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Abstract

We consider random switching between finitely many vector fields leaving positively
invariant a compact set. Recently, Li, Liu and Cui showed in [12] that if one the
vector fields has a globally asymptotically stable (G.A.S.) equilibrium from which
one can reach a point satisfying a weak Hörmander-bracket condition, then the
process converges in total variation to a unique invariant probability measure. In
this note, adapting the proof in [12] and using results of [5], the assumption of a
G.A.S. equilibrium is weakened to the existence of an accessible point at which a
barycentric combination of the vector fields vanishes. Some examples are given which
demonstrate the usefulness of this condition.
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1 Introduction

Let E = {1, . . . , N} be a finite set and F = {F i}i∈E a family of smooth globally
integrable vector fields on Rd. For each i ∈ E we let ϕi = {ϕit} denote the flow induced
by F i. We assume throughout that there exists a compact setM ⊂ Rd which is positively
invariant under each ϕi. That is

ϕit(M) ⊂M

for all t ≥ 0. Our assumption that M ⊂ Rd is mostly for convenience. The results of
this note can readily be generalized to the situation where M is a subset of a finite-
dimensional smooth manifold.

Consider a Markov process Z = (Zt)t≥0, Zt = (Xt, It), living onM ×E whose infinites-
imal generator acts on functions g :M × E 7→ R, smooth in the first variable, according
to the formula

Lg(x, i) = 〈F i(x),∇gi(x)〉+
∑
j∈E

aij(x)(g
j(x)− gi(x)), (1.1)

where gi(x) stands for g(x, i) and a(x) = (aij(x))i,j∈E is an irreducible rate matrix
continuous in x. Here, by rate matrix, we mean a matrix having nonnegative off diagonal
entries and zero diagonal entries.
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User-friendly condition ergodicity

In other words, the dynamics of X is given by an ordinary differential equation

dXt

dt
= F It(Xt), (1.2)

while I is a continuous-time jump process taking values in E controlled by X :

P(It+s = j|Ft) = aij(Xt)s+ o(s) for j 6= i on {It = i},

where Ft = σ((Xs, Is) : s ≤ t}.

The process Z belongs to the class of processes called Piecewise Deterministic
Markov Processes (PDMP), introduced by Davis in [10]. Ergodic properties of these
processes have recently been the focus of much attention (e.g., [6], [9],[5], [4], [8], [2]).

Using the terminology in [5], a point x? ∈ M is said to satisfy the weak bracket
condition if the Lie algebra generated by (F i)i∈E at x? has full rank. If such a point is
furthermore accessible (meaning that every neighborhood of x? is reached with positive
probability by Xt), then the process admits a unique invariant probability measure which
is absolutely continuous with respect to the Lebesgue measure on M × E (see e.g [1,
Theorem 1] or [5, Theorem 4.5]). If the weak bracket condition is replaced by the
so-called strong bracket condition (cf. Definition 2.5 below), the process then converges
in total variation (see [5, Theorem 4.6]). Simple examples show that the weak bracket
condition itself is not sufficient to ensure convergence (cf. [1]).

Recently, Li, Liu and Cui showed in [12] that the two following conditions yield
convergence in total variation (see [12, Theorem 9]) :

(i’) There exists a globally asymptotically stable (G.A.S.) equilibrium for one of the
vector fields,

(ii) The weak bracket condition holds at an accessible point.

In this note we replace (i’) by the more general condition

(i) There exists an accessible point e? at which a barycentric combination of the vector
fields vanishes,

and prove exponential convergence in total variation (see Theorem 2.6 and Corollary
2.7). Our proof is inspired by [12] but is simplified using results of [5].

It turns out that when the vector fields are analytic, (i) and (ii) imply the strong
bracket condition at e? (cf. Proposition 2.11). Nonetheless, (i) and (ii) are usually much
easier to verify than the strong bracket condition. This is illustrated by the examples
in Section 3. In the nonanalytic case, neither condition implies the other as shown
in Section 2.2 (see Examples 2.13 and 2.14). All these results are summarized in the
following scheme.
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Strong bracket (i) and (ii)

Exponential ergodicity
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[5, Theorem 4.6] Theorem 2.6

Analytic, Propostion 2.11

/Example 2.13/

2 Definitions and main results

We begin by recalling some general definitions. Let (Pt)t≥0 be a Markov semigroup
on a metric space M.

Definition 2.1. We say that z∗ ∈ M is a Doeblin point if there exists a neighborhood U
of z∗, a nonzero measure ν and positive real numbers t∗, c such that Pt∗(z, ·) ≥ cν(·) for
all z ∈ U .

Definition 2.2. We say that z∗ ∈ M is (Pt)-accessible from B ⊂ M if for every neigh-
borhood U of z∗ and for all z ∈ B, there exists a positive real t such that Pt(z, U) > 0.

In the specific context of PDMPs, the latter definition can be expressed more intu-
itively as follows. For i = (i1, . . . , im) ∈ Em and u = (u1, . . . , um) ∈ Rm+ , we denote by Φi

u

the composite flow : Φi
u = ϕimum

◦ . . .◦ϕi1u1
. For x ∈M and t ≥ 0, we denote by γ+t (x) (resp.

γ+(x)) the set of points that are reachable from x at time t (resp. at any nonnegative
time) with a composite flow:

γ+t (x) = {Φi
v(x), (i,v) ∈ Em ×Rm+ ,m ∈ N, v1 + . . .+ vm = t},

γ+(x) =
⋃
t≥0

γ+t (x).

Definition 2.3. A point x∗ ∈M is {F i}-accessible from B ⊂M if x∗ ∈ ∩x∈Bγ+(x).
From now on, we let (Pt)t≥0 be the semigroup induced by (Zt)t≥0 on M = M × E.

Because of the irreducibility assumption on the rate matrix a(x), Definitions 2.2 and 2.3
coïncide (see e.g. [5, Lemma 3.2], or [4, Lemma 3.1]):

Proposition 2.4. For all j, k ∈ E, the point (x∗, j) ∈ M × E is (Pt)-accessible from
B × {k} ⊂M × E if and only if x∗ is {F i}-accessible from B.

Therefore, in the sequel, we will say that a point x∗ ∈M is accessible from B ⊂M if it
is {F i}-accessible from B. We will simply say that x∗ is accessible if it is {F i}-accessible
fromM . Set F0 = {F i}i∈E , Fk+1 = Fk∪{[F i, V ], V ∈ Fk}, F0 = {F i−F j : i, j = 1, . . .m}
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and Fk+1 = Fk∪{[F i, V ] : V ∈ Fk}. Here [·, ·] stands for the Lie bracket operation, which
is defined as

[V,W ](x) = DW (x)V (x)−DV (x)W (x), x ∈ Rd,

for smooth vector fields V and W on Rd with differentials DV and DW . The following
definition is given in [5].

Definition 2.5. We say that the weak bracket (resp. strong bracket) condition holds
at p ∈ M if the vector space spanned by the vectors {V (p) : V ∈ ∪k≥0Fk} (resp.
{V (p) : V ∈ ∪k≥0Fk}) has full rank.

It is clear from this definition that the strong bracket condition implies the weak one.
Weak bracket and strong bracket conditions are equivalent to Condition B and Condi-
tion A in [1], respectively. The weak bracket condition is closely related to the classical
Hörmander hypoellipticity condition that yields smoothness of transition densities for
diffusions (see e.g. [13]). More background on the weak and strong bracket conditions
with an emphasis on how they relate to controllability is provided in [14].

2.1 Main result

We now state our main result.

Theorem 2.6. Suppose that

(i) There exist α1, . . . , αN ∈ R with
∑
αi = 1 and e? ∈M such that

∑
αiF

i(e?) = 0,

(ii) There exists a point x∗ accessible from {e?} where the weak bracket condition
holds.

Then for all j ∈ E, (e?, j) is a Doeblin point.

Note that we do not impose that the αi are nonnegative. In particular, condition (i)
holds whenever two vector fields at some point are collinear but not equal.

The following corollary is a consequence of standard results (see e.g [5, Theorem
4.6] for a proof).

Corollary 2.7. In addition to the assumptions in Theorem 2.6, suppose that e? is acces-
sible. Then, the process Z admits a unique invariant probability measure π which is
absolutely continuous with respect to Lebesgue measure. Moreover, there exist positive
constants C, γ such that for all t ≥ 0 and for all (x, i) ∈M × E,

‖Pt((x, i), ·)− π‖TV ≤ Ce−γt.

In Section 3, we give more applications in a stochastic persistence context, relying
on recent results in [3]. Theorem 2.6 is a direct consequence of Theorem 4.2 in [5] and
of Proposition 2.9 that we state below. For convenience, we also record a version of
Theorem 4.2 from [5]. Here and throughout, for s > 0 and m ∈ N∗, we set Ds

m = {v ∈
Rm+ : v1 + . . .+ vm ≤ s}.
Theorem 2.8 (Benaïm – Le Borgne – Malrieu – Zitt). Let x be a point of M , (i,u) and
s > u1 + . . . + um such that the map Ψs : Ds

m → Rd, v → ϕ
im+1

s−(v1+...+vm) ◦ Φi
v(x) is a

submersion at u. Then for all j ∈ E, (x, j) is a Doeblin point.

Proposition 2.9. Under conditions (i) and (ii) of Theorem 2.6, there exist s > 0,
im+1 ∈ E, i ∈ Em and u ∈ Rm+ with u1 + . . . + um < s such that the map Ψ : Ds

m → Rd,

v → ϕ
im+1

s−(v1+...+vm) ◦Φ
i
v(e

?) is a submersion at u.

2.2 Links with the strong bracket condition

In [5] and [1], the authors show that the conclusions of Theorems 2.6 and 2.7 hold
when the weak bracket condition is replaced by the strong one. A natural question is
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whether our assumptions already imply that the strong bracket condition holds at some
point. We address this question in Propositions 2.10 and 2.11.

Proposition 2.10. Let e? ∈ M satisfy condition (i) of Theorem 2.6. Suppose further
that the weak bracket condition holds at e?. Then, the strong bracket condition is also
satisfied at e?.

Proof To simplify notation, we set

W (e?) = {V (e?) : V ∈ ∪k≥0Fk}, S(e?) = {V (e?) : V ∈ ∪k≥0Fk}.

We will show that the linear spans of W (e?) and S(e?) are equal to each other, which
then implies the proposition. It is clear that the span of S(e?) is a subspace of the span
of W (e?). Therefore, it suffices to show that W (e?) is contained in the span of S(e?).
Fix a vector field V ∈ ∪k≥0Fk and let j be the smallest nonnegative integer such that
V ∈ Fj . By induction it is not hard to see that for any i ≥ 1, the collection of vector fields
Fi \ Fi−1 is contained in the span of ∪k≥0Fk. Thus, if j ≥ 1, the point V (e?) lies in the
span of S(e?). If j = 0, there is l ∈ E such that V = F l. By condition (i), there are real
numbers (αi)i∈E such that

∑
i∈E αi = 1 and

∑
i∈E αiF

i(e?) = 0. Therefore,

F l(e?) =
∑
i∈E

αiF
l(e?)−

∑
i∈E

αiF
i(e?) =

∑
i∈E

αi(F
l(e?)− F i(e?)).

Since the vector fields (F l − F i)i∈E lie in F0, we have again that V (e?) is in the span of
S(e?). This finishes the proof. QED

Proposition 2.11. Assume that for all i ∈ E, F i is analytic and that the assumptions of
Theorem 2.6 hold. Then e? satisfies the strong bracket condition.

In most applications, the vector fields governing the PDMP are analytic (see also
Section 3). As a consequence, the interest of Theorem 2.6 lies essentially in the fact
that the weak bracket condition is easier to verify than the strong one. The proof of
Proposition 2.11 relies on the following result, due to Sussmann and Jurdjevic [14,
Corollary 4.7].

Theorem 2.12 (Sussmann – Jurdjevic). Assume that the vector fields (F i)i∈E are analytic,
and let x be any point inM . Then, there is t > 0 such that γ+t (x) has nonempty interior
if and only if the strong bracket condition holds at x.

Proof of Proposition 2.11

By Proposition 2.9, there are s > 0, im+1 ∈ E, i ∈ Em and u ∈ Rm+ with u1+. . .+um < s

such that Ψ : v → ϕ
im+1

s−(v1+...+vm) ◦ Φi
v(e

?) is a submersion at u. By the constant-rank

theorem, there exists an open neighborhood U of u such that Ψ(U) is open. Without
loss of generality, we can assume that v1 + . . . + vm < s for all v ∈ U . Then, Ψ(U) is
a nonempty open subset of γ+s (e

?). By Theorem 2.12, e? satisfies the strong bracket
condition. QED

From a more theoretical point of view, we now provide an example in the plane where
conditions (i) and (ii) are satisfied, but, in the absence of analyticity, there is no point
where the strong bracket condition holds.

Example 2.13. We work in polar coordinates (θ, r). On the annulus

M =
{
(θ, r) : 1

2 ≤ r ≤ 2
}
,
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we switch between vector fields F 0(θ, r) = (1, h(r))T and F 1(θ, r) = (f(θ), g(θ) + h(r))T ,
where

h(r) = r(1− r),

and where f and g satisfy the following properties:

1. The functions f and g are C∞ and 2π-periodic on R.
2. We have 0 < f ≤ 1 and 0 ≤ g ≤ 1.
3. We have f(π2 ) =

1
2 and g(0) > 0. Moreover, there is ε ∈ (0, π4 ) such that f(θ) = 1 for

|θ − π
2 | > ε and g(θ) = 0 for |θ| > ε.

It is easy to see that such functions f and g exist and that they cannot be analytic. Also
note thatM is positively invariant under the flows associated with F 0 and F 1 because
h( 12 ) > 0 and g(θ) + h(2) < 0 for all θ. Since M is compact and since f , g and h are
smooth functions, the vector fields F 0 and F 1 are globally integrable.

The point e? = (π2 , 1)
T is an equilibrium point of the vector field 2F 1−F 0, so condition

(i) is satisfied. Since h(r) > 0 for r ∈ (0, 1) and h(r) < 0 for r > 1, the unit circle is a
global attractor of F 0. Thus, any point on the unit circle, in particular the point e?, is
accessible from any starting point inM . The weak bracket condition holds at the point
(0, 1)T because F 0(0, 1) = (1, 0)T and F 1(0, 1) = (1, g(0))T generate the entire tangent
space at (0, 1)T . As (0, 1)T lies on the unit circle, it is accessible from e?.

It remains to show that the strong bracket condition is nowhere satisfied. We have

[F 0, F 1](θ, r) = (f ′(θ), g′(θ)− h′(r)g(θ))T

and
F 1(θ, r)− F 0(θ, r) = (f(θ)− 1, g(θ))T .

If |θ − π
2 | > ε, both [F 0, F 1](θ, r) and (F 1 − F 0)(θ, r) have θ-coordinate 0. And if |θ| > ε,

the r-coordinate of [F 0, F 1] and F 1 − F 0 vanishes. Now, let k(θ, r) be a smooth function
and let Ki(θ, r) = k(θ, r)(1− i, i)T for i ∈ {0, 1}. Then,

[F 0,K1](θ, r) =(0, ∗)T , [F 0,K0](θ, r) =(∗, 0)T ,
[F 1,K1](θ, r) =(0, ∗)T , [F 1,K0](θ, r) =(∗,−g′(θ)k(θ, r))T ,

and g′(θ)k(θ, r) = 0 for |θ| > ε. Here, ∗ stands for some term, possibly depending on θ
and r, that may differ from equation to equation. This shows that for any (θ, r) ∈ M ,
V (θ, r) lies in the linear span of (1, 0)T for all V ∈ ∪k≥0Fk, or V (θ, r) lies in the linear
span of (0, 1)T for all V ∈ ∪k≥0Fk. It follows that the strong bracket condition doesn’t
hold at any point (θ, r) ∈M .

In the previous example, the origin had to be excluded fromM in order to ensure that
the unit circle is globally accessible. It could be interesting to determine whether there
are PDMPs for which conditions (i) and (ii) are satisfied, the strong bracket condition
nowhere holds, andM is simply connected.

As illustrated by the following example, the strong bracket condition does not imply
condition (i), not even if the vector fields are analytic.

Example 2.14. On the two-dimensional torusT2 = R2/Z2, we switch between F 0(x, y) =

(1, 0)T and F 1(x, y) = (0, 1 + ε sin(2πx))T , where ε > 0 is small. Any point in T2 can then
be reached from any starting point. For α ∈ R, we have

αF 0(x, y) + (1− α)F 1(x, y) = (α, (1− α)(1 + ε sin(2πx)))T ,

which is never zero. However,

[F 0, F 1](x, y) = (0,−ε2π cos(2πx))T ,

so the vectors [F 0, F 1](0, 0) and F 0(0, 0)− F 1(0, 0) = (1,−1)T span the tangent space at
(0, 0), and the strong bracket condition is satisfied.
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3 Applications

In this section, we give some applications of Theorem 2.6 in the context of population
models with an extinction set. For a general framework on Markov models with an
extinction set, the reader is referred to [3]. Here we only give the results we will use in
the specific context of PDMP on a compact set (see e.g [7] or [8]).

3.1 Stochastic persistence

In this section, we assume that there exists a closed subsetM0 ofM which is invariant
for the process : Xt ∈ M0 if and only if X0 ∈ M0. The set M0 will be referred to as
the extinction set. We setM+ =M \M0 and denote by D (resp. D2) the domain of the
generator L defined in (1.1) (resp. the set of functions in the domain such that f2 is also
in D). We also let Γ denote the carré du champ operator on D2 : Γf = Lf2− 2fLf , which
acts on functions f ∈ D2 as

Γf =
∑
j∈E

aij(x)
(
f j(x)− f i(x)

)2
.

Definition 3.1. We say that the process Z is persistent if there exist continuous functions
V :M+ × E → R+ and H :M × E → R such that

1. limx→M0
V (x, i) = +∞,

2. For any compact set K ⊂M+ ×E, there exists VK ∈ D2 such that V |K = VK |K and
(LVK)|K = H|K ,

3. There exists ∆ > 0 such that for all t > 0, |V (Zt)− V (Zt−)| ≤ ∆,

4. There exists C > 0 such that for any compact set K ⊂M+, ‖Γ(VK)|K‖∞ ≤ C,

5. For any ergodic probability measure µ of Z supported onM0 × E, one has µH < 0.

The following theorem is an immediate consequence of [3, Theorem 4.10] and Theo-
rem 2.6.

Theorem 3.2. Assume that conditions (i) and (ii) hold, that Z is persistent and that
e? is accessible fromM+. Then Z admits a unique invariant probability measure Π on
M+ × E and there exist θ, C, γ > 0 such that for all t ≥ 0 and for all (x, i) ∈M+ × E,

‖Pt((x, i), ·)−Π‖TV ≤ C
(
1 + eθV (x,i)

)
e−γt.

3.2 Lotka-Volterra in random environment

In this section, we consider the competitive Lotka-Volterra model in a fluctuating
environment studied in [7] and show how our method can be used to improve one of
their results. More precisely, for i ∈ {0, 1}, let F i be defined as

F i(x, y) =

(
αix(1− aix− biy)

βiy(1− cix− diy)

)
, (3.1)

with αi, βi, ai, bi, ci, di > 0. For η > 0 small enough, the flows ϕit leave positively invariant
the compact set M = {(x, y) ∈ R2

+ : η ≤ x+ y ≤ 1/η}, and the extinction set M0 is the
union of M1

0 = {(x, y) ∈ M : x = 0} and M2
0 = {(x, y) ∈ M : y = 0}. It is shown in [7]

that the long-term behavior of the process (Zt)t≥0 = (Xt, Yt, It)t≥0 is determined by the
sign of the invasion rates :

Λy =

∫
βi(1− cix)dµ(x, i),
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and

Λx =

∫
αi(1− biy)dµ̂(y, i),

where µ and µ̂ are the unique invariant probability measures of the process Z restricted
toM2

0 andM1
0 , respectively. It is not hard to construct functions V :M+ × E → R and

H : M × E → R+ satisfying assumptions 1. to 4. of Definition 3.1, such that V (x, y, i)

coïncides with − log(x) in a neighborhood ofM1
0 and with − log(y) in a neighborhood of

M2
0 , and such that H(x, y, i) coïncides with αi(1− aix− biy) in a neighbourhood ofM1

0

and with βi(1− cix− diy) in a neighborhood ofM2
0 (see e.g [3, Section 5] or [8, Section

5]). Then, one can check that Λx = −µ̂H and Λy = −µH, so that Z is persistent if and
only if Λx > 0 and Λy > 0.

It is shown in [7] that if Λx > 0 and Λy > 0, then the process admits a unique invariant
probability measure Π inM+ ×E. But to show the convergence in total variation of the
law of Zt toward Π, the authors needed to check that the strong bracket condition is
satisfied at some accessible point. They proved, except in the particular case where
β0α1

α0β1
= a0c1

c0a1
= b0d1

d0b1
, that this condition holds by using a formal calculus program. Thanks

to Theorem 3.2, we withdraw this condition, and give an easier proof for the convergence
in total variation.

In [7], of particular importance is the study of the averaged vector fields F s :=

sF 1+(1−s)F 0, for s ∈ [0, 1]. The vector field F s is still a competitive Lotka-Volterra system
of the form (3.1), with coefficients αs, βs, as, bs, cs, ds that are barycentric combinations
of the coefficients appearing in F 0 and F 1. The dynamics of the deterministic system
generated by F s depends on the position of s with respect to the two following (possibly
empty) intervals:

I = {s ∈ (0, 1) : as > cs}

and
J = {s ∈ (0, 1) : bs > ds}.

There are four regions of interest :

• s ∈ (I)c ∩ (J)c : the equilibrium (1/as, 0) is a global attractor for solutions with
x0 6= 0;

• s ∈ I ∩ J : the equilibrium (0, 1/bs) is a global attractor for solutions with y0 6= 0;

• s ∈ I ∩ (J)c : F s admits a unique G.A.S. equilibrium es ∈M+;

• s ∈ (I)c ∩ J : F s admits a unique equilibrium es ∈ M+, which is a saddle whose
stable manifold separates the basins of attraction of (1/as, 0) and (0, 1/bs).

Here, (I)c and (J)c stand for the complement of the closure of I and J , respectively. The
following proposition is a consequence of [7, Proposition 2.3 and Theorem 4.1].

Proposition 3.3. Assume Λy > 0. Then I 6= ∅ and there exists a point m accessible from
M+ such that the weak bracket condition holds at m.

From this proposition, we can derive the next lemma:

Lemma 3.4. Assume Λy > 0. Then there exists s ∈ [0, 1] such that F s admits an
equilibrium es ∈M+ which is accessible fromM+. In particular, condition (i) holds.

This lemma combined with Proposition 3.3 and Theorem 3.2 implies the following
corollary, which slightly improve [7, Theorem 4.1 - (iv)]

Corollary 3.5. Assume Λy > 0 and Λx > 0. Then there exist C, γ, θ > 0 such that for all
t ≥ 0 and for all (x, y, i) ∈M+ × E,

‖Pt((x, i), ·)− π‖TV ≤ C

(
1 +

1

‖x‖θ
+

1

‖y‖θ

)
e−γt.
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Proof of Lemma 3.4 Since Λy > 0, I is nonempty by Proposition 3.3. Then we
have three cases: either I ∩ Jc is nonempty, or I is a strict subset of J or I = J . We
prove the lemma in these three cases. Assume first that I ∩ Jc 6= ∅ and take s ∈ I ∩ Jc.
Then F s admits a G.A.S. equilibrium es ∈ M+, in particular it is accessible. Assume
now that I is a strict subset of J . In particular, Ic ∩ J and I ∩ J are nonempty. Pick
s ∈ Ic ∩ J , then F s admits a unique equilibrium es ∈M+, which is a saddle whose stable
manifold Ws separates the basins of attraction of (1/as, 0) and (0, 1/bs). We show that es
is accessible. Choose a point (x, y) ∈M+. Then, if (x, y) is above Ws, follow the flow ϕ0.
As the resulting trajectory converges to (1/a0, 0), it needs to cross Ws. If (x, y) is below
Ws, one can find a trajectory leading to (0, 1/bu) for some u ∈ I ∩ J . In particular, this
trajectory also crossesWs. As es is also accessible from every point inWs, it is accessible
from everywhere inM+. Finally, assume that I = J = (s1, s2). Then the vector field F s1

is of the form

F s1(x, y) =

(
αx(1− ax− by)

βy(1− ax− by)

)
,

with a = as1 = cs1 and b = bs1 = ds1 . In particular, the line y = 1/b(1− ax) is composed
of equilibria of F s1 . Moreover, (1/a0, 0) and (1/a1, 0) lie on opposite sides of this line.
Now we know by Proposition 3.3 that there exists an accessible point m ∈M+. Hence,
depending on the position of m with respect to the line y = 1/b(1 − ax), follow either
ϕ0 or ϕ1 in order to cross the line when starting at m. Then the point where the line is
crossed is accessible from m and therefore fromM+. QED

3.3 Epidemiological models : SIS in dimension 2

In this section we discuss an application of Theorem 3.2 to an SIS model with two
groups and two environments, as studied in [8, Section 4]. We look at random switching
between differential equations on [0, 1]2 having the form

dxi
dt

= (1− xi)(

d∑
j=1

Ckijxj)−Dk
i xi , i = 1, 2, (3.2)

where for k ∈ E = {0, 1}, Ck = (Ckij) is an irreducible matrix with nonnegative entries
and Dk

i > 0. Let Ak = Ck − diag(Dk) and let λ(Ak) denote the largest real part of the
eigenvalues of Ak. Then, we have the following result due to Lajmanovich and Yorke.

Theorem 3.6 (Lajmanovich and Yorke, [11]). If λ(Ak) ≤ 0, 0 is a G.A.S equilibrium for
the semiflow induced by (3.2) on [0, 1]2. If λ(Ak) > 0, there exists another equilibrium
x∗k ∈ (0, 1)2 whose basin of attraction is [0, 1]2 \ {0}.
Lemma 3.7. Assume that

1. λ(A0) < 0 and λ(A1) < 0,

2. There exists s ∈ (0, 1) such that λ(As) > 0, where As = sA1 + (1− s)A0.

Then conditions (i) and (ii) are satisfied.

An example where the assumptions of this lemma hold can be found in [8, Example
4.7]. If the assumptions of Lemma 3.7 hold, Corollary 2.14 and Section 5 in [8] imply
that Z is persistent provided the switching occurs sufficiently often. In that case, we
get by Theorem 3.2 the convergence in total variation to a unique invariant probability
measure. Compare this to [8, Theorem 4.11], which only gives convergence in a certain
Wasserstein distance. Note that the conclusion of Lemma 3.7 is no longer true in general
if λ(A0) > 0 and λ(A1) > 0. An easy counterexample is when the two equilibria x∗0, x

∗
1
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given by Theorem 3.6 coïncide (see e.g. [8, Example 4.10]). In that case, condition (i) is
satisfied but condition (ii) obviously is not.

Proof of Lemma 3.7 For k ∈ E, we let F k denote the vector field given by
the right hand side of (3.2). It is readily seen that for s ∈ (0, 1), the vector field
F s = sF 1 +(1− s)F 0 is of the same form as F 0 and F 1, with matrix Cs = sC1 +(1− s)C0

and vector Ds = sD1+(1−s)D0. As a consequence, since there exists s ∈ (0, 1) such that
λ(As) > 0, Theorem 3.6 implies that condition (i) is satisfied at some point x∗s ∈ (0, 1)2,
and we even have F s(x∗s) = 0. Moreover, since λ(A0) < 0 and λ(A1) < 0, the first part of
Theorem 3.6 implies that neither F 0 nor F 1 can vanish at x∗s. In particular, F 0(x∗s) and
F 1(x∗s) are collinear and of opposite direction. For k ∈ {0, 1} let γk(x∗s) denote the posi-
tive orbit of x∗s under F

k. Due to the first part of Theorem 3.6, γ0(x∗s) is a curve linking
x∗s and 0. To obtain a contradiction, assume that condition (ii) is not satisfied. Then F 0

and F 1 are collinear and of opposite direction on γ0(x∗s). We have for all x ∈ γ0(x∗s) that
x∗s ∈ γ1(x), meaning that for all ε > 0, one can find x with ‖x‖ < ε and t > 0 such that
‖ϕ1

t (x)‖ = ‖x∗s‖. This is in contradiction with the fact that 0 is a G.A.S equilibrium for F 1,
hence condition (ii) holds as well. QED

4 Proof of Proposition 2.9

To prove Proposition 2.9, we will use [5, Theorem 4.1] that we quote here.

Theorem 4.1 (Benaïm – Le Borgne – Malrieu – Zitt). Let x be a point of M at which
the weak bracket condition holds. Then, there exists m ≥ d, i = (i1, . . . , im) ∈ Em and
u = (u1, . . . , um) ∈ Rm+ such that the map v → Φi

v(x) is a submersion at u.

The following proposition is the key point of the proof :

Proposition 4.2. Under the hypothesis of Theorem 2.6, there exist s > 0, i ∈ E,
i = (i1, . . . , in) ∈ En and u = (u1, . . . , un) ∈ Rn+ with s > u1 + . . .+ un such that the map
Ψ : Ds

n+1 → Rd, (v, t) → ϕis−
∑
vi−t ◦Φ

i
v(e

?) is a submersion at (u, 0).

This proposition remains valid if we replace e? by any point inM from which one can
access a point x∗ where the weak bracket condition holds. In particular, it is independent
of our assumption that e? is an equilibrium of a vector field of the form

∑
αiF

i. The
proposition is a consequence of the two lemmas we give now.

Lemma 4.3. Suppose that there exists a point x∗ accessible from e? such that the
weak bracket condition holds at x∗. Then there exists (̄i, ū) such that the weak bracket
condition holds at Φī

ū(e
?).

Proof By Proposition 2.4, x∗ is accessible from e? if and only if x∗ ∈ γ+(e?). By
continuity of the determinant and regularity of the vector fields, the weak bracket
condition is an open condition. Thus if it holds at a point of γ+(e?), it also holds at a
point in γ+(e?), hence the result. QED

Thanks to this lemma, we assume from now on that there exist ī = (̄i1, . . . , īp) and
ū = (ū1, . . . , ūp) such that x∗ = Φī

ū(e
?). Since x∗ satisfies the weak bracket condition,

Theorem 4.1 implies that there existsm ≥ d, i = (i1, . . . , im) ∈ Em and u = (u1, . . . , um) ∈
Rm+ such that the map ψ : v → Φi

v(x
∗) is a submersion at u. We denote i− = (i1, . . . , im−1)

and v− = (v1, . . . , vm−1), and for all s > 0, we define the map Ψs : Ds
m+p → Rd by

Ψs : (v−, v̄, t) → ϕims−(v1+...+vm−1+v̄1+...+v̄p+t)
◦ Φi−

v−
◦Φī

v̄(e
?).
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We also let σt(v−,v̄)
= v1 + . . .+ vm−1 + v̄1 + . . .+ v̄p + t. Note that in particular,

Ψs(v−, ū, t) = ϕim
s−σt

(v−,ū)

◦ Φi−
v−

(x∗) = ψ(v−, s− σt(v−,ū)
)

for all (v−, ū, t) ∈ Ds. With this property, the next lemma is straightforward :

Lemma 4.4. For all k ∈ {1, . . . ,m− 1}, for all (v−, ū, t) ∈ Ds
m+p, one has

∂Ψs

∂vk
(v−, ū, t) = − ∂ψ

∂vm
(v−, s− σt(v−,ū)

) +
∂ψ

∂vk
(v−, s− σt(v−,ū)

),

and
∂Ψs

∂t
(v−, ū, t) = − ∂ψ

∂vm
(v−, s− σt(v−,ū)

).

In particular, setting s = u1 + . . .+ um + ū1 + . . .+ ūp and t = 0, one gets

∂Ψs

∂vk
(u−, ū, 0) = − ∂ψ

∂vm
(u) +

∂ψ

∂vk
(u), (4.1)

and
∂Ψs

∂t
(u−, ū, 0) = − ∂ψ

∂vm
(u). (4.2)

Proof of Proposition 4.2
For s = u1 + . . .+ um + ū1 + . . .+ ūp, equalities (4.1) and (4.2) proves that the rank of

the family of vectors (∂Ψ
s

∂v1
(u−, ū, 0), . . . ,

∂Ψs

∂vm−1
(u−, ū, 0),

∂Ψs

∂t (u−, ū, 0)) is the same as the

family of vectors ( ∂ψ∂vk (u), 1 ≤ k ≤ m). But since ψ is a submersion at u, this rank is d,
showing that Ψs is also a submersion at point (u−, ū, 0). QED

We can now pass to the main part of the proof of Proposition 2.9.

Proof of Proposition 2.9
We first construct a function Ψ̄ and then verify that it is indeed a submersion. By

Proposition 4.2, there exist s > 0, i = (i1, . . . , in, in+1) ∈ En+1 and u = (u1, . . . , un) ∈ Rn+
such that the map Ψ : (v, t) → ϕ

in+1

s−
∑
vi−t ◦Φ

i
v(e

?) is a submersion at (u, 0). In the sequel,

we denote by Ψ(v, t) the map given by Ψ(v, t)(x) = ϕ
in+1

s−
∑
vi−t ◦Φ

i
v(x). We define the map

Ψ on Ds
n+N with values in Rd by

Ψ(v, v̄) → ϕ
in+1

s−
∑
vi−

∑
v̄i
◦Φi

v ◦Φī
v̄(e

?),

where ī = (1, 2, . . . , N). Then with the previous notation, Ψ(v, v̄) = Ψ(v,
∑
v̄i) ◦Φī

v̄(e
?).

Now, we show that the map Ψ is a submersion at (u, 0) — here, 0 denotes the zero vector
in RN . For all 1 ≤ k ≤ n,

∂Ψ

∂vk
(v, v̄) =

∂Ψ

∂vk
(v,

∑
v̄i) ◦Φī

v̄(e
?), (4.3)

and for all 1 ≤ k ≤ N ,

∂Ψ

∂v̄k
(v, v̄) =

∂Ψ

∂t
(v,

∑
v̄i) ◦Φī

v̄(e
?) +DΨ(v,

∑
v̄i)(Φ

ī
v̄(e

?))
∂Φī

v̄

∂v̄k
(e?). (4.4)

Now, since each ϕiv is the identity at v = 0 and ∂vϕiv(x) = F i(ϕiv(x)), one can easily show
that

∂Φī
v̄

∂v̄k
(e?)

∣∣∣∣∣
v̄=0

= F k(e?). (4.5)
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In particular, since Φī
v̄(e

?) = e? when v̄ = 0,

∂Ψ

∂v̄k
(v, 0) =

∂Ψ

∂t
(v, 0)(e?) +DΨ(v,

∑
v̄i)(e

?)F k(e?),

which, due to condition (i) implies that

N∑
k=1

αk
∂Ψ

∂v̄k
(v, 0) =

∂Ψ

∂t
(v, 0)(e?). (4.6)

Thus, (4.3) and (4.6) evaluated at v = u and v̄ = 0 yield

rank

(
∂Ψ

∂vk
(u, 0),

∂Ψ

∂v̄k
(u, 0)

)
≥ rank

(
∂Ψ

∂vk
(u, 0),

∂Ψ

∂t
(u, 0)

)
= d,

where the last equality is due to Proposition 4.2. This finishes the proof. QED
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