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Abstract

We consider the random walk on the hypercube which moves by picking an ordered
pair (i, j) of distinct coordinates uniformly at random and adding the bit at location i

to the bit at location j, modulo 2. We show that this Markov chain has cutoff at time
3
2
n logn with window of size n, solving a question posed by Chung and Graham (1997).
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1 Introduction

Setting and main result

Let X = {0, 1}n\{0} and consider the Markov chain {Zt}t≥0 on X defined as follows:
if the current state is x and if x(i) denotes the bit at the ith coordinate of x, then the walk
proceeds by choosing uniformly at random an ordered pair (i, j) of distinct coordinates,
and replacing x(j) by x(j) + x(i) (mod 2).

The transition matrix P of this chain is symmetric, irreducible and aperiodic. Its
stationary distribution π is the uniform distribution over X , i.e. for all x ∈ X , π(x) = 1

2n−1 .
We are interested in the total-variation mixing time, defined as

tmix(ε) = min {t ≥ 0, d(t) ≤ ε} ,

where d(t) = max
x∈X

dx(t) and dx(t) is the total-variation distance between P t(x, ·) and π:

dx(t) = sup
A⊂X

(
π(A)− P t(x,A)

)
=
∑
y∈X

(
P t(x, y)− π(y)

)
+
.

Diaconis and Saloff-Coste [4] showed that the log-Sobolev constant of {Zt}t≥0 is
O(n2), which yields an upper-bound of order n2 log n on the `2-mixing time. They however
conjectured that the right order for the total-variation mixing was n log n. Chung and
Graham [3] confirmed this conjecture. They showed that the relaxation time of {Zt}
was of order n (which yields a tight upper-bound of order n2 for `2-mixing) and that the
total-variation mixing time tmix(ε) was smaller than cεn log n for some constant cε. They
asked whether one could make this bound more precise and replace cε by a universal
constant which would not depend on ε. We answer this question positively by proving
that the chain {Zt} has cutoff at time 3

2n log n, with window of order n.
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Cutoff for a stratified random walk on the hypercube

Theorem 1.1. The chain {Zt} has total-variation cutoff at time 3
2n log n with window n,

lim
α→+∞

lim inf
n→+∞

d

(
3

2
n log n− αn

)
= 1 ,

and

lim
α→+∞

lim sup
n→+∞

d

(
3

2
n log n+ αn

)
= 0 .

Motivation and related work

The chain {Zt} records the evolution of a single column in the following random
walk on SLn(Z2), the group of invertible n× n matrices with coefficients in Z2: at each
step, the walk moves by picking an ordered pair of distinct rows uniformly at random
and adding the first one to the other, modulo 2. This matrix random walk has received
significant attention, both from group theoreticians and cryptologists. It was brought to
our attention by Ron Rivest, who was mostly interested in computational mixing aspects,
pertaining to authentication protocols. In cryptography, an authentication protocol is a
scheme involving two parties, a verifier and a prover, the goal of the verifier being to
certify the identity of the prover (i.e. to distinguish between an honest and a dishonest
prover). A large family of authentication protocols, called time-based authentication
protocols, is based on the time needed by the prover to answer a challenge. The
authentication is successful if and only if the correct answer is provided fast enough.
The following protocol was proposed by Sotiraki [7]. Starting from the identity matrix
in SLn(Z2), the prover runs the above Markov chain driven by random row additions
up to a certain time t ∈ N. He makes the final matrix At public (this is called a public
key), but only he knows the trajectory of the Markov chain. Then, whenever he wants to
authenticate, the prover asks the verifier for a vector x ∈ {0, 1}n. The challenge is to
quickly compute y = Atx. As the prover knows the chain’s trajectory, he can apply to x

the same row operations he has performed to create At and provide the correct answer
in time t. On the other hand, if t is large enough, a dishonest party may not be able to
distinguish, in polynomial time, At from a uniformly randomly chosen matrix (we say
that the chain is computationally mixed), and its best solution would be to perform usual
matrix-vector multiplication, which typically takes about n2 operations. Hence, if the
prover chooses t as the computational mixing time and if this time is shown to be much
smaller than n2, the verifier will be able to distinguish honest provers from dishonest
parties.

Now, it is reasonable to assume that if each column is mixed by time t, then the
matrix At is computationally mixed and no dishonest party would be able to distinguish
At from uniform (in polynomial time) and thus to answer the challenge in less than n2

units of time, hereby motivating the study of the chain {Zt}.
The question of determining the total-variation mixing time of the matrix walk is still

largely open. Diaconis and Saloff-Coste [4] showed that the `2-mixing time was O(n4),
and the powerful results of Kassabov [5] yield the upper-bound O(n3), which is also the
best known upper-bound in for total-variation mixing. By a simple counting argument,

the total-variation mixing time can be lower bounded by Ω
(

n2

logn

)
(which is actually an

estimate of the diameter of the underlying graph, see Andrén et al. [1], Christofides [2]).

Outline of the paper

Before proving Theorem 1.1, we first state some useful properties of the birth-and-
death chain given by the Hamming weight of Zt. In particular, we show that this
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Cutoff for a stratified random walk on the hypercube

projected chain also has cutoff at 3
2n log n (Section 2). Section 3 is then devoted to the

proof of Theorem 1.1.

2 The Hamming weight

For a vertex x ∈ X , we denote by H(x) the Hamming weight of x, i.e.

H(x) =

n∑
i=1

x(i) .

Consider the birth-and-death chain Ht := H(Zt), and denote by PH , πH , and dH(·) its
transition matrix, stationary distribution, and total-variation distance to equilibrium. For
1 ≤ k ≤ n, we have

PH(k, k + 1) =
k(n− k)

n(n− 1)
,

PH(k, k − 1) =
k(k − 1)

n(n− 1)
,

PH(k, k) =
n− k

n
,

and

πH(k) =

(
n
k

)
2n − 1

.

The hitting time of state k is defined as

Tk = min {t ≥ 0, Ht = k} .

One standard result in birth-and-death chains is that, for 2 ≤ ` ≤ n,

E`−1(T`) =
1

PH(`, `− 1)

`−1∑
i=1

πH(i)

πH(`)
, (2.1)

(see for instance [6, Section 2.5]). The following lemma will be useful.

Lemma 2.1. Let 0 < β < 1 and K = (1 − β)n2 . Then there exist constants aβ , bβ ∈ R
depending on β only such that

E1(TK) ≤ n log n+ aβn ,

and

Var1TK ≤ bβn
2 .

Proof of Lemma 2.1. For 2 ≤ k ≤ K, let µk = Ek−1Tk and vk = Vark−1(Tk). Resorting to
(2.1), we have

µk =

(
n

k−1

)(
n−2
k−2

) k−1∑
i=1

(
n
i

)(
n

k−1

) ≤
(

n
k−1

)(
n−2
k−2

) k−1∑
i=1

(
k − 1

n− k + 2

)k−i−1

≤ n2

k(n− 2k)
(2.2)

Summing from 2 to K yields the desired bound on E1TK . Moving on to the variance, by
independence of the successive hitting times, we have

Var1TK =

K−1∑
k=1

vk+1 .

ECP 23 (2018), paper 32.
Page 3/10

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP132
http://www.imstat.org/ecp/


Cutoff for a stratified random walk on the hypercube

Hence, it is sufficient to show that there exists a constant cβ > 0 such that vk+1 ≤ cβn
2

k2

for all k ≤ K. To do so, we consider the following distributional identity for the hitting
time Tk+1 starting from k:

Tk+1 = 1 + (1− I)T̃k+1 + IJ(T̂k + T̂k+1) ,

where I is the indicator that the chain moves (i.e. that a one is picked as updating
coordinate), J is the indicator that the chain decreases given that it moves (i.e. that
the chosen one is added to another one), T̃k+1 and T̂k+1 are copies of Tk+1, and T̂k is
the hitting time of k starting from k − 1. All those variables may be assumed to be
independent. We obtain the following induction relation:

vk+1 =
k − 1

n− 1
(vk + vk+1) +

(
1− k

n

)
µ2
k+1 +

k − 1

n− 1

(
1− k(k − 1)

n(n− 1)

)
(µk + µk+1)

2

≤ k

n
(vk + vk+1) + µ2

k+1 +
k

n
(µk + µk+1)

2 .

Using the fact that for all k ≤ K, we have µk ≤ n
βk (which can be seen by inequality

(2.2)), and after some simplification,

vk+1 ≤ k

n− k
vk +

3n3

β2k2(n− k)
≤ k

n− k
vk +

6n2

β2k2
·

By induction and using that v2 ≤ n2, we obtain that vk+1 ≤ cβn
2

k2 for all k ≤ K.

The following proposition establishes cutoff for the chain {Ht} and will be used in
the next section to prove cutoff for the chain {Zt}.
Proposition 2.2. The chain Ht exhibits cutoff at time 3

2n log n with window n.

Proof. For the lower bound, we want to show that for t = 3
2n log n− 2αn

dH(t) ≥ 1− ε(α) ,

where ε(α) → 0 as α → +∞. Consider the chain started at H0 = 1 and let k = n
2 − α

√
n

and A = {k, k + 1, . . . , n}. By definition of total-variation distance,

dH(t) ≥ πH(A)− P t
H(1, A) ≥ πH(A)− P1(Tk ≤ t) .

By the Central Limit Theorem, lim
α→∞

lim
n→∞

πH(A) = 1. Moving on to P1(Tk ≤ t), let us

write

P1(Tk ≤ t) = P1

(
Tn/3 ≤ n log n− αn

)
+ Pn/3

(
Tk ≤ n log n

2
− αn

)
.

Note that Tn/3 is stochastically larger than
∑n/3

i=1 Gi, where (Gi)
n/3
i=1 are independent

Geometric random variables with respective parameter i/n (this is because at each step,
we need at least to pick a one to just move from the current position). By Chebyshev’s
Inequality,

P1

(
Tn/3 ≤ n log n− αn

)
= O

(
1

α2

)
.

Now, starting from Hamming weight n/3 and up to time Tk, we may couple Ht with H̃t,
the Hamming weight of the standard lazy random walk on the hypercube (at each step,
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pick a coordinate uniformly at random and randomize the bit at this coordinate), in such
a way Tk ≥ Sk, where Sk = inf{t ≥ 0, H̃t = k}. It is known that Sk satisfies

Pn/3

(
Sk ≤ n log n

2
− αn

)
≤ ε(α) ,

with ε(α) → 0 as α → +∞ (see for instance the proof of [6, Proposition 7.13]), which
concludes the proof of the lower bound.

For the upper bound, letting t = 3
2n log n+ 2αn, we have

dH(t) ≤ P1

(
Tn/3 > n log n+ αn

)
+ max

k≥n/3
d
(k)
H

(
n log n

2
+ αn

)
. (2.3)

Lemma 2.1 entails that Tn/3 concentrates well: E1(Tn/3) = n log n+ cn for some absolute
constant c, and Var1(Tn/3) = O(n2). By Chebyshev’s Inequality,

P1

(
Tn/3 > n log n+ αn

)
= O

(
1

α2

)
. (2.4)

To control the second term in the right-hand side of (2.3), we use the coupling
method (see Levin et al. [6, Corollary 5.3]). For all starting point k ≥ n/3, we consider
the following coupling between a chain Ht started at k and a chain Hπ

t started from
stationarity: at each step t, if Ht makes an actual move (a one is picked as updating bit
in the underlying chain Zt), we try “as much as possible” not to move Hπ

t (picking a zero
as updating bit). Conversely, when Ht does not move, we try “as much as possible” to
move Hπ

t , the goal being to increase the chance that the two chains do not cross each
other (by moving at the same time). The chains stay together once they have met for the
first time. We claim that the study of the coupling time can be reduced to the study of
the first time when the chain started at n/3 reaches n/2. Indeed, when both chains have
reached n/2, either they have met, or they have crossed each other. In this last situation,
we know however that the expected time of their first return to n/2 is O(

√
n), so that

Pn/2

(
T+
n/2 >

√
αn
)
= O(1/

√
α). Moreover, thanks to our coupling, during each of those

excursions, the chains have positive probability to meet, so that after an additional time
of order α

√
n we can guarantee that they have met with large probability. Moreover,

as πH([2n/3, n]) = o(1), with high probability, Hπ
0 ≤ 2n/3, and as starting from a larger

Hamming weight can only speed up the chain, P2n/3(Tn/2 > t) ≤ Pn/3(Tn/2 > t). We are

thus left to prove that Pn/3

(
Tn/2 > n logn

2 + αn
)
≤ ε(α), for a function ε tending to 0 at

+∞.
Starting from H0 = n/3, we first argue that Ht will remain above 2n/7 for a very long

time. Namely, defining Gt =
{
T2n/7 > t

}
, we have

Pn/3 (Gn2) = 1− o(1) . (2.5)

This can easily be seen by considering T+
k = min{t ≥ 1, Ht = k} and taking a union

bound over the excursions around k = n/3 which visit m = 2n/7:

Pk(Tm ≤ n2) ≤ n2Pk(Tm ≤ T+
k ) ,

and

Pk(Tm ≤ T+
k ) =

Ek(T
+
k )

Em(Tk) + Ek(Tm)
≤
Ek(T

+
k )

Em(T+
m)

=
πH(m)

πH(k)
,

which decreases exponentially fast in n.
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Our goal now will be to analyse the tail of τ = inf{t ≥ 0, Dt ≤ 0}, where

Dt =
n

2
−Ht .

Observe that

Dt+1 −Dt =


1 with probability Ht(Ht−1)

n(n−1)

−1 with probability Ht(n−Ht)
n(n−1)

0 otherwise.

(2.6)

We get

E
[
Dt+1 −Dt

∣∣Dt

]
= −

2
(
n
2 −Dt

)
(Dt + 1)

n(n− 1)
≤ −Dt

n
+

2D2
t

n(n− 1)
· (2.7)

Writing a similar recursion for the second moment of Dt gives

E
[
D2

t+1 −D2
t

∣∣Dt

]
= −4HtDt(Dt + 1/2)

n(n− 1)
+

Ht

n
≤ −4HtD

2
t

n2
+ 2 .

On the event Gt,

E
[
D2

t+1 −D2
t

∣∣Dt

]
≤ −8D2

t

7n
+ 2 .

By induction, letting Dt = 1Gt
Dt (and noticing that Gt+1 ⊂ Gt), we get

E
[
D2

t

]
≤ E[D2

0]

(
1− 8

7n

)t

+
7n

4
≤ n2

4
e−8t/7n + 2n .

Plugging this back in (2.7),

E [Dt+1] ≤
(
1− 1

n

)
E [Dt] + e−8t/7n + 4/n ,

and by induction,

E [Dt] ≤ an e−t/n + b , (2.8)

for absolute constants a, b ≥ 0. Also, letting τ? = inf{t ≥ 0, Dt = 0}, we see by (2.6) that,
provided τ? > t, the process {Dt} is at least as likely to move downwards than to move
upwards and that there exists a constant σ2 > 0 such that Var

(
Dt+1

∣∣Dt

)
≥ σ2 (this is

because, on Gt the probability to make a move at time t in larger than some positive
absolute constant). By Levin et al. [6, Proposition 17.20], we know that for all u > 0 and
k ≥ 0,

Pk(τ? > u) ≤ 4k

σ
√
u
. (2.9)

Now take H0 = n/3, D0 = n/6, s = 1
2n log n and u = αn. We have

PD0
(τ > s+ u) ≤ PD0

(τ? > s+ u) + PH0
(Gc

n2) .

By equation (2.5), PH0

(
Gc
n2

)
= o(1), and, combining (2.9) and (2.8), we have

PD0 (τ? > s+ u) = ED0 [PDs (τ? > u)] ≤ ED0

[
4Ds

σ
√
u

]
= O

(
1√
α

)
,

which implies

max
k≥n/3

d
(k)
H (s+ u) = O

(
1√
α

)
, (2.10)

and concludes the proof of the upper bound.
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3 Proof of Theorem 1.1

First note that, as projections of chains can not increase total-variation distance, the
lower bound on d(t) readily follows from the lower bound on dH(t), as established in
Proposition 2.2. Therefore, we only have to prove the upper bound.

Let E = {x ∈ X , H(x) ≥ n/3} and τE be the hitting time of set E . For all t, s > 0, we
have

d(t+ s) ≤ max
x0∈X

Px0 (τE > s) + max
x∈E

dx(t) .

By (2.4), taking s = n log n + αn, we have maxx0∈X Px0
(τE > s) = O(1/α2), so that our

task comes down to showing that for all x ∈ E ,

dx

(
n log n

2
+ αn

)
≤ ε(α) ,

with ε(α) → 0 as α → +∞. Let us fix x ∈ E . Without loss of generality, we may assume
that x is the vertex with x̄ ≥ n/3 ones on the first x̄ coordinates, and n− x̄ zeros on the
last n− x̄ coordinates. We denote by {Zt} the random walk started at Z0 = x and for a
vertex z ∈ X , we define a two-dimensional object W(z), keeping track of the number of
ones within the first x̄ and last n− x̄ coordinates of z, that is

W(z) =

(
x̄∑

i=1

z(i),

n∑
i=x̄+1

z(i)

)
.

The projection of {Zt}t≥0 induced by W will be denoted Wt = W(Zt) = (Xt, Yt). We
argue that the study of {Zt}t≥0 can be reduced to the study of {Wt}t≥0, and that, when
coupling two chains distributed as Wt, we can restrict ourselves to initial states with
the same total Hamming weight. Indeed, letting νx̄ be the uniform distribution over
{z ∈ X , H(z) = x̄}, by the triangle inequality

dx0(t) ≤
∥∥Px (Zt ∈ ·)− Pνx̄ (Zt ∈ ·)

∥∥
tv
+
∥∥Pνx̄ (Zt ∈ ·)− π(·)

∥∥
tv

(3.1)

Starting from νx̄, the conditional distribution of Zt given {H(Zt) = h} is uniform over
{y ∈ X , H(y) = h}. This entails∥∥Pνx̄

(Zt ∈ ·)− π(·)
∥∥
tv

=
∥∥Px̄ (Ht ∈ ·)− πH(·)

∥∥
tv
.

For t = n logn
2 + αn, we know by (2.10) in the proof of Proposition 2.2 that

∥∥Px̄ (Ht ∈ ·)−
πH(·)

∥∥
tv
+O (1/

√
α). As for the first term in the right-hand side of (3.1), note that if z and

z′ are two vertices such that W(z) = W(z′), then for all t ≥ 0, Px(Zt = z) = Px(Zt = z′),
and that for all y ∈ X such that W(y) = (k, `)

Pνx̄
(Zt = y) =

∑
i,j

i+j=x̄

∑
z,W(z)=(i,j)

1(
n
x̄

)Pz (Zt = y)

=
∑
i,j

i+j=x̄

(
x̄
i

)(
n−x̄
j

)(
n
x̄

) ∑
z,W(z)=(i,j)

Pz (Zt = y)(
x̄
i

)(
n−x̄
j

)
=

∑
i,j

i+j=x̄

(
x̄
i

)(
n−x̄
j

)(
n
x̄

) P(i,j) (Wt = (k, `))(
x̄
k

)(
n−x̄
`

) ·
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Figure 1: A pairing of coordinates of Zt and Z̃t .

Hence,∥∥Px (Zt ∈ ·)− Pνx̄
(Zt ∈ ·)

∥∥
tv

≤ max
i,j

i+j=x̄

∥∥P(x̄,0) (Wt ∈ ·)− P(i,j) (Wt ∈ ·)
∥∥
tv
.

Now let y ∈ E such that H(y) = x̄, and consider the chains Zt, Z̃t started at x and y

respectively. Let W(Zt) = (Xt, Yt) and W(Z̃t) = (X̃t, Ỹt). We couple Zt and Z̃t as follows:
at each step t, provided H(Zt) = H(Z̃t) and W(Zt) 6= W(Z̃t), we consider a random
permutation πt which is such that Zt(i) = Z̃t(πt(i)) for all 1 ≤ i ≤ n, that is, we pair
uniformly at random the ones (resp. the zeros) of Zt with the ones (resp. the zeros) of Z̃t

(one such pairing of coordinates is depicted in Figure 1). If Zt moves to Zt+1 by choosing
the pair (it, jt) and updating Zt(jt) to Zt(jt) + Zt(it), then we move from Z̃t to Z̃t+1 by
updating Z̃t(πt(jt)) to Z̃t(πt(jt)) + Z̃t(πt(it)). Once W(Zt) = W(Z̃t), the permutation πt

is chosen in such a way that the ones in the top (resp. in the bottom) in Zt are matched
with the ones in the top (resp. in the bottom) in Z̃t, guaranteeing that from that time
W(Zt) and W(Z̃t) remain equal. Note that this coupling ensures that for all t ≥ 0, the
Hamming weight of Zt is equal to that of Z̃t, and we may unequivocally denote it by
Ht. In particular, coupling of the chains W(Zt) and W(Z̃t) occurs when Xt and X̃t are
matched. As Xt ≥ X̃t for all t ≥ 0, we may consider

τ = inf{t ≥ 0, Dt = 0} ,

where Dt = Xt − X̃t.
Before analyzing the behavior of {Dt}, we first notice that the worst possible y for

the coupling time satisfies W(y) = (max{0, 2x̄− n},min{x̄, n− x̄}). We now fix y to be
such a vertex, and show that, starting from x, y, the variables W(Zt),W(Z̃t) remain
“nice” for a very long time. More precisely, defining

Bt =

t⋂
s=0

{
Hs ≥ 2n/7, Xs ≥

x̄

p
, Ỹs ≥

min{x̄, n− x̄}
p

}
,

we claim that we can choose p ≥ 1 fixed such that

Px,y (Bn2) = 1− o(1) . (3.2)
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Indeed, the fact that Pn/3(T2n/7 ≤ n2) = o(1) has already been established in the proof
of Proposition 2.2 (equation (2.5)). Let us show, with the same kind of arguments,

that P(x̄,0)

(
∪n2

s=0{Xs < x̄/p}
)
= o(1). Letting A = {(x̄/p, `), ` = 0, . . . , n− x̄}, πW be the

stationary distribution of Wt, and kx̄ = min
{

x̄
2 ,

n−x̄
2

}
, we have

P(x̄,0)(TA ≤ n2) ≤ P(x̄/2,kx̄)(TA ≤ n2) ≤ n2
n−x̄∑
`=0

P(x̄/2,kx̄)

(
T(x̄/p,`) ≤ T+

(x̄/2,kx̄)

)
≤ n2

n−x̄∑
`=0

πW(x̄/p, `)

πW(x̄/2, kx̄)
=

n22n−x̄
(

x̄
x̄/p

)(
x̄

x̄/2

)(
n−x̄
kx̄

) ,

and we can choose p large enough such that this quantity decreases exponentially fast in
n. Similarly, starting from y, the value of Ỹs will remain at a high level for a very long
time, establishing (3.2).

Let us now turn to the analysis of {Dt}. On the event {t < τ},

Dt+1 −Dt =


1 with probability pt1

−1 with probability pt−1

0 otherwise,

(3.3)

where

pt1 =
Ht

n
· n−Ht

n− 1
· x̄−Xt

n−Ht
· n− x̄− Ỹt

n−Ht
+

Ht

n
· Ht − 1

n− 1
· Yt

Ht
· X̃t

Ht
,

and

pt−1 =
Ht

n
· n−Ht

n− 1
· x̄− X̃t

n−Ht
· n− x̄− Yt

n−Ht
+

Ht

n
· Ht − 1

n− 1
· Xt

Ht
· Ỹt

Ht
·

After computation, we get, on {t < τ},

E
[
Dt+1 −Dt

∣∣Zt, Z̃t

]
= − HtDt

n(n− 1)

(
1 +

Ht − 1

Ht

)
≤ −Dt

n2
(2Ht − 1) (3.4)

From (3.4), it is not hard to see that the variable

Mt = 1{τ>t}Dt exp

(
t−1∑
s=0

(2Hs − 1)

n2

)

is a super-martingale, which implies Ex,y [Mt] ≤ Ex,y [D0] ≤ n.
Now let τ? = inf{t ≥ 0, 1Bt

Dt = 0}. By (3.3), we see that, provided {τ? > t}, the
process {1Bt

Dt} is a supermartingale (pt−1 ≥ pt1) and that there exists a constant σ2 > 0

such that the conditional variance of its increments is larger than σ2 (because on Bt, the
probability to make a move pt−1 + pt1 is larger than some absolute constant). By Levin
et al. [6, Proposition 17.20], for all u > 0 and k ≥ 0,

Pk(τ? > u) ≤ 4k

σ
√
u
· (3.5)

Now take t = n logn
2 and u = αn. We have

Px,y(τ > t+ u) ≤ Px,y(Bc
n2) + Px,y(τ? > t+ u) .
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By (3.2), we know that Px,y(Bc
n2) = o(1). Also, considering the event

At−1 =

{
t−1∑
s=0

Hs ≥
n2 log n

4
− βn2

}
,

and resorting to (3.5), we get

Px,y (τ? > t+ u) ≤ Ex,y

[
1{τ?>t}PZt,Z̃t

(τ? > u)
]

≤ Px,y

(
{τ? > t} ∩ Ac

t−1

)
+ Ex,y

[
1At−1

1{τ?>t}
4Dt

σ
√
u

]
·

On the one hand, recalling the notation and results of Section 2 (in particular equation
(2.8)), and applying Markov’s Inequality,

Px,y

(
{τ? > t} ∩ Ac

t−1

)
≤ Px,y

(
t−1∑
s=0

Ds > βn2

)

≤ 1

βn2

t−1∑
s=0

(
an e−s/n + b

)
= O

(
1

β

)
·

On the other hand,

Ex,y

[
1{τ?>t}1At−1Dt

]
≤ exp

(
− log n

2
+

t

n2
+ 2β

)
Ex,y [Mt] = O

(
e2β

√
n
)
.

In the end, we get

Px,y (τ > t+ u) = O

(
1

β
+

e2β√
α

)
·

Taking for instance β = 1
5 logα concludes the proof of Theorem 1.1.
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