
4K

1− γ
+KCε−2δ−1

1 L3pΘ(m)

)}
, (3.3)

we also have

τrel(P) ≤ Cε−3δ−1
1 L4pΘ(m). (3.4)
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Although our final result is restricted to R, several of the Lemmas used in proving
the result hold with almost no changes in Rd and could be used to prove similar results
for higher-dimensional target distributions. Thus, we prove most of the results in Rd and
specialize to the case of R for the final Lemma.

4 Proofs

We break the proof up into three lemmas, each of which might be individually useful
for proving similar results.

4.1 Mixing: from very small sets to small sets

The first Lemma shows that a Lyapunov condition combined with a bound on the
mixing time τ of PΘ for a “small” sublevel set Θ of V allows us to bound the spectral gap
by the inverse of the mixing time. The key idea is that a Markov chain started from a
point x inside of a “very small” sublevel set is unlikely to escape from the slightly larger
“small” set within its first τ steps. This allows us to minorize Pτ by µΘ inside of the “very
small” set {x : V (x) < 4K(1− γ)−1} and then apply the usual Harris theorem to obtain a
bound on the spectral gap. In essence we use the Lyapunov condition and the mixing
time bound to obtain a minorization condition on the time scale of the mixing time – that
is, for Pτ – rather than directly showing a multistep minorization condition.

Lemma 4.1. Suppose that V is a Lyapunov function of P satisfying (2.2), Θ ⊂ Rd

satisfies (3.3), and the mixing time of PΘ is τ < ∞. Then there exists C = C(γ,K)

independent of τ and d so that the relaxation time of P is at most

τrel(P) ≤ Cτ.

Proof. Let

S(R) = {x : V (x) ≤ R},

R1 =
4K

1− γ
, R2 = 8

(
4K

(1− γ)2
+

Kτ

1− γ

)
and fix x ∈ S(R1). Let {Xt}t≥0 be a Markov chain with transition kernel P and initial state
X0 = x. Denote by κ = inf{t : Xt ∈ Θc} the first hitting time of Θc = {x ∈ Rd : x /∈ Θ}.
By Inequality (2.2) and Markov’s inequality,

P[κ ≤ τ ] ≤ P[ max
0≤k≤τ

V (Xk) ≥ R2] ≤
τ∑

k=0

P [V (Xt) > R2]

≤ R−1
2

τ∑
k=0

E[V (Xt)]

≤ R−1
2

τ∑
k=0

γkV (x) +K

k−1∑
j=0

γj


≤ R−1

2

τ∑
k=0

(
γkV (x) +K

1− γk+1

1− γ

)
≤ R−1

2

(
R1

1− γ
+K

(1− γ)τ + γτ+1 − γ

(1− γ)2

)
≤ R−1

2

(
R1

1− γ
+K

τ

1− γ

)
≤ 1

8
.

Applying this bound, the maximal coupling inequality, and the triangle inequality, we
obtain the minorization bound:
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sup
x∈R1

‖δxPτ − µΘ‖TV ≤ sup
x∈R1

‖δxPτ
Θ − µΘ‖TV + sup

x∈R1

‖δxPτ − δxPτ
Θ‖TV

≤ 1

4
+

1

8
=

3

8
.

So then Pτ satisfies

inf
x∈S(R1)

δxPτ (·) ≥ 3

8
µΘ(·)

(PτV )(x) ≤ γτV (x) +
K(1− γτ )

1− γ
.

Applying this minorization bound and the Lyapunov bound (2.2) along with Theorem
1 of [5] to the Markov operator Pτ implies that we can bound the geometric convergence
rate of convergence ᾱ of Pτ via

ᾱ = inf
α0∈(0,5/8)

(
1− 5

8
+ α0

)
∨

2 + 4K
1−γ

α0(1−γ)
K(1−γτ )

(
γτ + 2K(1−γτ )(1−γ)

(1−γ)4K

)
2 + 4K

1−γ
α0(1−γ)
K(1−γτ )

= inf
α0∈(0,5/8)

(
1− 5

8
+ α0

)
∨

2 + 4α0

(1−γτ )
γτ+1

2

2 + 4α0

(1−γτ )

≤ inf
α0∈(0,5/8)

(
1− 5

8
+ α0

)
∨

2 + 4α0

(1−γ)
γ+1
2

2 + 4α0

(1−γ)

< 1, (4.1)

where the last line follows because the second term in the maximum is decreasing in τ .
This implies that the geometric convergence rate of P is at most ᾱ1/τ < 1, and so the
L2(µ) spectral gap of P is at least

(1− ᾱ1/τ )

by an application of Theorem 2 of [18]. Inspection of inequality (4.1) completes the
proof.

4.2 Mixing for unimodal distributions on compact sets

We now show the first of two Lemmas necessary to prove the mixing time bound
inside of Θ. This lemma shows that when started from an initial condition very close to
the mode, PΘ will mix rapidly. Our approach is to compare PΘ to a chain with transition
kernel P̃Θ(x, ·) = µΘ(·) for all x ∈ Θ - this chain simply takes iid samples from its
stationary measure.

We can write the transition densities of P and P̃ as:

pΘ(x, y) = δx(y)

∫
(1− αΘ(x, y))Q(x, dy) + αΘ(x, y)q(x, y)

p̃Θ(x, y) = pΘ(y),

where

αΘ(x, y) =
pΘ(y)q(y, x)

pΘ(x)q(x, y)
.

For A ⊂ Θ, define the A-restricted mixing time

τA(PΘ) = min{t : sup
x∈A

‖δxPt
Θ − µΘ‖TV ≤ 1/8}.

Lemma 4.2. Suppose that p satisfies (3.1) and Q satisfies (2.1). Then

τBε(m)(PΘ) ≤ C log(16)ε−3δ−1
1 Ld+3pΘ(m)

πd/23d+2

Γ(d/2 + 1)
,

where 0 < C < ∞ is a universal constant.
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Proof. Our main tool is Theorem 3.2 of [21]. We recall the definition of the “linear” set
of paths Γ, consisting of steps of length ε, given in Section 2 of [21]. For fixed x, y ∈ Θ,
define the length bx,y = d‖x−y‖

ε e. When ‖x−y‖
ε is not an integer, set

γ(i)
x,y = x+ i ε(y − x), 0 ≤ i < bx,y

γ(bx,y)
x,y = y

γx,y = (γ(0)
x,y, . . . , γ

(bx,y)
x,y ).

Then Γ = {γx,y : (x, y) ∈ Θ} is the collection of all such paths of finite length. We say

that a pair (u, v) ∈ Θ×Θ is an ith edge of the path γx,y iff u = γ
(i−1)
x,y and v = γ

(i)
x,y. Let Ei

be the collection of the ith edges of all paths γ ∈ Γ, and put E =
⋃

i∈NEi. As shown in
Section 2 of [21], the set of paths Γ satisfies the regularity conditions of Theorem 3.2 of
that paper and, for any (u, v) ∈ E, the associated Jacobian satisfies Jx,y(u, v) = bdx,y (see
[21, page 5] for details).

Define ξ(u, v) = αΘ(u, v)q(u, v)pΘ(u) and for any γx,y ∈ Γ put ‖γx,y‖0 =∑
(u,v)∈γx,y

ξ(u, v)0 = bx,y. Notice we can also view the comparison kernel P̃Θ as
a Metropolis-Hastings kernel with acceptance probability α̃(x, y) = 1 and proposal
q̃(x, y) = pΘ(y). To use Theorem 3.2 of [21], we must bound the geometric constant

A0(Γ) = esssup(u,v)∈E

ξ(u, v)−1
∑

γx,y3(u,v)

‖γx,y‖0p̃(x)α̃(x, y)q̃(x, y)|Jx,y(u, v)|


= esssup(u,v)∈E

ξ(u, v)−1
∑

γx,y3(u,v)

bx,ypΘ(x)pΘ(y)b
d
x,y

 .

Bounding below by the uniform proposal on Bε(x) we have using (2.1) and the volume of
a unit ball in Rd

ξ(u, v) ≥
(
1 ∧ pΘ(v)

pΘ(u)

)
Γ(d/2 + 1)

πd/2
ε−dδ1pΘ(u) ≥ (pΘ(u) ∧ pΘ(v))

Γ(d/2 + 1)

πd/2
ε−dδ1

which is everywhere positive for any (u, v) ∈ γx,y by the definition of Γ. Define b =

maxx,y bx,y ≤ 2Lε−1 + 1, we have

A0(Γ) = esssup(u,v)∈E

ξ(u, v)−1
∑

γx,y3(u,v)

bx,ypΘ(x)pΘ(y)b
d
x,y


≤ πd/2

Γ(d/2 + 1)
δ−1
1 εd(pΘ(u) ∧ pΘ(v))

−1b3+dpΘ(x)pΘ(y)

≤ πd/2εd

Γ(d/2 + 1)
δ−1
1 b3+d pΘ(x) ∧ pΘ(y)

pΘ(u) ∧ pΘ(v)
pΘ(m) (4.2)

where in the second line we used the fact that there are at most ` starting points for
paths of length ` that contain the edge (u, v) and

∑`
j=1 j = (`2 + `)/2 ≤ `2. Since p is

multivariate unimodal (see Definition 2.2), we note that

pΘ(x) ∧ pΘ(y)

pΘ(u) ∧ pΘ(v)
≤ 1

for any points u, v ∈ {γ(0)
x,y, . . . , γ

(bx,y)
x,y } on a linear path from x to y, and therefore

A0(Γ) ≤
πd/2εd

Γ(d/2 + 1)
δ−1
1 b3+dpΘ(m).
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Thus, combining with (4.2), we obtain with b = 2ε−1L+ 1 the maximum length of a path
consisting of steps of size ε connecting two points inside a ball of radius L

A0(Γ) ≤
πd/2

Γ(d/2 + 1)
32+dε−3Ld+3δ−1

1 pΘ(m),

where we used that ε ≤ L so that 2ε−1L+1 < 3ε−1L. It follows that the spectral gap α of
PΘ satisfies

α ≥ 3−(d+2)ε3δ1L
−(d+3)pΘ(m)−1Γ(d/2 + 1)

πd/2
. (4.3)

By Inequality (3.1), observe that we can write

δxPΘ =
15

16
µΘ|B2ε(m) +

1

16
rx

for some “remainder” measure rx. Applying Proposition 1.1 of [21] and the bound (4.3)
on the spectral gap of PΘ, this implies there exists some absolute constant 0 < C < ∞
such that

sup
x∈Bε(m)

‖δxPt+1
Θ − µΘ‖TV ≤ sup

x∈Bε(m)

‖µΘ|Bε(x)P
t
Θ − µΘ‖TV +

1

16
(4.4)

≤ 1

8

for all

t > C log(16)ε−3δ−1
1 Ld+3pΘ(m)

πd/23d+2

Γ(d/2 + 1)
.

We prove the last lemma:

Lemma 4.3. Suppose PΘ is a Metropolis-Hastings kernel on Θ ⊂ R satisfying Assump-
tion 2.3. Then there exists some constant C = C(δ1, c1, c2) < ∞ such that

τ(PΘ) ≤ τ[m−ε,m+ε](PΘ) + C
L2

ε2
.

Proof. Define the function F by

F (x,∆, U) = x+∆1{U < αΘ(x, x+∆)}.

Note that if ∆ ∼ Q(x, ·) and U ∼ Uniform(0, 1) with ∆ ⊥⊥ U , then

F (x,∆, U) ∼ PΘ(x, ·),

so F defines a forward mapping representation of PΘ. Next, let ∆t
iid∼ Q(0, ·) and

Ut
iid∼ Uniform(0, 1). We fix x ∈ (m+ ε,m+L]∩Θ and consider a Markov chain (Xt, Yt, Zt)

on R3, with initial state (x, x, x) and dynamics defined jointly by

Xt+1 = F (Xt,∆t, Ut)

Yt+1 = Yt +∆t1(Yt +∆t ∈ [−L,L])

Zt+1 = Zt +∆t.

We focus initially on the properties of (Xt, Yt). Define

τxhit(x) = inf{t ≥ 0 : Xt ∈ [m− ε,m+ ε]}
τyhit(x) = inf{t ≥ 0 : Yt ∈ [m− L,m+ ε]}.
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Defining τ∗ = τxhit(x) ∧ τyhit(x), it is clear that m+ ε ≤ Xt ≤ Yt for all t < τ∗. We also have

P[Xt+1 ∈ [m,m+ ε] | Xt > m+ ε, t < τ∗] ≥ P[Yt+1 ∈ [m,m+ ε] | Yt > m+ ε, t < τ∗]

and

P[Yt+1 ∈ [m,m+ ε] | Yt+1 ∈ [m− L,m+ ε], Yt > m+ ε, t < τ∗] > δ ≡ δ(c1, c2) > 0,

where the second bound comes from Inequality (2.1). Combining these two bounds, we
have shown

P[τxhit(x) ≤ t] ≥ δP[τyhit(x) ≤ t].

Now we just need a bound on τyhit(x), which we obtain by comparing Yt and Zt. By
the Berry-Esseen theorem and the sub-exponential tail bound in Inequality (2.1), there
exists a C1 = C1(c1, c2, δ1) < ∞ such that, for all t > C1

L2

ε2 ,

P[Zt < m] >
1

8
.

Using again the fact that the tails of Q are sub-exponential (in the sense of Inequality
(2.1)), along with the fact that Yt ≤ Zt for all t < min{s : Zs < −L}, there exists
C2 = C2(c1, c2, δ1) > 0 such that

P[ min
0≤s≤t

Ys ≤ m+ ε] ≥ C2P[Zt < m] ≥ C2

8
≡ η.

This implies

P

[
τyhit(x) > C3

L2

ε2

]
≤ 1− η

P

[
τxhit(x) ≤ C3

L2

ε2

]
≥ δη;

for some constant C3 > 0. Using the strong Markov property, we conclude that for all
T ∈ N

P

[
τxhit(x) > C3T

L2

ε2

]
≤ (1− δη)T . (4.5)

We proved this inequality for x ∈ [m + ε, L] ∩ Θ. By the symmetry of the situation, it
is clear that this also holds for x ∈ [−L,m − ε] ∩ Θ, and of course it trivially holds for
x ∈ [m− ε,m+ ε] ∩Θ. Thus, Inequality (4.5) holds for all x ∈ Θ.

Combining Inequality (4.4) and Inequality (4.5) (with the choice T =(− log(8))/ log(1−
δη)), and setting t = τ[m−ε,m+ε](PΘ) + C3T

L2

ε2 , we have for x ∈ Θ:

‖δxPt − µΘ‖TV ≤ P[τxhit(x) < C3T
L2

ε2
] + sup

x∈[m−ε,m+ε]∩Θ

‖δxPτ[m−ε,m+ε](PΘ) − µΘ‖TV

≤ 1

8
+

1

8
=

1

4
.

This completes the proof of the lemma.

4.3 Proof of Theorem 3.1

Theorem 3.1 follows quickly from our three main lemmas. Inequality (3.2) is an imme-
diate consequence of Lemmas 4.2 and 4.3. Inequality (3.4) is an immediate consequence
of Inequality (3.2) and Lemma 4.1.
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