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Abstract

Consider non-homogeneous zero-drift random walks in Rd, d ≥ 2, with the asymptotic
increment covariance matrix σ2(u) satisfying u>σ2(u)u = U and trσ2(u) = V in all
in directions u ∈ Sd−1 for some positive constants U < V . In this paper we establish
weak convergence of the radial component of the walk to a Bessel process with
dimension V/U . This can be viewed as an extension of an invariance principle of
Lamperti.
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1 Introduction and main result

A genuinely d-dimensional, spatially homogeneous random walk on Rd whose incre-
ments have zero mean and finite second moments is recurrent if and only if d ≤ 2. In [5] a
class of spatially non-homogeneous random walks (Markov chains) exhibiting anomalous
recurrence behaviour was described; the increments for such walks again have zero
mean, but have a covariance that depends on the current position in a certain way. In
any dimension d ≥ 2, such walks can be recurrent or transient, depending on the model
parameters. Note that this anomalous recurrence is a genuinely many-dimensional
phenomenon, as it is driven by the increment covariance.

Random walks are fundamental stochastic processes and have seen numerous ap-
plications over many decades in, for example, acoustics, ecology, finance, and physical
chemistry. Non-homogeneous random walks arise naturally when assumptions of ho-
mogeneity are relaxed, and present novel mathematical problems that demand new
intuitions. More broadly, non-homogeneous random walks serve as prototypical ‘near-
critical’ stochastic systems. See [10] for further discussion and references. An important
element of the classical theory of spatially homogeneous random walks is the Donsker
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invariance principle, which describes the scaling limit for the class of homogeneous
random walks whose increments have zero mean and positive-definite covariance in
terms of Brownian motion on Rd. It is natural to ask: is there an invariance principle for
a suitable class of non-homogeneous random walks, in which the scaling limit is some
universal class of diffusions?

The goal of this note is to establish an invariance principle for the radial component
of the walks studied in [5]. The result can be seen as an extension of the classical picture,
where the radial component of a walk in the Donsker class converges to a Bessel process,
and also as an extension of work of Lamperti [8] on one-dimensional Markov chains with
asymptotically zero drifts. The result is also an important ingredient in the much more
involved proof of a full invariance principle that is the subject of [6], where the question
posed at the end of the previous paragraph is answered positively. We explain these
points in more detail once we have given a precise description of the model and stated
the main result.

We work in Rd, d ≥ 2. Write 0 for the origin in Rd, and let ‖ · ‖ denote the Euclidean
norm and 〈 · , · 〉 the Euclidean inner product on Rd. Write Sd−1 := {u ∈ Rd : ‖u‖ = 1} for
the unit sphere in Rd. For x ∈ Rd \ {0}, set x̂ := x/‖x‖. For convenience, set 0̂ := e1, the
first element of the standard orthonormal basis of Rd. For definiteness, vectors x ∈ Rd

are viewed as column vectors throughout. Set N := {1, 2, 3, . . .} and Z+ := N ∪ {0}.
We now defineX = (Xn, n ∈ Z+), a discrete-time, time-homogeneous Markov process

on a (non-empty, unbounded) subset X of Rd. Formally, (X,BX) is a measurable space,
X is a Borel subset of Rd, and BX is the σ-algebra of all B ∩X for B a Borel set in Rd.
Suppose that X0 is some fixed (i.e., non-random) point in X. Write

∆n := Xn+1 −Xn

for the increments of X. By assumption, given X0, . . . , Xn, the law of ∆n depends only
on Xn (and not on n); so often we ease notation by taking n = 0 and writing just ∆ for
∆0. We also use the shorthand Px[ · ] = P[ · | X0 = x] for probabilities when the walk is
started from x ∈ X; similarly we use Ex for the corresponding expectations.

We make the following moments assumption:

(A0) Suppose that supx∈XEx[‖∆‖4] < ∞.

The assumption (A0) ensures that ∆ has a well-defined mean vector µ(x) := Ex[∆], and
we suppose that the random walk has zero drift :

(A1) Suppose that µ(x) = 0 for all x ∈ X.

The assumption (A0) also ensures that ∆ has a well-defined covariance matrix, which
we denote by M(x) := Ex[∆∆>], where ∆ is viewed as a column vector. To rule out
pathological cases, we assume that ∆ is uniformly non-degenerate, in the following
sense.

(A2) There exists v > 0 such that trM(x) = Ex[‖∆‖2] ≥ v for all x ∈ X.

Write ‖ · ‖op for the matrix (operator) norm given by ‖M‖op = supu∈Sd−1 ‖Mu‖. The
following assumption on the asymptotic stability of the covariance structure of the
process along rays is central.

(A3) Suppose that there exists a positive-definite matrix function σ2 with domain Sd−1

such that, as r → ∞,

ε(r) := sup
x∈X:‖x‖≥r

‖M(x)− σ2(x̂)‖op → 0.
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Finally, we assume the following.

(A4) Suppose that there exist constants U, V with 0 < U < V < ∞ such that, for all
u ∈ Sd−1, u>σ2(u)u = U and trσ2(u) = V . In the case 2U = V , suppose in addition
that ε as defined in (A3) satisfies ε(r) = O(r−δ) for some δ > 0.

Informally, V quantifies the total variance of the increments, while U quantifies the
variance in the radial direction; necessarily U ≤ V . The final condition in (A4) is
necessary to deal with the critical-parameter case.

The main result of [5] (see also [10, §4.2]) stated that under the assumptions (A0)–(A4),
we have that (i) if 2U < V , then limn→∞ ‖Xn‖ = +∞, a.s. (transience); and (ii) if 2U ≥ V ,
then lim infn→∞ ‖Xn‖ ≤ r0, a.s., for some constant r0 ∈ R+ (recurrence).

For n ∈ N and t ∈ R+, define

X̃n(t) := n−1/2Xbntc. (1.1)

For each n, we view X̃n as an element of the space D(R+;R
d) of functions f : R+ → Rd

that are right-continuous and have left limits, endowed with the Skorokhod metric: see
e.g. [4, §3.5].

Theorem 1.1. Suppose that (A0)–(A4) hold. Without loss of generality assume that
U = 1. Then ‖X̃n‖ converges weakly to the V -dimensional Bessel process started at 0.

Remark. As ‖X̃n‖ is typically non-Markov, Theorem 1.1 may be viewed as an extension of
the invariance principle in [8, Thm 5.1], describing the weak convergence of a sequence
of non-negative Markov processes to a Bessel diffusion.

We describe the plan of the proof of Theorem 1.1, which is carried out in detail in
Section 2 below, and also how Theorem 1.1 provides a crucial step in the proof in [6] of
a full invariance principle for Xn, under additional conditions.

The proof of Theorem 1.1 is based on a general result on the convergence of Markov
chains to diffusions, [4, Thm 7.4.1., p. 354] (reproduced as Theorem 2.5 below). In order
to establish the invariance principle, the limit must be uniqely determined (formally,
the corresponding martingale problem must be well posed). It is well known that the
stochastic differential equation (SDE)

dρt =
V − 1

2ρt
1{ρt 6= 0}dt+ dBt, ρ0 = x0, (1.2)

satisfied by a V -dimensional Bessel process, does not possess uniqueness in law for any
V > 1 if x0 = 0. Furthermore, if V ∈ (1, 2), uniqueness in law fails also in the case x0 > 0

(see [3, Thm 3.2(iii)] for both assertions). Hence in the proof of Theorem 1.1, we work
with the sequence ‖X̃n‖2 and show that it converges to the law BESQV (0) of the squared
Bessel process, which is uniquely determined by its SDE (see e.g. [11, Ch. XI, Sec. 1]).
Then to prove Theorem 1.1, we must verify the conditions of [4, Thm 7.4.1, p. 354].
This relies on several computations based on the assumptions (A0)–(A4), and the fact,
established in [5], that Xn is null in the sense that the limiting normalized occupation
measure of any bounded set tends to 0. The details are in Section 2.

Establishing the full invariance principle requires significantly more work; this is
carried out in [6]. The limiting diffusion on Rd satisfies the SDE Xt = σ(X̂t)dWt, where
σ(u)σ>(u) = σ2(u) for all u ∈ Sd−1, and W is Brownian motion on Rd. There are two
key steps in the proof of the full invariance principle: (i) showing that the above SDE
uniquely characterizes in law the limiting diffusion, and (ii) showing the convergence of
X̃n to the limit. Both of these steps are complicated essentially by the discontinuity of
x 7→ σ(x̂) at x = 0, which means that for step (ii) we cannot apply directly the results
of [4], which are for diffusions with continuous coefficients, and for step (i) we make
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use of a skew-product structure attached to an excursion description of the diffusion.
The fact that Theorem 1.1 in the present paper identifies the radial part of the limit as
a Bessel process provides a crucial backbone upon which to construct this excursion
description. The skew-product structure requires an additional assumption. See [6] for
details.

To end this section, we remark that our situation bears comparison with random walk
in random environment in the case of stationary and ergodic balanced environments,
in which the increment distribution at each site is uniformly elliptic and symmetric,
where a quenched central limit theorem is known to hold: see [9, 1] and [12, §3.3].
Such environments satisfy analogues of our (A0)–(A2), but our conditions (A3)–(A4) are
incompatible with stationarity apart from the special case where σ2(u) ≡ σ2 does not
depend on u.

2 Proofs

Recall that ∆n := Xn+1 −Xn for n ∈ Z+.

Lemma 2.1. Under assumptions (A0)–(A4), for any k ∈ N the following limits hold:

lim
n→∞

1

n`
sup
x∈X

Ex

[
max

0≤m≤kn
‖∆m‖2`

]
= 0, for ` ∈ {1, 2}, (2.1)

lim
n→∞

1

n2
sup

x∈X∩B
Ex

[
max

0≤m≤kn
‖∆m‖2‖Xm‖2

]
= 0, (2.2)

where B is any compact set in Rd.

The following estimates will be useful in the proof of Lemma 2.1 and subsequently.

Lemma 2.2. Under assumptions (A0)–(A4), there exists a constant D0 ∈ R+ such that

Ex

[
‖Xm‖`

]
≤ D0(m

`/2 + ‖x‖`)

for any ` ∈ {1, . . . , 4}, all m ∈ N, and all x ∈ X.

Proof. First note that ‖x +∆m‖2 − ‖x‖2 = 2〈x,∆m〉 + ‖∆m‖2. Hence by (A0) and (A1),
there exists a constant C0 > 0 such that, a.s.,

E[‖Xm+1‖2 − ‖Xm‖2 | Xm] = E[‖∆m‖2 | Xm] ≤ C0, for all m ∈ N.

The inequality Ex[‖Xm+1‖2] ≤ Ex[‖Xm‖2] + C0 follows, implying

Ex[‖Xm‖2] ≤ ‖x‖2 + C0m, for all x ∈ X and all m ∈ N. (2.3)

Similarly,

‖x+∆m‖4 − ‖x‖4 = (‖x‖2 + 2〈x,∆m〉+ ‖∆m‖2)2 − ‖x‖4

≤ 6‖x‖2‖∆m‖2 + ‖∆m‖4 + 4‖x‖2〈x,∆m〉+ 4‖x‖‖∆m‖3.

Then by (A0) and (A1) again, we get, for some C1 ∈ R+, a.s.,

E[‖Xm+1‖4 − ‖Xm‖4 | Xm] ≤ C1(1 + ‖Xm‖2)

for all m ∈ N. Taking expectations and applying (2.3), we find

Ex[‖Xm+1‖4] ≤ Ex[‖Xm‖4] + C2(1 +m+ ‖x‖2),
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for some C2 ∈ R+, which implies that, for some C3 ∈ R+,

Ex[‖Xm‖4] = Ex[‖X0‖4] +
m−1∑
k=1

(
Ex[‖Xk+1‖4]− Ex[‖Xk‖4]

)
≤ ‖x‖4 + C3(m

2 +m‖x‖2), for all m ∈ N and x ∈ X.

Since m‖x‖2 ≤ m2 + ‖x‖4, the inequality in the lemma for ` = 4 follows. The case
` = 2 follows from (2.3). The remaining cases are a consequence of these bounds, the
Lyapunov inequality Ex ‖Xm‖ ≤ Ex[‖Xm‖2]1/2, the Cauchy–Schwarz inequality

Ex[‖Xm‖3] ≤ Ex[‖Xm‖4]1/2Ex[‖Xm‖2]1/2,

and the fact that (m`/2 + ‖x‖`)1/2 ≤ 21/2 max(m, ‖x‖2)`/4.

Proof of Lemma 2.1. Recall that ∆ = ∆0. First we prove the statement for ` = 2. Then

Ex max
0≤m≤kn

‖∆m‖4 ≤ Ex

kn∑
m=0

‖∆m‖4,

where, by the Markov property and (A0),

Ex[‖∆m‖4] = ExE[‖∆m‖4 | Xm] ≤ sup
y∈X

Ey[‖∆‖4] ≤ C1,

for some C1 < ∞. It follows that

0 ≤ 1

n2
Ex max

0≤m≤kn
‖∆m‖4 ≤ C1(kn+ 1)

n2
→ 0,

giving the ` = 2 case of (2.1). Then Lyapunov’s inequality shows that

Ex max
0≤m≤kn

‖∆m‖2 ≤
(
Ex max

0≤m≤kn
‖∆m‖4

)1/2

,

and the ` = 1 case of (2.1) follows.
To prove (2.2), take γ ∈ (0, 1/2) and observe that

‖∆m‖2 ≤ n2γ + ‖∆m‖21{‖∆m‖ > nγ}, for all m ∈ {0, . . . , kn}. (2.4)

Hence we have from (2.4) that

max
0≤m≤kn

‖∆m‖2‖Xm‖2 ≤ n2γ max
0≤m≤kn

‖Xm‖2 +
kn∑

m=0

‖∆m‖21{‖∆m‖ > nγ}‖Xm‖2. (2.5)

To bound the first term on the right-hand side of (2.5), note that the Markov chain X is a
martingale. Hence for any X0 = x ∈ X, the non-negative process ‖X‖ is a submartingale
and Doob’s L2 inequality (see e.g. [7, p. 543]) yields

Ex max
0≤m≤kn

‖Xm‖2 ≤ 4Ex ‖Xkn‖2. (2.6)

For the second term on the right-hand side of (2.5), conditioning on Xm and using the
Markov property gives

Ex

kn∑
m=0

‖∆m‖21{‖∆m‖ > nγ}‖Xm‖2 = Ex

kn∑
m=0

‖Xm‖2E
[
‖∆m‖21{‖∆m‖ > nγ}

∣∣ Xm

]
≤ Ex

kn∑
m=0

‖Xm‖2 sup
y∈X

Ey

[
‖∆‖21{‖∆‖ > nγ}

]
.
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Then by (A0) we have that

Ey

[
‖∆‖21{‖∆‖ > nγ}

]
= Ey

[
‖∆‖4‖∆‖−21{‖∆‖ > nγ}

]
≤ n−2γ Ey[‖∆‖4]
≤ C1n

−2γ ,

for C1 < ∞ and all y ∈ X. It follows that

Ex

kn∑
m=0

‖∆m‖21{‖∆m‖2 > nγ}‖Xm‖2 ≤ C1n
−2γ Ex

kn∑
m=0

‖Xm‖2. (2.7)

The bounds in (2.5), (2.6) and (2.7), together with the ` = 2 case of Lemma 2.2, show
that

Ex max
0≤m≤kn

‖∆m‖2‖Xm‖2 ≤ 4D0n
2γ(kn+ ‖x‖2) + C1D0n

−2γ(kn+ 1)(kn+ ‖x‖2),

which in turn implies (2.2) since γ ∈ (0, 1/2).

An important ingredient is the following result from [5, Theorem 2.3].

Lemma 2.3. Suppose that (A0)–(A4) hold. Then the random walk X is null, i.e., for any
bounded A ⊂ Rd,

lim
n→∞

1

n

n−1∑
k=0

1{Xk ∈ A} = 0, a.s. and in Lq for any q ≥ 1. (2.8)

The idea of the proof of Lemma 2.3 is as follows; see [5] for the details. The result is
obvious if X is transient. If X is recurrent, then define τr := min{n ≥ 0 : ‖Xn‖ ≤ r}, and
take r sufficiently large so that Px[τr < ∞] = 1 for all x ∈ X. The key to Lemma 2.3 is to
show that

Px[τr ≥ n | X0] ≥ cn−1/2, on {‖X0‖ > R}, (2.9)

for some constants R > r and c > 0. Hence the excursions of X away from a bounded
set have non-integrable durations. On the other hand, the assumptions (A0)–(A2) and a
many-dimensional martingale version of Kolmogorov’s ‘other’ inequality show that the
expected number of times that a bounded set is visited by the walk between successive
excursions is uniformly bounded. These two facts combine to give the null property. The
property (2.9) formalizes the intuition that X is ‘less recurrent’ than one-dimensional
simple symmetric random walk.

Lemma 2.4. Suppose that (A0)–(A4) hold and let k ∈ N. Then, for any linear functional
φ on d× d matrices, i.e. φ : Rd×d → R, and any x ∈ X, the following limits in probability
under Px hold:

1

n

kn∑
m=0

∣∣φM(Xm)− φσ2(X̂m)
∣∣ p−→ 0, (2.10)

1

n2

kn∑
m=0

∣∣〈[M(Xm)− σ2(X̂m)]Xm, Xm〉
∣∣ p−→ 0. (2.11)

Proof. Since φ is necessarily continuous, the corresponding operator norm ‖φ‖op is finite,
and so ∣∣φM(x)− φσ2(x̂)

∣∣ ≤ ‖φ‖op‖M(x)− σ2(x̂)‖op, for any x ∈ Rd.

Hence, for any ε > 0, condition (A3) entails that there exists C ∈ R+ such that∣∣φM(Xm)− φσ2(X̂m)
∣∣ ≤ ε, a.s., on {‖Xm‖ ≥ C}.
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By (A0) and (A3) we have B := supx∈X ‖M(x)− σ2(x̂)‖op < ∞, and hence

1

n

kn∑
m=0

∣∣φM(Xm)− φσ2(X̂m)
∣∣ ≤ 1

n

kn∑
m=0

ε+
1

n

kn∑
m=0

B‖φ‖op1{‖Xm‖ ≤ C}

≤ 2kε+
B‖φ‖op

n

kn∑
m=0

1{‖Xm‖ ≤ C}, for all n ∈ N. (2.12)

Now, by (2.8), for any C < ∞, as n → ∞, n−1
∑kn

m=0 1{‖Xm‖ ≤ C} p−→ 0. Since ε > 0

was arbitrary, together with (2.12), this implies (2.10).
We now establish (2.11). First note that∣∣〈[M(x)− σ2(x̂)]x,x〉

∣∣ ≤ ‖M(x)− σ2(x̂)‖op‖x‖2, for any x ∈ X.

Denote by Zn the random variable in (2.11). By (A3), for any ε > 0 there exists a constant
C < ∞ such that for all n ∈ N we have

Zn ≤ B

n2

kn∑
m=0

‖Xm‖21{‖Xm‖ ≤ C}+ ε

n2

kn∑
m=0

‖Xm‖21{‖Xm‖ > C}

≤ 2C2Bkn−1 + Z ′
n, where Z ′

n :=
ε

n2

kn∑
m=0

‖Xm‖2, (2.13)

and B is defined above the display in (2.12). Fix X0 = x ∈ X. Then by the ` = 2 case of
Lemma 2.2, there is a constant D1 < ∞ (depending on k and ‖x‖) such that

Ex
1

n2

kn∑
m=0

‖Xm‖2 ≤ D1, for all n ∈ N.

In order to prove Zn
p−→ 0, pick arbitrary ε′ > 0 and ε′′ > 0, and set ε := ε′ε′′/(4D1).

Markov’s inequality implies that

Px[Z
′
n > ε′/2] <

2D1

ε′
ε < ε′′, for all n ∈ N.

Given ε, we can find C < ∞ such that the inequality in (2.13) holds for all n ∈ N. Then,
for any n ≥ 4C2Bk/ε′, the following inequalities hold:

Px[Zn > ε′] ≤ Px[2C
2Bkn−1 + Z ′

n > ε′] ≤ Px[Z
′
n > ε′/2] < ε′′.

Since ε′′ is arbitrary, we have that limn→∞Px[Zn > ε′] = 0 and (2.11) follows.

Recall that X̃n in (1.1) is a continuous-time process given in terms of the scaled
Markov chain X, which is started at X0 = x ∈ Rd. Let Yn := ‖X̃n‖2 be the square of the
radial component of X̃n. Since the square root is continuous, the mapping theorem [2,
Sec. 2, Thm 2.7] implies that Theorem 1.1 follows if we prove that Yn converges weakly
to BESQV (0) on D := D(R+;R), the space of right-continuous functions from R+ to
R with left limits, equipped with the Skorokhod metric. This fact will be established
using [4, Thm 7.4.1, p. 354], the relevant (d = 1) version of which we quote here for ease
of reference. Let C := C(R+;R) denote the space of continuous functions from R+ to R.

Theorem 2.5. Let a : R → R+ and b : R → R be continuous functions. Consider the
generator G defined for smooth f : R → R by Gf = bf ′ + 1

2af
′′, and suppose that the

corresponding C martingale problem is well posed. For n ∈ N let Yn, An, and Bn be
processes with sample paths in D such that for each n ∈ N, t 7→ An(t) is non-decreasing,
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and both Yn −Bn and Y 2
n −An are local martingales. Suppose that for each T > 0, the

following conditions hold:

lim
n→∞

E sup
t∈[0,T ]

|Yn(t)− Yn(t−)|2 = 0, (2.14)

lim
n→∞

E sup
t∈[0,T ]

|Bn(t)−Bn(t−)|2 = 0, (2.15)

lim
n→∞

E sup
t∈[0,T ]

|An(t)−An(t−)| = 0, (2.16)

sup
t∈[0,T ]

∣∣∣∣Bn(t)−
∫ t

0

b(Yn(s))ds

∣∣∣∣ p−→ 0, (2.17)

and sup
t∈[0,T ]

∣∣∣∣An(t)−
∫ t

0

a(Yn(s))ds

∣∣∣∣ p−→ 0. (2.18)

Then if Yn(0) converges weakly to a law ν on R, we have that Yn converges weakly to
the solution of the martingale problem for (G, ν).

To apply this result, we take Yn := ‖X̃n‖2 as described above, and then choose Bn

to be the predictable compensator of Yn. Then Mn := Yn − Bn is the corresponding
local martingale. Define An as the predictable compensator of the submartingale M2

n.
In particular, both An and Bn start at zero. The following proposition establishes the
conditions necessary to apply Theorem 2.5 with a(x) = 4|x| and b(x) = V .

Proposition 2.6. Suppose that (A0)–(A4) hold, that U = 1, and that X0 = x ∈ X. Let
T > 0. Then with the choice of Yn, An, and Bn as described above, the limits (2.14),
(2.15), and (2.16) hold. Furthermore, under Px, we have that

sup
t∈[0,T ]

|Bn(t)− V t| p−→ 0, (2.19)

sup
t∈[0,T ]

∣∣∣∣An(t)−
∫ t

0

4Yn(s)ds

∣∣∣∣ p−→ 0. (2.20)

Proof. Without loss of generality we may assume that T = 1. By definition, Bn is a
piece-wise constant right-continuous process started at zero with jumps at t = k/n,
k ∈ {1, . . . , n}, given by

Bn(t)−Bn(t−) =
1

n
E[‖Xk‖2 − ‖Xk−1‖2 | Xk−1]

=
2

n
E[〈Xk−1,∆k−1〉 | Xk−1] +

1

n
E[‖∆k−1‖2 | Xk−1]

=
1

n
E[‖∆k−1‖2 | Xk−1], (2.21)

using (A1), and writing Bn(t−) = lims↑t Bn(s). By (A0), E[‖∆k−1‖2 | Xk−1] is uniformly
bounded. Hence

sup
t∈[0,1]

|Bn(t)−Bn(t−)|2 =
1

n2
max

1≤k≤n

∣∣E[‖∆k−1‖2|Xk−1]
∣∣2

is a sequence of bounded random variables converging to zero point-wise. Therefore the
limit in (2.15) follows.

Similarly, the jumps of Yn occur at times t = k/n (where k ∈ {1, . . . , n}) and, writing
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Yn(t−) = lims↑t Yn(s) as usual, can be bounded as follows:

|Yn(t)− Yn(t−)|2 =
1

n2
(‖Xk‖2 − ‖Xk−1‖2)2

≤ 1

n2
(‖∆k−1‖2 + 2‖Xk−1‖‖∆k−1‖)2

≤ 2

n2
(‖∆k−1‖4 + 4‖Xk−1‖2‖∆k−1‖2), (2.22)

using the inequality (x+ y)2 ≤ 2(x2 + y2). We therefore find that

Ex sup
t∈[0,1]

|Yn(t)− Yn(t−)|2 ≤ 2

n2
(Ex max

1≤k≤n
‖∆k−1‖4 + 4Ex max

1≤k≤n
‖Xk−1‖2‖∆k−1‖2).

Hence (2.1)–(2.2) in Lemma 2.1 imply (2.14).
The process An is piece-wise constant and right-continuous with jumps An(t)−An(t−)

at t = k/n, k ∈ {1, . . . , n}, with An(t−) = lims↑t An(s), satisfying

An(t)−An(t−) = E[Mn(t)
2 −Mn(t−)2 | Fk−1]

= E[(Mn(t)−Mn(t−))2 | Fk−1]

= E[(Yn(t)− Yn(t−))2 | Fk−1]− (Bn(t)−Bn(t−))2, (2.23)

using the fact that Bn(t)−Bn(t−) = E[Yn(t)−Yn(t−) | Fk−1], where Fk−1 is the σ-algebra
generated by X0, X1, . . . , Xk−1. Hence by (2.23) with (2.21) and (2.22), we find that

|An(t)−An(t−)| ≤ E[(Yn(t)− Yn(t−))2 | Xk−1] + (Bn(t)−Bn(t−))2

≤ 2

n2

(
E[‖∆k−1‖4 | Xk−1] + 4‖Xk−1‖2E[‖∆k−1‖2 | Xk−1]

)
+

1

n2
E[‖∆k−1‖2 | Xk−1]

2,

for t = k/n, k ∈ {1, . . . , n}. By (A0) we have that there exists a constant C1 < ∞ such
that both E[‖∆k−1‖2 | Xk−1] and E[‖∆k−1‖4 | Xk−1] are bounded by C1, a.s., so that

sup
t∈[0,1]

|An(t)−An(t−)| ≤ 2C1 + C2
1

n2
+

8C1

n2
max

1≤k≤n
‖Xk−1‖2.

By Doob’s L2 submartingale inequality we have Ex[max1≤k≤n ‖Xk−1‖2] ≤ 4Ex ‖Xn‖2,
and then (2.16) follows from the ` = 2 case of Lemma 2.2.

We now prove the limit in (2.19). Note that (2.21) and the fact that trM(x) =

Ex[‖∆‖2] implies that, with the usual convention that an empty sum is zero,

Bn(t) =
1

n

bntc−1∑
m=0

trM(Xm). (2.24)

By (A4) it holds that trσ2(u) = V for all u ∈ Sd−1. Hence by (2.24) we find

|Bn(t)− V t| ≤ V

n
+

1

n

bntc−1∑
m=0

| trM(Xm)− trσ2(X̂m)|, for all t ∈ [0, 1],

and, as trace is a linear functional on square matrices, (2.10) in Lemma 2.4 yields

sup
t∈[0,1]

|Bn(t)− V t| ≤ V

n
+

1

n

n∑
m=0

| trM(Xm)− trσ2(X̂m)| p−→ 0.
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Finally, we establish (2.20). From (2.23) with (2.21) and the equality in (2.22), we
find that

An(t)−An(t−) =
1

n2
E[(2〈Xk−1,∆k−1〉+ ‖∆k−1‖2)2 | Xk−1]−

1

n2
E[‖∆k−1‖2 | Xk−1]

2

=
4

n2
E[〈Xk−1,∆k−1〉2 | Xk−1] +

4

n2
E[〈Xk−1,∆k−1〉‖∆k−1‖2 | Xk−1]

+
1

n2
E[‖∆k−1‖4 | Xk−1]−

1

n2
E[‖∆k−1‖2 | Xk−1]

2.

For any t ∈ [0, 1], denote

Dn(t) :=
1

n2

bntc−1∑
k=0

4E[〈Xk,∆k〉2 | Xk].

It follows that

An(t)−Dn(t) =
1

n2

bntc−1∑
k=0

(
4E[〈Xk,∆k〉‖∆k‖2 | Xk] + E[‖∆k‖4 | Xk]− E[‖∆k‖2 | Xk]

2
)
.

By (A0), there exists a constant C2 < ∞ bounding uniformly all E[‖∆k‖` | Xk] for
2 ≤ ` ≤ 4 and all k ∈ {0, . . . , n}. Furthermore, it holds that

1

n2

∣∣∣∣∣
n∑

k=0

E[〈Xk,∆k〉‖∆k‖2 | Xk]

∣∣∣∣∣ ≤ 1

n2

n∑
k=0

‖Xk‖E[‖∆k‖3 | Xk].

Hence, by the ` = 1 case of Lemma 2.2, we find that

sup
t∈[0,1]

|An(t)−Dn(t)| ≤
C2 + C2

2

n
+

4C2

n2

n∑
k=0

‖Xk‖
p−→ 0.

It remains to show supt∈[0,1]

∣∣Dn(t)−
∫ t

0
4Yn(s)ds

∣∣ p−→ 0. With this in mind, note that the
following identities hold for all k ∈ {0, . . . , n}:

E[〈Xk,∆k〉2 | Xk] = 〈M(Xk)Xk, Xk〉, and ‖Xk‖2 = 〈σ2(X̂k)Xk, Xk〉;

the latter is a consequence of (A4), which states that 〈σ2(X̂k)X̂k, X̂k〉 = U , and the
assumption that U = 1. Since Yn(t) = n−1‖Xbntc‖2, we have that∫ t

0

Yn(s)ds =

bntc−1∑
k=0

∫ k+1
n

k
n

Yn(s)ds+

∫ t

n−1bntc
Yn(s)ds

=
1

n2

bntc−1∑
k=0

‖Xk‖2 +
nt− bntc

n2
‖Xbntc‖2.

Hence for any t ∈ [0, 1] it holds that∣∣∣∣Dn(t)−
∫ t

0

4Yn(s)ds

∣∣∣∣ ≤ 4

n2
‖Xbntc‖2 +

4

n2

bntc−1∑
k=0

∣∣〈[M(Xk)− σ2(X̂k)]Xk, Xk〉
∣∣

≤ 4

n2
max

0≤k≤n
‖Xk‖2 +

4

n2

n∑
k=0

∣∣〈[M(Xk)− σ2(X̂k)]Xk, Xk〉
∣∣. (2.25)

Doob’s L2 submartingale inequality and the ` = 2 case of Lemma 2.2 imply that the first
term on the right-hand side of (2.25) converges to zero in L1 and hence in probability.
The second term converges to zero in probability by (2.11) in Lemma 2.4.
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Proof of Theorem 1.1. As noted in the discussion following the theorem, it is sufficient
to prove that Yn ⇒ Y , where Y is BESQV (0). Let g : R→ R+ be given by g(x) :=

√
|x|

and note that Y satisfies the SDE dYt = V dt+ 2g(Yt)dBt, where Y0 = 0. It is easy to see
that |g(x)−g(y)|2 ≤ |x−y| for all x, y ∈ R. Hence pathwise uniqueness for this SDE holds
for any starting point Y0 = x0 ∈ R by [11, Ch. IX, Thm (3.5)(ii)] (use ρ : (0,∞) → (0,∞),
given by ρ(z) = 4z). Hence, by the Yamada–Watanabe theorem [11, Ch. IX, Thm (1.7)],
the uniqueness in law holds. Thus the C martingale problem for (H, δ0) is well-posed,
where Hf := V f ′ + 2g2f ′′ for any smooth f : R→ R and δ0 is the Dirac delta measure
on R concentrated at zero. Furthermore, any solution of this C martingale problem has
non-negative trajectories because of the support of the law of BESQV (0) (alternatively
the positivity of the paths follows from the comparison theorem [11, Ch. IX, Thm (3.7)]
and the fact that BESQ0(0) is equal to zero at all times). Proposition 2.6, and the fact
that the drift in H is constant and g2 is continuous and non-negative on R, shows that
the conditions in Theorem 2.5 are satisfied with G = H, a(x) = 4|x|, and b(x) = V , and
so Theorem 2.5 implies that Yn converges weakly to the unique solution Y of the C
martingale problem for (H, δ0). This proves Theorem 1.1.
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