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Where does a random process hit a fractal barrier?
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Abstract

Given a Brownian path β(t) on R, starting at 1, a.s. there is a singular time set Tβ ,
such that the first hitting time of β by an independent Brownian motion, starting at
0, is in Tβ with probability one. A couple of problems regarding hitting measure for
random processes are presented.
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1 Introduction

The study of harmonic (or hitting) measure for Brownian motion is a well developed
subject with dramatic achievements and major problems which are still wide open,
see [4]. In this note we present a couple of problems regarding hitting measure for a
wider class of random processes and in particular answer the following question.

When does a one-dimensional Brownian motion B started at 0, hits an independent
one-dimensional Brownian motion W started at 1? Here we regard W as a random
barrier which is hit by B.

We show that conditioning on the barrier, a.s. with respect to the Wiener measure
on barriers, there is a singular time set (which is a function of the barrier only) that a.s.
contains the first hitting time of the barrier.

2 Random processes in the plane

Let γ be an unbounded one-sided curve in (the Euclidean plane) R2, and Ω be a
simply connected open bounded domain in R2.

Reroot the origin of γ at a uniformly chosen point of Ω, and rotate γ with an indepen-
dent uniformly chosen angel around its root. Look at the hitting point of this random
translation and rotation of γ on the boundary of the domain ∂Ω. For every root in Ω the
hitting point maps the uniform measure on directions U [0, 2π] to a measure on ∂Ω.

Conjecture 2.1. For any γ and Ω, for almost every root, the corresponding measure on
∂Ω has 0 two-dimensional Lebesgue measure.

Moreover,

Question 2.2. For any γ and Ω, for almost every root, does the corresponding measure
on ∂Ω have Hausdorff dimension (at most) one?
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hitting a fractal barrier

Concerning this question, it is already of interest to prove that dimension drops
below 2; or better below the dimension of ∂Ω when the latter is strictly above 1. It
is also interesting to tackle a specific version of this question where one considers a
restricted family of curves γ. If γ is a Brownian path then Makarov’s theorem [7] gives
an affirmative answer. For partial results on this conjecture when γ is a straight line
see [3].

2.1 Simple random walks on discrete fractals

By Makarov’s theorem [7] (and Jones and Wolff [5] for general domains) and its adap-
tation by Lawler [6] via coupling to simple random walk, it is know that the dimension
of the hitting measure for two-dimensional Brownian motion drops to (at most) 1. We
therefore suspect that harmonic measure for simple random walk on self similar planar
fractals will also have dimension at most 1. Here is a specific formulation.

2.1.1 Sierpinski gasket

Figure 1: The first three generation of Sierpinski gasket graphs sequence.

Given a subset S of the vertices in the n-th generation of the Sierpinski gasket graph
sequence (see Figure 1).

Question 2.3. Show that the entropy of the hitting measure for a simple random walk
starting at the top vertex on S is at most n.

Note that in the n-th generation Sierpinski gasket graph, the size of the bottom side
is 2n−1 + 1, which we believe realizes the largest entropy possible. (Entropy in base 2,
−
∑
i pi log2 pi).

2.2 Fractional BM

Recall the probability that a Brownian motion in R2, started at (1, 0) hits the negative
x-axis first on [−ε, 0] scales like ε1/2, as epsilon goes to 0.

We would like to have a natural statement along the lines that the rougher the process
starting at (1, 0), the larger the probability it will hit the negative x-axis first near the tip
as opposed to near the origin. E.g. if the process starting at (1, 0) is a two dimensional
fBM with Hurst parameter H, then as H decreases the probability it hits the ε-tip grows
(maybe it scales as εH?)

One can ask a similar question for the graph of one-dimensional fBM and SLE curves.

3 Random process on the line

Theorem 3.1. Let B and W be independent standard Brownian motions on R, and let
σ, c > 0. Define τ to be the first time when B hits the barrier c+ σW , i.e.

τ := inf{t | Bt = c+ σWt}.
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Then conditionally on W , the distribution of τ is almost surely singular to the Lebesgue
measure.

In the proof we will make use of the following standard fact from measure theory.

Proposition 3.2. Let M,N be probability measures on X × Y , a product of standard
Borel spaces. Consider the disintegration of M,N with respect to the X-variable (i.e.
with respect to the canonical projection X × Y → X). We write it as follows:

M(dx, dy) = MX(dx)MY |X(x, dy)

N(dx, dy) = NX(dx)NY |X(x, dy)

where MX (resp. NX ) is the pushforward of M (resp N ) under X×Y → X, and MY |X(x)

(resp. NY |X(x)) is corresponding conditional of y given x. Assume that MX is equivalent
(i.e. mutually absolutely continuous) to NX . Then the following are equivalent:

1. M is singular to N .

2. MY |X(x) is singular to NY |X(x) for MX -almost all x.

Another fact we will need is the Bessel(3)-like behavior of the Brownian motion
immediately before hitting a constant barrier. This is an immediate consequence of
Williams’ Brownian path decomposition theorem (e.g. Theorem VII.4.9 in [8], Corollary
VII.4.6 and Proposition VII.4.8).

Proposition 3.3. Consider a Brownian motion B starting from 0, and let c > 0. Let τ
be the hitting time τ := inf{t | Bt = c}. Then for any ε > 0 the conditional distribution
of (c− BT−s)T−εs=0 conditioned on τ = T > ε is equivalent to that of a Bessel(3) process
starting from 0 restricted to the time interval [0, T − ε].

Proof of Theorem 3.1. Let δτ be the Dirac measure centered on the hitting time τ . Set
D := E[δτ | W ] which is exactly the conditional distribution of τ given W . On the
one hand, by Proposition 3.2 (applied to X := Ω, Y := R), almost sure singularity of
D = D(ω, dt) to the (determinstic) Lebesgue measure dt is equivalent to the singularity of
Pr(dω)D(ω, dt) to Pr(dω)dt. On the other hand, the two spaces X and Y in Proposition 3.2
play symmetric roles, so instead one may disintegrate with respect to the t ∈ R variable.
More precisely, let Π(t, dω) (resp. π(t, dω)) be the disintegration of Pr(dω)D(ω, dt) (resp.
Pr(dω)δτ (ω, dt)) with respect to t. Then the Pr-almost sure singularity of D with respect
to the Lebesgue measure is equivalent to the singularity of Π(t) with respect to Pr

for Lebesgue-almost all t. Meanwhile, the measures Pr(dω)D(ω, dt) and Pr(dω)δτ (ω, dt)

agree when restricted to the σ-algebra σ(W )⊗ Borel(R); therefore, Π(t) and π(t) agree
on σ(W ) for Lebesgue-almost all t. Since D is measurable with respect to σ(W ), it is
enough to verify that π(t) is singular to Pr when restricted to σ(W ).

Using Proposition 3.3 we can characterize π(t) explicitly, at least up to equivalence.
Indeed, the time when B hits c+ σW is exactly the time when

X :=
1√

1 + σ2
B − σ√

1 + σ2
W,

which is itself a standard Brownian motion under Pr, hits the constant barrier c̃ := c√
1+σ2

.

Thus by Proposition 3.3, the distribution of c̃−Xt−· under π(t) is (locally) equivalent to
Bessel(3). We also consider another standard Brownian motion under Pr,

Y :=
σ√

1 + σ2
B +

1√
1 + σ2

W

which is Pr-independent of X, and since τ is measurable with respect to X, Y is not
affected by a change of measure from Pr to π(t). Thus under π(t), X and Y are still
independent, and Yt−· remains (locally) equivalent to a Brownian motion.
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In order to prove the singularity result we only need the restriction of our measures
to σ(W ). Since

W = − σ√
1 + σ2

X +
1√

1 + σ2
Y,

we see that under π(t), Wt−· is locally equivalent to a combination of a Bessel(3) and an
independent Brownian motion. Under Π, however, it is locally a Brownian motion. Thus
the problem reduces to the proving that the local behaviour at time zero of the sum of
independent processes

U ∼ α · BES(3) +
√

1− α2 · BM

is almost surely distinguishable from that of V ∼ BM, where α = − σ√
1+σ2

< 0. This can
be achieved by, say, noting that these processes satisfy a law of iterated logarithm with
different almost sure constants. Namely,

lim sup
s→0

Vs√
2s log log s−1

= 1

lim sup
s→0

Us√
2s log log s−1

≤
√

1− α2 < 1

Question 3.4. Study this phenomenon for a larger class of barriers, e.g. iterated
function systems. Give sharper bounds on the dimension of the the set which a.s.
contains the hitting time.

To study this for iterated function systems, we need a uniform bound on the Radon-
Nikodým derivative of the harmonic measure with respect to the uniform measure, at all
scales.

Here is a formulation of this problem for random fields. Model the (random) barrier
by a function from Rd to Rn, and look when a random field indexed by Rd hits the barrier,
where the hitting index is defined, say, as the index with the smallest L2 norm.

4 Further comments

• Bourgain’s proof

Bourgain [2] proved a dimension drop result for Brownian motion in Rd for any
d. Two properties of BM are used in the clever argument, a uniform Harnack
inequality at all scales and the Markov property, to get independence between
scales. These two properties hold for a wider set of processes in a larger set of
spaces, e.g. Brownian motion on nilpotent groups and fractals.

• Random walk on graphs

This note focuses on the harmonic measure in “small spaces” of dimension at
most two. See [1] for a study of hitting measure for the simple random walk in
the presence of a spectral gap: on highly connected graphs such as expanders,
simple random walk mixes fast, and it is shown that it hits the boundary of sets in
a rather uniform way. More involved behavior arises for graphs which are neither
polynomial in the diameter nor expanders, see [1].

• Let’s play

Rules: each of the k ≥ 2 players picks independently a unit length path (not
necessarily a segment) in the Euclidean plane that contains the origin. Let S be
the union of all the k paths. Look at the harmonic measure from infinity on S. The
player whose path charges the maximal harmonic measure is declared the winner.

Is choosing a segment from the origin to a random point on the unit circle, inde-
pendently by each of the players, a Nash equilibrium?
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