
Electron. Commun. Probab. 23 (2018), no. 30, 1–11.
https://doi.org/10.1214/18-ECP125
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Optimal stopping and the sufficiency of randomized

threshold strategies*

Vicky Henderson† David Hobson† Matthew Zeng†

Abstract

In a classical optimal stopping problem the aim is to maximize the expected value of
a functional of a diffusion evaluated at a stopping time. This note considers optimal
stopping problems beyond this paradigm. We study problems in which the value
associated to a stopping rule depends on the law of the stopped process. If this value
is quasi-convex on the space of attainable laws then it is well known that it is sufficient
to restrict attention to the class of threshold strategies. However, if the objective
function is not quasi-convex, this may not be the case. We show that, nonetheless, it is
sufficient to restrict attention to mixtures of threshold strategies.
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1 Introduction and main results

Let Y = (Yt)t≥0 be a time-homogeneous, continuous strong-Markov process. Let
T be the set of all stopping times, and let TT be the set of all (one- and two-sided)
threshold stopping times, ie. stopping rules based on the first crossing of upper or lower
thresholds. Let V = V (τ) be the value associated with a stopping rule τ . Consider the
optimal stopping problem associated with V , ie. the problem of finding

V∗(S) = sup
τ∈S

V (τ) (1.1)

where S is some set of stopping times (for example S = T or S = TT ), and especially
the problem of finding an optimizer for (1.1). We say the V = V (τ) is law invariant if,
whenever σ, τ are stopping times, L(Yσ) = L(Yτ ) implies that V (σ) = V (τ), where L(Z)

is the law of Z. It follows that V (τ) = H(L(Yτ )) for some map H.
The following result is well-known, but we include it as a contrast to our result on

the sufficiency of randomized threshold rules.

Main Result 1 (See Theorem 2 below). Suppose H is quasi-convex and lower semi-
continuous. Then V∗(TT ) = V∗(T ).
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Optimal stopping and randomized threshold strategies

Corollary 1. In the setting of Theorem 2, in solving the optimal stopping problem (1.1)
over the set of all stopping times it is sufficient to restrict attention to threshold rules.

As the canonical example, consider expected utility where the utility is represented
by a continuous, increasing function u. Then, V (τ) = E[u(Yτ )], assuming that the
expectation is well defined. It follows that V is law invariant. Indeed V (τ) = H(L(Yτ ))

where H(ζ) =
∫
u(z)ζ(dz). H is quasi-convex and lower semi-continuous. In this example

it is well known that there is an optimal stopping rule which is of threshold form, see
for example, Dayanik and Karatzas [5]. The fact that quasi-convexity means that there
is no benefit from following randomized strategies is well understood in the economics
literature, see Machina [14] Camerer and Ho [3], Wakker [21] and He et al [11].

Recently there has been a surge of interest in problems which, whilst they have the
law invariance property, do not satisfy the quasi-convex criterion. Two examples are
optimal stopping under prospect theory (Xu and Zhou [22]), and optimal stopping under
cautious stochastic choice (Henderson et al [9]).

Introduce the set TR of mixed or randomized threshold rules (ie stopping rules which
are based on the first exit from a randomly chosen interval).

Main Result 2 (See Theorem 1 below). Suppose law invariance holds for V , but not
quasi-convexity for H. Then V∗(TT ) ≤ V∗(TR) = V∗(T ).

We will show by example that the first inequality may be strict.

Corollary 2. In the setting of Theorem 1, in solving the optimal stopping problem (1.1)
over the set of all stopping rules it is sufficient to restrict attention to randomized
threshold rules, but it may not be sufficient to restrict attention to (pure) threshold rules.

It should be noted that we do not include discounting in our analysis since a problem
involving discounting does not satisfy the law invariance property. Nonetheless, as is
well known, the conclusion of Corollary 1 remains true for the problem of maximizing
discounted expected utility of the stopped process V (τ) = E[e−βτu(Yτ )]. However, in
problems which go beyond the expected utility paradigm, there are often modelling
issues which mitigate against the inclusion of discounting. For this reason, historically
the literature has concentrated on problems with no discounting. Finding the optimal
stopping rule is often already challenging in these models.

The significance of Corollary 2 is as follows. In many classical models optimal
stopping behavior involves stopping on first exit from an interval. If decision makers
are observed to stop at levels which have already been visited by the process, then this
behavior is inconsistent with the classical optimal stopping model. However, our result
implies that the converse is not true: if decision makers are observed to stop only when
the process is reaching new maxima or minima, then it does not necessarily mean that
they are maximizers of expected payoffs. Instead the decision criteria may be more
complicated, and they may be utilizing a randomized threshold rule.

2 Problem specification and the problem in natural scale

We work on a filtered probability space (Ω,F ,F = {Ft}t≥0,P). Let Y = (Yt)t≥0 be a
(F,P)-stochastic process on this probability space with state space I which is an interval.
Let Ī be the closure of I. We suppose that Y is a regular, time-homogeneous diffusion
with initial value Y0 = y such that y lies in the interior of I. For Γ an interval in R or a
rectangular set in R2, let B(Γ) denote the Borel σ-algebra on Γ, and let P(Γ) denote the
set of probability measures on (Γ,B(Γ)).

Let T be the class of all stopping times τ such that limt↑∞ Yt∧τ exists (almost surely).
We introduce two subclasses of stopping times

ECP 23 (2018), paper 30.
Page 2/11

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP125
http://www.imstat.org/ecp/


Optimal stopping and randomized threshold strategies

• TT , the subclass of (pure) threshold stopping times;
• TR, the subclass of randomized threshold stopping times.

Note that TT ⊂ TR ⊂ T . The set of pure threshold stopping times can be written as

TT = T ∩
(
∪β≤y≤γ; β,γ∈Ī{τβ,γ}

)
, (2.1)

where τa,b = infu≥0{u : Yu /∈ (a, b)}. Note that if a = y = b then τa,b ≡ 0. Hence, τ ≡ 0,
the strategy of stopping immediately, lies in TT .

In order to be able to define a sufficiently rich class of randomized stopping times we
need to assume that F is larger than the filtration generated by Y .

Assumption 1. F0 is sufficiently rich as to include a U [0, 1] random variable, and the
stochastic process Y is independent of this random variable.

Let D = ([−∞, y] ∩ Ī) × ([y,∞] ∩ Ī). It follows from the assumption that for any
probability measure ζ on (D,B(D)) there exists an F0-measurable random variable
Θ = Θζ = (Aζ , Bζ) such that (Aζ , Bζ) has law ζ. Then for any ζ ∈ P(D) we can define
the randomized stopping time τζ as the first time Y leaves a random interval, where the
interval is chosen at time 0 with law ζ. Then τζ = τAζ ,Bζ = inf{u : Yu /∈ (Aζ , Bζ)}. The
set of randomized threshold rules TR is given by

TR = T ∩ ({τζ : ζ ∈ P(D)}) . (2.2)

Our analysis is focussed on problems in which the value associated with a stopping
rule depends only on the law of the stopped process. Let Q(S) = {µ : µ = L(Yτ ), τ ∈ S}.
Assumption 2 (Law invariance). V is law invariant, ie V (τ) = H(L(Yτ )) for some func-
tion H : Q(T ) 7→ R.

Given that the value associated with a stopping rule is law invariant, one natural
approach to finding the optimal stopping time is to try to characterize Q(S). Often, the
best way to do this is via a change of scale. Let s be a strictly increasing function such
that X = s(Y ) is a local martingale. (Such a function s exists under very mild conditions
on Y see, for example Rogers and Williams [16], and is called a scale function. For
example, if Y solves the SDE dYt = σ(Yt)dBt + ξ(Yt)dt for smooth functions σ and ξ

with σ > 0 then s = s(z) is a solution to 1
2σ(z)2s′′ + ξ(z)s′ = 0. Note that if s is a scale

function then so is any affine transformation of s and so we may choose any convenient
normalization for s.) Let IX = s(I) and let ĪX be the closure of IX . Then X is a regular,
time-homogenous local-martingale diffusion on IX with initial value x = s(y).

Set QX(S) = {ν : ν = L(Xτ ), τ ∈ S}. Then if L(Xτ ) = ν we have L(Yτ ) = ν]s where
(ν]s)(D) = ν(s(D)). It follows that ν ∈ QX(S) if and only if ν]s ∈ Q(S) and hence

Q(S) = {ν]s; ν ∈ QX(S)}. (2.3)

Thus, if we can characterize QX(S) then we can also characterize Q(S). Moreover,
defining HX : QX(T ) 7→ R by HX(ν) = H(ν]s) we have V∗(S) = supµ∈Q(S)H(µ) =

supν∈QX(S)H
X(ν). The problem of optimizing over stopping laws for the problem with

Y becomes a problem of optimizing over the possible laws of the stopped process X in
natural scale.

Note that τa,b = infu≥0{u : Yu /∈ (a, b)} = infu≥0{u : Xu /∈ (s(a), s(b))} =: τXs(a),s(b).
Hence TT has the alternative representation

TT = T ∩
(
∪β≤x≤γ; β,γ∈ĪX{τXβ,γ}

)
,

and the set of threshold stopping times for Y is the set of threshold stopping times
for X. Similarly, TR can be rewritten as TR = T ∩ ({τXη : η ∈ P(DX)}) where DX =

([−∞, x] ∩ ĪX)× ([x,∞) ∩ ĪX)) and

τXη = inf
u≥0
{u : Xu /∈ (Aη, Bη)where (Aη, Bη) has law η}.
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3 Characterizing the possible laws of the stopped process in nat-
ural scale

If X = s(Y ) is in natural scale then the state space of X is an interval IX = s(I) and
X0 = x := s(y). There are four cases:

1. IX is bounded;
2. IX is unbounded above but bounded below;
3. IX is bounded above but unbounded below;
4. IX is unbounded above and below.

The third case can be reduced to the second by reflection. The first case is generally
similar to the second case, and typically the proofs are similar but simpler. The final case
is degenerate and will be treated separately. In the main text we will mainly present
arguments for the second case (with the other cases covered in an appendix), but results
will be stated in a form which applies in all cases.

Henceforth, in the main text we suppose IX is bounded below, but unbounded above.
Without loss of generality we may assume IX = (0,∞) or [0,∞). Then X is a non-
negative local martingale and hence a super-martingale. Moreover, limt→∞Xt exists.
Hence T includes stopping rules which take infinite values and on {τ = ∞} we set
Xτ = limt→∞Xt = 0. In this case T is the set of all stopping times and the intersection
with T in the definitions (2.1) and (2.2) is not necessary. By Fatou’s lemma and the
super-martingale property

E[Xτ ] = E[ lim
t→∞

Xt∧τ ] ≤ lim inf
t→∞

E[Xt∧τ ] ≤ x.

In particular, if we set P≤x = {ν ∈ P([0,∞)) :
∫
zν(dz) ≤ x} then QX(T ) ⊆ P≤x.

Lemma 1. QX(T ) = QX(TR).

Proof. Here we prove the lemma in the case where IX is bounded below. We show that
QX(T ) = QX(TR) = P≤x. Given ν ∈ P≤x the aim is to find a stopping time τ ∈ TR such
that L(Xτ ) = ν. The task of finding general stopping times with L(Xτ ) = ξ for given

ξ ∈ P(I
X

) is known as the Skorokhod embedding problem (Skorokhod [18]). In fact we
use an extension of an embedding due to Hall [8], see also Durrett [6]. The extension
relates to the fact that we allow for target laws which have a different mean to the initial
value of X, whereas the Hall embedding assumes

∫
zν(dz) = x. The Hall embedding,

and the extension we give, are mixtures of threshold strategies.
Suppose ν is an element of P≤x (and ν is not a point mass at x). The case of ν = δx

corresponds to the (threshold) stopping time τ = 0. Let G be the (right-continuous)
quantile function of ν. We have x ≥

∫
zν(dz) =

∫
(0,1)

G(u)du. In particular, unless

limu↑1G(u) ≤ x there exists a unique solution v∗ ∈ [0, 1) to
∫ 1

v
[G(w) − x]dw = 0. Let

z∗ = G(v∗) ≤ x. If limu↑1G(u) ≤ x then set v∗ = 1 and z∗ = limu↑1G(u).
Let ν0 be the measure of size v∗ such that ν0([0, z)) = v∗ ∧ ν([0, z)). Then ν0 has

support contained in [0, z∗]. Let ν1 be the measure of size 1 − v∗ such that ν1([0, z)) =

(ν([0, z))− v∗)+. Then ν1 has support in [z∗,∞) and barycentre x. Moreover ν = ν0 + ν1.
Define c =

∫∞
x

(y − x)ν(dy). By construction, c =
∫∞
x

(y − x)ν1(dy) and we have from
the fact that ν1 has barycentre x that

∫∞
z∗

(y − x)ν1(dy) = 0 and hence

c =

∫ x

z∗
(x− y)ν1(dy). (3.1)

Let η ∈ P([0, x]× (x,∞]) be given by

η(da, db) = ν0(da)I{0≤a≤z∗}I{b=∞} + ν1(da)ν1(db)
(b− a)

c
I{z∗≤a≤x<b<∞}.
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Note first that η is a probability measure:∫
0≤a≤x

∫
x<b≤∞

η(da, db)

= v∗ +

∫
z∗≤a≤x

ν1(da)

∫
x<b<∞

b− x
c

ν1(db) +

∫
z∗≤a≤x

x− a
c

ν1(da)

∫
x<b<∞

ν1(db)

= v∗ +

∫
z∗≤a≤x

ν1(da) +

∫
x<b<∞

ν1(db) = v∗ + ν1([z∗,∞)) = 1

where we use the definition of c and (3.1) in going from the second line to the third.

It remains to show that L(XτXη
) = ν. Let f be a bounded test function. Then, using

the fact that if b =∞ then XτXa,∞
= a, and the definition of c and (3.1) for the penultimate

line,

E[f(XτXη
)] =

∫ ∫
η(da, db)E[f(XτXa,b

)]

=

∫
ν0(da)f(a)

+

∫
z∗≤a≤x

∫
x<b<∞

ν1(da)ν1(db)
b− a
c

[
f(a)

(b− x)

b− a
+ f(b)

(x− a)

b− a

]
=

∫
ν0(da)f(a) +

∫
z∗≤a≤x

ν1(da)f(a)

∫
x<b<∞

ν1(db)
(b− x)

c

+

∫
z∗≤a≤x

(x− a)

c
ν1(da)

∫
x<b<∞

f(b)ν1(db)

=

∫
0≤z≤z∗

f(z)ν0(dz) +

∫
z∗≤z≤x

f(z)ν1(dz) +

∫
x<z

f(z)ν1(dz)

=

∫
f(z)ν(dz).

Hence L(XτXη
) = ν as required.

Let χa,b = b−x
b−aδa + x−a

b−a δb. Then χa,b is the law of XτXa,b
. Moreover, L(XτXa,∞

) = δa.
Then,

QX(TT ) = (∪0≤a≤xδx) ∪ (∪0≤a<x<b<∞χa,b) .

4 Sufficiency of mixed threshold rules

Our main result is that in a large class of problems it is sufficient to search over the
class of mixed threshold rules.

Theorem 1. Suppose Y is a regular, time-homogeneous diffusion. Suppose the law
invariance property holds (Assumption 2) and that the filtration is sufficiently rich
(Assumption 1). Then V∗(T ) = V∗(TR).

Proof. Since QX(T ) = QX(TR) (Lemma 1) we have Q(T ) = Q(TR). Then

V∗(T ) = sup
µ∈Q(T )

H(µ) = sup
µ∈Q(TR)

H(µ) = V∗(TR).

Note that it is not our claim that every optimal stopping rule is a mixed threshold
rule. Typically, at least in the case where V (TT ) < V (T ), there will be other optimal
stopping rules which are not of threshold type.
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4.1 Examples

4.1.1 Rank dependent utility and optimal stopping

Let Z be a non-negative random variable. Let v : [0,∞) 7→ [0,∞) be an increasing,
differentiable function with v(0) = 0. Then the expected value of v(Z) can be expressed
as E[v(Z)] =

∫∞
0
v′(z)F̄Z(z)dz. Under rank-dependent utility (Quiggin [15]) or probability

weighting (Tversky and Kahneman [20]) the prospect value Ev(Z) of Z is

Ev(Z) =

∫ ∞
0

v′(z)w(F̄Z(z))dz

where w : [0, 1] 7→ [0, 1] is an increasing, differentiable probability weighting function.
Writing GZ = F−1

Z for the quantile function of Z, then after a change of variable
and integration by parts we have (see Xu and Zhou [22, Lemma 3.1]) the alternative
representation

Ev(Z) =

∫ 1

0

w′(1− u)GZ(u)du.

Now let Y = (Yt)t≥0 be a non-negative diffusion and consider the problem of maxi-
mizing over stopping times the prospect value of the stopped process Y , ie of finding

sup
τ∈T
Ev(Yτ ). (4.1)

Clearly the prospect value depends on the stopping time only through the law of the
stopped process. Hence it is sufficient to characterize the optimal target distribution,
for example via its quantile function. Xu and Zhou [22] solve for the optimal quantile
function in several cases. One relevant case is the following:

Proposition 1 (Xu and Zhou [22]). Suppose Y is in natural scale and has state space
[0,∞)and initial value y. Suppose v and w are concave. Suppose there exists λ∗ ∈ (0,∞)

which solves ∫ 1

0

(v′)−1

(
λ∗

w′(1− u)

)
du = y.

Then the quantile function of the optimal stopping distribution is given by G∗(u) =

(v′)−1
(

λ∗

w′(1−u)

)
.

Xu and Zhou [22] point out that although there is a unique optimal prospect there
are infinitely many stopping rules which attain this prospect. They advocate the use of
the stopping rule based on the Azéma-Yor stopping time [1], in which case the stopping
rule has a drawdown feature, and involves stopping the first time the process falls below
some function of the maximum. Our main result says that there is also a randomized
threshold rule which is optimal.

4.1.2 Cautious stochastic choice

Given a process Y and a utility function u the certainty equivalent associated with a
stopping time τ is Cu(τ) = u−1(E[u(Yτ )]). The idea in Cautious stochastic choice (Cerreia-
Vioglio et al [4]) is that agents use multiple utility functions and evaluate an outcome
in a robust manner as the least favorable of the individual certainty equivalents. If the
set of utility functions is {uα}α∈A, and if we write Cα as shorthand for Cuα then the CSC
value of a stopping rule is

CSC(τ) = inf
α∈A
Cα(τ) = inf

α∈A
u−1
α (E[uα(Yτ )]), (4.2)

and an optimal stopping rule is the one which maximizes the CSC value.
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Clearly the CSC value of a stopping rule depends only on the law of Yτ . Moreover,
suppose A = {α, β} and suppose uα and uβ are strictly increasing and continuous
with strictly increasing and continuous inverses. Suppose further that there exist τ1
and τ2 and ỹ such that u−1

α (E[uα(Yτ1)]) > ỹ > u−1
β (E[uβ(Yτ1)]) and u−1

α (E[uα(Yτ2)]) <

ỹ < u−1
β (E[uβ(Yτ2)]). Let τθ be a mixture of τ1 and τ2, defined such that if Z is a F0-

measurable random variable taking values in {1, 2} with P(Z = 1) = θ then τθ = τZ .
Then for γ ∈ A, Cγ(τθ) = u−1

γ (θE[uγ(Yτ1)] + (1− θ)E[uγ(Yτ2)]) is a continuous function of
θ. Moreover, Cα(τθ) is strictly increasing in θ and Cβ(τθ) is strictly decreasing. By our
assumptions it follows that the best choice θ∗ of θ is such that Cα(τθ

∗
) = Cβ(τθ

∗
) and

then θ∗ ∈ (0, 1) and CSC(τθ
∗
) > max{CSC(τ1), CSC(τ2)}.

In particular, the value associated with a stopping rule is not quasi-convex. By the
analysis of this section, in searching for an optimal stopping rule it is sufficient to restrict
attention to randomized threshold rules, but we cannot expect in general that there is
a pure threshold rule which is optimal. For a deeper study of optimal stopping in the
context of Cautious stochastic choice see Henderson et al [9].

5 Sufficient conditions for the optimality of pure threshold rules

In this section we argue that if the value associated with a stopping rule is law
invariant, and if H is quasi-convex and lower semi-continuous then pure threshold rules
are optimal.

Recall that H is quasi-convex if H(λµ1 +(1−λ)µ2) ≤ max{H(µ1), H(µ2)} for λ ∈ (0, 1).
It follows by induction that if µ =

∑N
i=1 λiµi where λi ≥ 0,

∑N
i=1 λi = 1 and µi ∈ Q(T )

then

H(µ) ≤ max
1≤i≤N

H(µi) ≤ sup
µ̃∈Q(T )

H(µ̃). (5.1)

Recall also that if H is lower semi-continuous and µn ⇒ µ then H(µ) ≤ lim inf H(µn). In
fact we do not require H(µ) ≤ lim inf H(µn), but rather the weaker condition H(µ) ≤
lim supH(µn).

Lemma 2. Suppose ν ∈ QX(T ) consists of finitely many atoms. Then there exists
η ∈ P(DX) such that η consists of finitely many atoms and L(XτXη

) = ν.

Proof. It follows from the construction in the proof of Lemma 1 that if µ is purely atomic
then so is η.

Lemma 3. Let ν be an element of QX(T ). Then there exist (ηn)n≥1 such that ηn has
finite support for each n and such that L(XτXηn

)⇒ ν.

Proof. Since ν ∈ QX(T ) = QX(TR) there exists η such that L(XτXη
) = ν. Let (ηn)n≥1 be

a sequence of measures with finite support such that ηn ⇒ η. Then for f : [0,∞) 7→ R a
bounded continuous test function define f̃ : [0, x]× [x,∞) by f̃(a, b) = f(a) b−xb−a + f(b)x−ab−a
for a < b with f̃(x, x) = f(x). Then, since f̃ is bounded and continuous

E[f(XτXηn
)] =

∫ ∫
ηn(da, db)f̃(a, b)→

∫ ∫
η(da, db)f̃(a, b) = E[f(XτXη

)]

and it follows that νn := L(XτXηn
)⇒ ν.

Theorem 2. Suppose Y is a regular, time-homogeneous diffusion. Suppose the law
invariance property holds (Assumption 2). Suppose that H is quasi-convex and lower
semi-continuous. Then V∗(T ) = V∗(TT ).
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Proof. Clearly V∗(T ) ≥ V∗(TT ).
For any µn with finite support we can define νn = µn]s

−1. Then we can find a measure
ηn with finite support such that L(XτXηn

) = νn. Moreover νn can be decomposed as a
convex combination

νn =

N∑
i=1

γiχai,bi +

M∑
j=1

λjδaj .

Then, since H is quasi-convex,

H(µn) ≤
(

max
1≤i≤N

H(χai,bi]s
−1)

)
∨
(

max
1≤j≤M

H(δs−1(aj))

)
≤

(
sup

0≤a≤x≤b<∞
H(χa,b]s

−1)

)
∨
(

sup
0≤a≤x

H(δs−1(a))

)
= V∗(TT ).

Then, for τ ∈ T , if µ = L(Yτ ) and if µn ⇒ µ

Vτ = H(µ) ≤ lim supH(µn) ≤ V∗(TT ).

Hence V∗(T ) ≤ V∗(TT ).

6 Discussion

In classical optimal stopping problems involving maximizing expected utility the
optimal strategy is a threshold rule and involves stopping the first time that the process
leaves an interval. However, in more general settings the optimal strategy may be
more sophisticated. In some settings, for example those involving regret (Loomes and
Sugden [13]) the optimal stopping rule may depend on some functional of the path (for
example the maximum price to date). But, as argued here, for a large class of problems
the payoff depends only on the distribution of the stopped process, and then there are
many optimal stopping rules, some of which take the form of randomized threshold
rules. In this article we have utilized (an extended version of) the Hall solution of the
Skorokhod embedding problem (Hall [8]) to give our randomized threshold rule, but
there are other solutions of the Skorokhod embedding which can also be viewed as
mixed threshold rules, including the original solution of Skorokhod [18] and the solution
of Hirsch et al [12].

The idea that if the objective is expressed in terms of a function which is not quasi-
convex then agents may want to use randomized strategies is well appreciated in static
settings. In a dynamic setting He et al [11] argue that in binomial-tree, probability-
weighted model of a casino (Barberis [2]) gamblers may prefer path-dependent strategies
over strategies which are defined via a partition of the set of nodes into those at which
the gambler stops and those at which he continues. (See also Ebert and Strack [7]
and Henderson et al [10] for discussion of a related optimal stopping problem with
probability weighting based on a diffusion process.) He et al [11] argue further that
the path-dependent strategy can be replaced by a randomized strategy under which
the decision about whether to stop at a node depends not on the path history but
rather the realization of an independent uniform random variable. This preference for
randomization mirrors our result, but takes a different form. In our perpetual problem
the agent chooses a randomized pair of levels and then follows a threshold strategy
based on these levels. In He et al [11] a zero-one decision about whether to stop at a
node is replaced by a probability of continuing, and the stopping rules which arise are
not randomized threshold rules.

Many optimal stopping models in the economics literature predict that the agent
will stop on first exit from an interval, which necessarily involves stopping either at

ECP 23 (2018), paper 30.
Page 8/11

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP125
http://www.imstat.org/ecp/


Optimal stopping and randomized threshold strategies

the current maximum or the current minimum. If instead, observed behavior includes
stopping at levels which are not equal to one of the running extrema of the process
then this is evidence against the model. (Strack and Viefers [19] present experimental
evidence from a laboratory game that players do not follow threshold strategies - instead
players visit the same price three times on average before stopping.) But, our results
imply that the converse is not true. Even if agents only ever take a decision to sell at a
time when the process is at a new maximum or new minimum, this does not necessarily
mean that agents are following a pure threshold rule. They could have any target
distribution, as for example in Proposition 1, but be realizing this target distribution via
a randomized threshold rule.
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A Extension to other state spaces for the process in natural scale

A.1 The range is unbounded below but bounded above

In this case we may assume that IX = (−∞, 0) or (−∞, 0]. The analysis goes through
almost unchanged except that now X is a convergent sub-martingale and QX(T ) =

Q(TR) = P≥x where P≥x = {ν ∈ P((−∞, 0]) :
∫
zν(dz) ≥ x}.

A.2 The range is bounded

Suppose X is bounded. In this case Q(T ) = Q(TR) = P=x where P=x = {ν ∈ P(ĪX) :∫
zν(dz) = x}. To see this note that X is a uniformly integrable martingale and not

just a super-martingale. Therefore we must have E[Xτ ] = limE[Xτ∧t] = x and hence
Q(T ) ⊆ P=x. Conversely, by the same argument as in Lemma 1, but this time with v∗ = 0

and ν1 ≡ ν, we deduce that for any ν ∈ P=x there exists a randomization η such that
L(XτXη

) = ν. It follows that Q(T ) = Q(TR) = P=x.

The proofs of Lemma 2, Lemma 3 and Theorem 1 go through unchanged.

A.3 The range is unbounded above and below

Now suppose IX is unbounded above and below. By the Rogozin trichotomy (Ro-
gozin [17]) −∞ = lim inftXt < x < lim suptXt = ∞ and limt↑∞Xt does not exist. In
this case we must restrict T to the set of stopping times with P(τ < ∞) = 1. In
the main text we set TT = T ∩

(
∪β≤y≤γ,β,γ∈ĪY {τβ,γ}

)
but we could equivalently write

TT = ∪(β,γ)∈D0
{τβ,γ}, where D0 = ([−∞, y] ∩ ĪY ) × ([y,∞] ∩ ĪY ) \ {s−1(−∞), s−1(∞)}.

We have to exclude the threshold rule τs−1(−∞),s−1(∞) since τs−1(−∞),s−1(∞) = ∞ al-
most surely and Y∞ is not defined. In terms of threshold rules τXa,b for X we al-

low a = −∞ or b = ∞ but not both. Then TT = {τβ,γ : (β, γ) ∈ DX0 )} where
DX0 = DX \ {−∞,∞} = [∞, x]× [x,∞] \ {−∞,∞}.

In the definition of randomized threshold rules we can write TR = {τζ : ζ ∈ P(D0)}
where D0 is as above and similarly TR = {τXη : η ∈ P(DX0 )}.

When IX = R we claim that we have QX(T ) = QX(TR) = P(R). Since stopping times
are finite almost surely we must have QX(T ) ⊆ P(R) so it is sufficient to show that for
any ν ∈ P(R) we have ν ∈ QX(TR). Given ν ∈ P(R) let Aν be a F0-measurable random
variable with law ν and set τ = inf{u : Xu = Aν}. Then L(Xτ ) = L(Aν) = ν.

The proofs of Lemma 2, Lemma 3 and Theorem 1 go through unchanged.

A.4 Other results

Proof of Proposition 1. A proof is given in Xu and Zhou [22, Theorem 5.1], but since
it is short, elegant and pertinent to our main results we include it here. From the
characterization of Q(T ) we have that a quantile function must satisfy

∫ 1

0
G(u)du ≤ y. By

construction G∗ has this property, and since v′ and w′ are decreasing, G∗ is increasing.
Hence G∗ has the properties required of a quantile function of a distribution which can
be obtained by stopping Y . On the other hand, for any non-negative function G with
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∫ 1

0
G(u)du ≤ y,∫ 1

0

w′(1− u)v(G(u))du =

∫ 1

0

[w′(1− u)v(G(u))− λ∗G(u)]du+ λ∗
∫ 1

0

G(u)du

≤
∫ 1

0

sup
g>0

[w′(1− u)v(g)− λ∗g]du+ λ∗y

=

∫ 1

0

[w′(1− u)v(G∗(u))− λ∗G∗(u)]du+ λ∗y

=

∫ 1

0

w′(1− u)v(G∗(u))du.
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