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We derive a simple formula characterizing the distribution of the size of the connected
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1 Introduction

The Erdős-Rényi graph Gn,p, introduced in [8], is the random graph on n vertices
where each pair of vertices is connected with probability p, independently from each
other. For an introduction to this fundamental mathematical model of large networks,
see [6, 13, 11].

We denote by Pn,p the law of Gn,p and En,p the corresponding expectation.
We assume that the vertex set of Gn,p is [n] = {1, . . . , n} and we denote by C the

connected component in Gn,p of the vertex indexed by 1. We denote by |C| the number of
vertices of C.

For any n ∈ N, p ∈ [0, 1], j ∈ Z ∩ (−n,+∞), and k ∈ [n] we define

gn,p(j, k) = (1− p)jk
k−1∏
i=0

n− i+ j

n− i
. (1.1)

The central result of this short note is the following formula:

Proposition 1.1. For any n ∈ N, j ∈ Z ∩ (−n,+∞) and p ∈ [0, 1] we have

En,p [ gn,p(j, |C|) ] =
n+ j

n
(1− Pn+j,p[ |C| > n ]) . (1.2)

Note that if j ≤ 0 then the r.h.s. is simply n+j
n . We prove Proposition 1.1 in Section 2.
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A moment-generating formula for Erdős-Rényi component sizes

Remark 1.2. (i) Define the n × n matrix M by Mj,k = gn,p(j, k) for j ∈ Z ∩ (−n, 0]

and k ∈ [n]. The matrix M is triangular with non-zero diagonal entries, hence it is
invertible. Therefore, Proposition 1.1 uniquely characterizes the distribution of |C|
under Pn,p.

(ii) A generalization of Proposition 1.1 appears in Proposition 1.6 of the recent preprint
[14], see also [14, Remark 1.7]. The random graph process studied in [14] can
be informally defined as follows: starting from the empty graph on the vertex set
[n], cliques are added with a rate that only depends on their size (the dynamical
Erdős-Rényi graph is the special case when only cliques of size two are added).

Proposition 1.1 allows us to give short and self-contained proofs of some delicate
results about the sizes of connected components of the Erdős-Rényi graph in the subcrit-
ical (see Theorem 1.4) as well as the supercritical (see Theorem 1.6) cases. First, we
give a short non-rigorous demonstration of how our formula is used in Remark 1.3.

When we study the phase transition of the Erdős-Rényi graph, it is natural to introduce
a parameter t ∈ R+ and to study Gn,p for

p = p(t, n) = 1− e−t/n. (1.3)

We will fix this relation between p and t throughout this paper.

For any n ∈ N, λ ∈ R, and k ∈ [n] we define

fn,t(λ, k) =

k−1∏
i=0

e−λt ·

(
1 +

λ

1− i
n

)
, (1.4)

so that we have fn,t(
j
n , k) = gn,p(j, k) if j ∈ Z ∩ (−n,+∞) and thus

En,p [ fn,t(λ, |C|) ]
(1.2)
= (1 + λ)

(
1− P(1+λ)n,p[ |C| > n ]

)
, λ ∈ Z

n
∩ (−1,+∞). (1.5)

Remark 1.3. If we fix t < 1 and (non-rigorously) denote Gt(z) = limn→∞En,p(t,n)[z
|C|]

for any z ∈ [0, 1], then for λ = z − 1 we (non-rigorously) obtain

z = 1 + λ
(1.5)
= lim

n→∞
En,p(t,n) [fn,t(λ, |C|)]

(1.4)
= Gt

(
e−λt · (1 + λ)

)
= Gt

(
e(1−z)tz

)
. (1.6)

Thus Gt(z) = −W (−e−ttz)/t, where W is the Lambert-W function. Now it is known that if
p = 1−e−t/n and n→∞ then |C| converges in distribution to the total number of offspring
in a subcritical Galton-Watson branching process with POI(t) offspring distribution (see
[4, Theorem 11.6.1]), i.e., |C| has Borel distribution with parameter t (see [2, Section 2.2]
or [12, Section 7]). The generating function Gt of the Borel distribution with parameter
t is known to be characterized by the identity Gt(z) ≡ ze(Gt(z)−1)t (see [3, Section 10.4]),
which is in turn equivalent to Gt(z) = −W (−e−ttz)/t, therefore a more rigorous version
of (1.6) can be used to show that the distribution |C| weakly converges to the Borel
distribution with parameter t as n→∞.

Now we state our rigorous results. We will use the Bachmann-Landau big O notation:
we write f(n, t) = O (g(n, t)) if there exists a universal constant C such that f(n, t) ≤
Cg(n, t) for any n ∈ N and any t in an explicitly specified domain. We write f(n) =

O (g(n)) if there exists a constant C (that may depend on t) such that f(n) ≤ Cg(n) for
any n ∈ N.

We will give a short and self-contained proof of some results of [9] and [12]:
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A moment-generating formula for Erdős-Rényi component sizes

Theorem 1.4. For any t ∈ [0, 1− n−1/3] we have

En,p(|C|) =
1

1− t
+

t2

2 − t
(1− t)4

1

n
+O

(
1

(1− t)7

1

n2

)
, (1.7)

En,p(|C|2) =
1

(1− t)3
+O

(
1

(1− t)6

1

n

)
. (1.8)

We will prove Theorem 1.4 in Section 3.

Remark 1.5. En,p(|C|) is often called the susceptibility of the Erdős-Rényi graph.

(i) Equation (1.15) of [9, Theorem 1.2] states that if p = µ
n−1 and 0 < µ < 1 then

En,p(|C|) =
1

1− µ
− 2µ2 − µ4

2(1− µ)4

1

n
+O

(
1

n2

)
. (1.9)

Now (1.9) follows from (1.7) if we take into account that µ = (n − 1)(1 − e−t/n).
The proof of (1.9) in [9, Section 2] uses a coupling of the breadth-first exploration
process of C and a process related to a branching random walk. Our proof of (1.7)
is completely different as it only uses Proposition 1.1.

(ii) Equation (1.3) of [12, Theorem 1.1] follows from our (1.7). In fact it already follows
from our short Lemma 3.2, see (3.9). Our (1.8) is equivalent to one of the statements
about S3 in [12, Theorem 3.4]. The proofs of these results in [12, Section 3] use
differential equations (in the variable t) and are completely different from ours.

(iii) Both statements of Theorem 1.4 give something meaningful in the whole subcritical
regime outside the critical window, e.g., the first term of the r.h.s. of (1.7) is much
bigger than the second one, which is much bigger than the third one if (1− t)3n� 1.

We also give a short and self-contained proof of the central limit theorem proved in
[17] for the size of the giant connected component of Gn,p (see also [5], [11] and [15]
for alternative proofs). Our proof only uses Proposition 1.1, see Theorem 1.6 below. We
begin with some notation.

Given some t > 1 let us define the function ϕ : [0, 1)→ R by

ϕ(x) = −xt− ln(1− x). (1.10)

Then ϕ is a convex function satisfying ϕ(0) = 0, ϕ′(0) < 0 and ϕ(1−) = +∞.
Given t > 1 define θ = θ(t) ∈ (0, 1) to be unique number for which

ϕ(θ) = 0, or, equivalently etθ(1− θ) = 1. (1.11)

Note that θ(t) is the survival probability of a branching process with POI(t) offspring
distribution (however, our proof of Theorem 1.6 below does not make use of this fact).

We also note that it follows from ϕ(0) = 0, ϕ′(0) < 0 and ϕ′′(x) > 0, x ∈ [0, 1) that

0 < ϕ′(θ) = −t+
1

1− θ
. (1.12)

Recall the notion of p = p(t, n) = 1− e−t/n from (1.3).

Theorem 1.6. Let us denote by |Cmax| the size of the largest connected component of
Gn,p. For any t > 1 we have

lim
n→∞

Pn,p(t,n)

[
|Cmax| − θn

σ
√
n

≤ x
]

= Φ(x), where σ =

√
θ

ϕ′(θ)
√

1− θ
(1.13)

and Φ(x) is the c.d.f. of the standard normal distribution.
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We prove Theorem 1.6 in Section 4. Our proof is different from earlier proofs,
which use the joint CLT for tree components of various sizes [17], stochastic differential
equations which arise in the context of epidemics [15], and exploration processes [5, 11].

Remark 1.7. We believe that Proposition 1.1 can also be used to give elementary
alternative proofs of some results of [1] on the sizes of connected components in the
critical Erdős-Rényi graph. In particular, let ρu0 denote the sigma-finite excursion length
measure of the “first” excursion of the Brownian motion with parabolic drift which
encodes the block sizes of the standard multiplicative coalescent process at time u ∈ R
(see [1, (64)]). We believe that if t := 1 + un−1/3 and Xn := |C|/n2/3 then the formula

lim
n→∞

n1/3Pn,p(t,n)[Xn > x ] = ρu0 (x,+∞), x ∈ (0,+∞) (1.14)

can be proved using the methods of this paper, as we now argue. If we fix some β ∈ R
and plug λ := bβn2/3c/n into (1.5) then we obtain (after some calculation) the formula

lim
n→∞

n1/3En,p(t,n)

[
exp

(
−βuXn −

1

2
β2Xn +

1

2
βX2

n

)
− 1

]
= β, β ∈ R. (1.15)

Now one can use stochastic calculus to show∫ ∞
0

(
exp

(
−βux− 1

2
β2x+

1

2
βx2

)
− 1

)
dρu0 (x) = β for any β ∈ R. (1.16)

We conjecture that (1.14) can be derived from (1.15) and (1.16).

We discuss the origins of (1.2) in Remark 2.2(i) and an extension of (1.2) to the
stochastic block model in Remark 2.2(ii).

2 Proof of Proposition 1.1

The proof of Proposition 1.1 will easily follow from the change of measure formula
(2.1). An idea similar to (2.1) has already been used in the proof of [4, Theorem 11.6.1].

Lemma 2.1. For any M,N ∈ N, p ∈ [0, 1], and k ∈ {1, . . . , N} we have

PM,p[ |C| = k ] = PN,p[ |C| = k ] · (1− p)(M−N)k
k−1∏
i=1

M − i
N − i

. (2.1)

Proof. If k > M then both sides of (2.1) are zero. Thus w.l.o.g. we can assume k ≤M ∧N .
Now we observe that if we prove (2.1) for some M ≤ N , then we also obtain (2.1) for
M ′ = N and N ′ = M by rearranging the formula (2.1), thus we may assume w.l.o.g. that
k ≤M ≤ N . In order to prove (2.1) it is enough to show(

M − 1

k − 1

)−1

PM,p[ |C| = k ] · (1− p)k(N−M) =

(
N − 1

k − 1

)−1

PN,p[ |C| = k ]. (2.2)

Now if we denote by V (C) the vertex set of C then

PN,p[ |C| = k ] =

(
N − 1

k − 1

)
PN,p[V (C) = [k] ], (2.3)

since PN,p is invariant under the permutation of vertices and there are
(
N−1
k−1

)
subsets of

[N ] with cardinality k that contain the vertex indexed by 1. Using (2.3) for PN,p as well
as PM,p, the formula (2.2) reduces to showing

PM,p[V (C) = [k] ] · (1− p)k(N−M) = PN,p[V (C) = [k] ]. (2.4)

Now (2.4) holds since V (C) = [k] in GN,p if and only if V (C) = [k] in GM,p and there are
no edges in GN,p between [k] and [N ] \ [M ]. This completes the proof of Lemma 2.1.

ECP 23 (2018), paper 24.
Page 4/14

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP126
http://www.imstat.org/ecp/
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Proof of Proposition 1.1. For any n ∈ N, j ∈ Z ∩ (−n,+∞) and p ∈ [0, 1] we have

En,p [ gn,p(j, |C|)]
(1.1)
=

n+ j

n

n∑
k=1

Pn,p[ |C| = k ] · (1− p)jk
k−1∏
i=1

n+ j − i
n− i

(∗)
=

n+ j

n

n∑
k=1

Pn+j,p[ |C| = k ] =
n+ j

n
(1− Pn+j,p[ |C| > n ]) , (2.5)

where in (∗) we used (2.1) with n = N and M = n+ j. The proof of (1.2) is complete.

Remark 2.2. (i) Our original proof of Proposition 1.1 used the so-called rigid repre-
sentation of the time evolution of the component size structure of the Erdős-Rényi
graph, see [16, Section 6.1.1, Case 1]. In a nutshell, if Yk = t − Xk, k ∈ [n],
where X1, X2, . . . , Xn denote independent exponentially distributed random vari-
ables Xk ∼ EXP

(
1− k

n

)
, then τ = min{ k : Y1 + · · · + Yk < 0 } has the same

distribution as |C| under Pn,p, p = 1 − e−t/n. We chose to include an elementary
proof instead in order to keep the paper self-contained.

(ii) It is possible to extend Proposition 1.1 to the stochastic block model, as we now
briefly explain. Consider a random graph in which each vertex has a label, where
the set of labels is {1, . . . , `}. Let n = (n1, . . . , n`) and n = n1 + · · · + n`. We
uniformly choose a labelling of the vertex set [n] from the set of labellings where the
number of vertices with label j is nj for each j = 1, . . . , `. Given the labels, we add
edges independently: a vertex with label i and a vertex with label j is connected
with probability pi,j . Let p = (pi,j)

`
i,j=1. Denote by Pn,p the law of the resulting

random graph Gn,p and En,p the corresponding expectation. This random graph

model is often called the stochastic block model and it is also a special case of the
inhomogeneous random graph model of [7].

Denote by K(n) the set of vectors k = (k1, . . . , k`) for which 0 ≤ kj ≤ nj and
k1 + · · · + k` ≥ 1. Denote by J (n) the set of vectors J = (J1, . . . , J`) for which
−nj ≤ Jj and −n < J1 + · · · + J`. Denote by J≤0(n) the subset of J (n) which
consists of vectors J = (J1, . . . , J`) for which Jj ≤ 0 for any j = 1, . . . , `. Let us
define

gn,p(J, k) :=
∏̀
i,j=1

(1− pi,j)kiJj ·
∏̀
j=1

kj−1∏
i=0

nj + Jj − i
nj − i

, J ∈ J (n), k ∈ K(n). (2.6)

Let C denote the connected component of the vertex indexed by 1 in Gn,p. Denote

by |C|j the number of vertices with label j in C and let |C| = (|C|1, . . . , |C|`). The
generalization of the formula (1.2) to the stochastic block model is

En,p

[
gn,p(J, |C|)

]
=

∑`
j=1(nj + Jj)∑`

j=1 nj
Pn+J,p [ |C|1 ≤ n1, . . . , |C|` ≤ n` ] , J ∈ J (n).

(2.7)
In order to prove (2.7), one needs the following analogue of (2.1), valid for k ∈ K(N):

PM,p

[
|C| = k

]
= PN,p

[
|C| = k

] ∏̀
i,j=1

(1− pi,j)(Mj−Nj)kj

∑`
j=1Nj∑`
j=1Mj

∏̀
j=1

kj−1∏
i=0

Mj − i
Nj − i

(2.8)

Note that if J ∈ J≤0(n) then the r.h.s. of (2.7) is simply
∑`
j=1(nj+Jj)∑`

j=1 nj
. Also note that

the analogue of the property stated in Remark 1.2(i) holds: the system of equations
(2.7) indexed by J ∈ J≤0(n) uniquely characterizes the distribution of |C| under
Pn,p.
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3 Proof of Theorem 1.4

The basic idea is to treat En,p [gn,p(j, |C|)] as the generating function of |C|, c.f. Remark
1.3. Thus if we want to obtain information about the first and second moments of |C|, we
have to “differentiate” with respect to the variable j twice. Since j can only take integer
values, we have to consider the first order discrete differences gn,p(j, |C|) − gn,p(0, |C|)
for j = −1 and j = −2 in the proof of Lemmas 3.2 and 3.4, and the second order discrete
difference (i.e., the difference of the first order differences) in the proof of Lemma 3.5.

The statement of Lemma 3.1 is equivalent to [12, Lemma 3.2] (which is proved
using differential equations), moreover it also classically follows from the fact that |C| is
stochastically dominated by a subcritical branching process if t < 1. Despite of this, we
chose to include a proof of Lemma 3.1 which only uses Proposition 1.1 in order to keep
the paper self-contained.

Recall our convention p = 1− e−t/n from (1.3).

Lemma 3.1. If t ∈ (0, 1) then

En,p
(
|C|i
)

= O
(

1

(1− t)2i−1

)
, i ∈ N. (3.1)

Proof. W.l.o.g. we assume t ∈ [ 1
2 , 1) and 2

1−t ≤ n. For any j ≥ 0 we have

En,p

[(
e−tj/n

(
1 +

j

n

))|C|] (1.4)
≤ En,p

[
fn,t

(
j

n
, |C|

)]
(1.5)
≤ 1 +

j

n
. (3.2)

Note that if we let λ̃ := 1
t − 1 then we have

max
λ

e−λt(1 + λ) = e−λ̃t(1 + λ̃) =
1

t
et−1

(∗)
> e

1
2 (1−t)2 t ∈ (0, 1), (3.3)

where (∗) follows from − ln(t) + (t− 1)− 1
2 (t− 1)2 =

∫ 1

t

∫ 1

s

(
1
u2 − 1

)
duds > 0.

Next we show that if we choose j∗ := bnλ̃c = bn ·
(

1
t − 1

)
c then we have

e−tj
∗/n

(
1 +

j∗

n

)
≥ e 1

4 (1−t)2 . (3.4)

Indeed, if we let f(x) := −tx+ ln(1 + x), then we have f ′(λ̃) = 0 and thus

f
(
λ̃
)
−f

(
j∗

n

)
=

∫ λ̃

j∗/n

∫ λ̃

x

−f ′′(y) dy dx =

∫ λ̃

j∗/n

y − j∗/n
(1 + y)2

dy
(∗∗)
≤ 1

n2

(∗∗∗)
≤ 1

4
(1−t)2, (3.5)

where (∗∗) follows from 0 ≤ j∗ and 0 ≤ λ̃− j∗/n ≤ 1/n, and (∗ ∗ ∗) follows from 2
1−t ≤ n.

Now (3.4) follows from (3.3) and (3.5). We are now ready to prove (3.1):

1 +
1

i!

1

4i
(1− t)2iEn,p

(
|C|i
)
≤ En,p

[ ∞∑
`=0

(
1
4 (1− t)2|C|

)`
`!

]

= En,p

[
e

1
4 (1−t)2|C|

] (3.4)
≤ En,p

[(
e−tj

∗/n

(
1 +

j∗

n

))|C|] (3.2)
≤ 1 +

j∗

n
≤ 1

t
i ∈ N, (3.6)

from which (3.1) follows if t ∈ [ 1
2 , 1).

Lemma 3.2. For any t ∈ [0, 1) we have

1 = (1−t)En,p(|C|)+

(
t− t2

2

)
En,p(|C|2)

n
+

(
t2

2
− t3

6

)
En,p(|C|3)

n2
+O

(
1

(1− t)7n3

)
. (3.7)
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Before we prove Lemma 3.2, let us state an immediate corollary.

Corollary 3.3. Applying (3.1) to En,p(|C|3) in (3.7) we obtain

En,p(|C|) =
1

1− t
+

t2

2 − t
1− t

En,p(|C|2)

n
+O

(
1

(1− t)6n2

)
, t ∈ [0, 1− n−1/3]. (3.8)

Applying (3.1) to En,p(|C|2) in (3.8) we obtain

En,p(|C|) =
1

1− t
+O

(
1

(1− t)4n

)
, t ∈ [0, 1− n−1/3]. (3.9)

Proof of Lemma 3.2. Let k ∈ [n]. We begin by observing that (1.1) is a telescopic product
if j = −1 and then we apply Taylor expansion:

gn,p(−1, k)
(1.1),(1.3)

= etk/n
(

1− k

n

)
=

(
3∑
i=0

1

i!

tiki

ni
+O

(
k4

n4

))(
1− k

n

)
= 1 + (t− 1)

k

n
+

(
t2

2
− t
)
k2

n2
+

(
t3

6
− t2

2

)
k3

n3
+O

(
k4

n4

)
. (3.10)

Combining (3.10) with Proposition 1.1 we obtain

1− 1

n
= 1 + (t− 1)

En,p(|C|)
n

+

(
t2

2
− t
)
En,p(|C|2)

n2
+

(
t3

6
− t2

2

)
En,p(|C|3)

n3
+O

(
En,p(|C|4)

n4

)
. (3.11)

Subtracting one from both sides of (3.11), multiplying the result by −n and applying
(3.1) to En,p(|C|4), we obtain (3.7).

Lemma 3.4. For any t ∈ [0, 1− n−1/3] we have

− 2 = (2t− 2)En,p[|C|] + (1− 4t+ 2t2)
En,p[|C|2]

n
− En,p[|C|]

n

+ (2t− 4t2 +
4

3
t3)
En,p[|C|3]

n2
+O

(
1

(1− t)7n3

)
. (3.12)

Proof. Let k ∈ [n]. We begin with a calculation similar to (3.10):

gn,p(−2, k)
(1.1),(1.3)

= e2tk/n

(
1− k

n

)(
1− k

n− 1

)

=

(
3∑
i=0

1

i!

2itiki

ni
+O

(
k4

n4

))(
1− k

n

)1− k

n

 2∑
j=0

1

nj
+O

(
1

n3

)
= 1+(2t−2)

k

n
+(1−4t+2t2)

k2

n2
− k

n2
+(2t−4t2 +

4

3
t3)

k3

n3
+(1−2t)

k2

n3
− k

n3
+O

(
k4

n4

)
.

(3.13)

From (3.13) and Proposition 1.1 we obtain

1− 2

n
= 1 + (2t− 2)

En,p[|C|]
n

+ (1− 4t+ 2t2)
En,p[|C|2]

n2
− En,p[|C|]

n2

+ (2t− 4t2 +
4

3
t3)
En,p[|C|3]

n3
+ (1− 2t)

En,p[|C|2]

n3
− En,p[|C|]

n3
+O

(
En,p[|C|4]

n4

)
. (3.14)

Subtracting one from both sides of (3.14), multiplying the result by n and applying (3.1)
to the last three terms of (3.14), we obtain (3.12).
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Lemma 3.5. For any t ∈ [0, 1− n−1/3] we have

En,p(|C|2) =
En,p(|C|)
(1− t)2

+O
(

1

(1− t)6n

)
. (3.15)

Proof. Adding (3.12) to twice (3.7) we obtain

0 = (1−2t+t2)
En,p(|C|2)

n
− En,p(|C|)

n
+(t3−3t2 +2t)

En,p(|C|3)

n2
+O

(
1

(1− t)7n3

)
. (3.16)

Rearranging (3.16) and multiplying by n we obtain

En,p(|C|) = (1− t)2En,p(|C|2) + t(t− 1)(t− 2)
En,p(|C|3)

n
+O

(
1

(1− t)7n2

)
. (3.17)

Dividing both sides of (3.17) by (1− t)2 we use (3.1) to obtain (3.15).

Proof of Theorem 1.4. From (3.9) and (3.15) we obtain (1.8).
Plugging (1.8) into (3.8) we obtain (1.7).

4 Proof of Theorem 1.6

We will deduce Theorem 1.6 (i.e., the CLT for |Cmax|) from Lemma 4.1 (i.e., the CLT
for |C|) using the idea of [10, Lemma 2.1]. We deduce Lemma 4.1 from Lemmas 4.2 and
4.3 using that convergence of moment generating functions implies weak convergence
of probability distributions. We prove Lemmas 4.2 and 4.3 by viewing (1.5) as a moment
generating function identity. The crux of the proof of Lemma 4.2 is (4.19) and the crux
of the proof of Lemma 4.3 is (4.33).

Throughout this section we fix t > 1. Recall the notion of ϕ : [0, 1) → R from (1.10)
and θ = θ(t) ∈ (0, 1) from (1.11). Recall the notion of p = p(t, n) = 1− e−t/n from (1.3).

We will often use the shorthand P for Pn,p(t,n) and E for En,p(t,n).
If X is a random variable and A is an event, we will denote E(X;A) := E(X1A).

Lemma 4.1. Let us define σ as in (1.13). For any x ∈ R we have

lim
n→∞

Pn,p(t,n)

[
|C| − θn
σ
√
n
≤ x

]
= (1− θ) + θΦ(x). (4.1)

Before we prove Lemma 4.1, we use it to prove Theorem 1.6.

Proof of Theorem 1.6. Denote by |C1|, |C2|, . . . the non-increasing rearrangement of the
sequence of component sizes of the graph Gn,p. Thus |C1| = |Cmax| and |C2| is the size of
the second largest component. Note that |C1| = |C2| is possible, but we will show that
|C2| < |C1| with high probability.

For any a ∈ R let us denote

kn,a = bθn+ a · σ
√
nc. (4.2)

We will show that for a ≤ b ∈ R we have

lim
n→∞

Pn,p(t,n) [ |C1| ∈ [kn,a, kn,b], |C2| < kn,a ] =
1

θ
lim
n→∞

Pn,p(t,n) [ |C| ∈ [kn,a, kn,b] ] . (4.3)

Now by Lemma 4.1 the right-hand side of (4.3) is Φ (b) − Φ (a). This equation readily
implies lim infn→∞Pn,p(t,n) [ |C2| < kn,a ] ≥ Φ (b)− Φ (a) for any a ≤ b ∈ R, which in turn
implies limn→∞Pn,p(t,n) [ |C2| < kn,a ] = 1 for any a ∈ R. Combining this with Lemma 4.1
and (4.3) we obtain that Theorem 1.6 indeed holds.
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In order to prove (4.3) we observe that if k ∈ [kn,a, kn,b], then

Pn,p [ |C1| = k, |C2| < kn,a ] = Pn−k,p [ |C1| < kn,a ]
n

k
Pn,p [ |C| = k ] . (4.4)

Equation (4.4) is essentially a special case of [10, Lemma 2.1], but we include the proof
of (4.4) here for completeness: if v ∈ [n] and C(v) denotes the connected component of
v in Gn,p and |C∗(v)| denotes the size of the largest connected component of Gn,p \ C(v)

then

Pn,p [ |C1| = k, |C2| < kn,a ] =
1

k

n∑
v=1

Pn,p [ |C1| = k, v ∈ C1, |C2| < kn,a ]

=
1

k

n∑
v=1

Pn,p [ |C(v)| = k, |C∗(v)| < kn,a ] =
n

k
Pn,p [ |C(1)| = k, |C∗(1)| < kn,a ]

=
n

k
Pn,p [ |C| = k ]Pn−k,p [ |C1| < kn,a ] .

This proves (4.4). Next we show that

lim
n→∞

min
k∈[kn,a,kn,b]

Pn−k,p(t,n) [ |C1| < kn,a ] = 1. (4.5)

Let us denote ñ = n− kn,a. For any k ∈ [kn,a, kn,b] we have

Pn−k,p [ |C1| ≥ kn,a ] ≤ n− k
kn,a

Pn−k,p [ |C| ≥ kn,a ] ≤ n

kn,a
Pñ,p [ |C| ≥ kn,a ] ≤

nEñ,p [ |C| ]
(kn,a)2

.

(4.6)
Now we observe that Gñ,p(t,n) is a subcritical Erdős-Rényi graph, since

lim
n→∞

ñ · p(t, n)
(1.3),(4.2)

= lim
n→∞

(
n− bθn+ a · σ

√
nc
)
· (1− e−t/n) = (1− θ)t

(1.12)
< 1.

Note that Eñ,p [|C|] remains bounded as n→∞ by (3.1), hence (4.5) follows from (4.6).
We are now ready to prove (4.3):

lim
n→∞

Pn,p(t,n) [ |C1| ∈ [kn,a, kn,b], |C2| < kn,a ]

(4.4)
= lim

n→∞

kn,b∑
k=kn,a

Pn−k,p(t,n) [ |C1| < kn,a ]
n

k
Pn,p(t,n) [ |C| = k ]

(4.2),(4.5)
=

1

θ
lim
n→∞

Pn,p(t,n) [ |C| ∈ [kn,a, kn,b] ] . (4.7)

This completes the proof of Theorem 1.6 given Lemma 4.1.

We will deduce Lemma 4.1 from Lemmas 4.2 and 4.3 below.
Let us subdivide the interval [n] into five disjoint sub-intervals:

In = [1, n1/4), Jn = [n1/4, n3/4), Kn = [n3/4, θn− n5/8), (4.8)

Ĩn = [θn− n5/8, θn+ n5/8), K̃n = [θn+ n5/8, n]. (4.9)

Note that the choice of the exponents 1
4 , 3

4 and 5
8 above is somewhat arbitrary. Also

note that In and Ĩn are the important intervals, while Jn, Kn and K̃n are insignificant,
i.e., we will see that |C| ∈ In ∪ Ĩn with high probability. The only reason behind the
distinction between Jn and Kn is that we will use different methods to show that Jn and
Kn are insignificant.
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Lemma 4.2. We have

lim
n→∞

Pn,p(t,n) (|C| ∈ In) = 1− θ. (4.10)

Lemma 4.3. For any α ∈ R we have

lim
n→∞

(
Pn,p(t,n) (|C| ∈ In) + En,p(t,n)

(
exp

(
αϕ′(θ)

|C| − θn√
n
− α2

2

θ

1− θ

)
; |C| ∈ Ĩn

))
= 1.

(4.11)

Before we prove Lemmas 4.2 and 4.3, let us deduce Lemma 4.1 from them.

Proof of Lemma 4.1. First note that limn→∞Pn,p(t,n)

(
|C| ∈ In ∪ Ĩn

)
= 1 follows from the

α = 0 case of (4.11). Combining this with (4.10) we obtain

lim
n→∞

Pn,p(t,n)

(
|C| ∈ Ĩn

)
= θ. (4.12)

Denote by µn the conditional distribution of |C|−θn√
n

given |C| ∈ Ĩn. We have

lim
n→∞

∫
exp (αϕ′(θ)x) dµn(x)

(4.10),(4.11),(4.12)
= exp

(
α2

2

θ

1− θ

)
, α ∈ R. (4.13)

The r.h.s. of (4.13) is the moment generating function of N
(

0, θ
1−θ

)
, thus it classically

follows from (4.13) that µn weakly converges to N
(
0, σ2

)
as n→∞, where σ appears in

(1.13). Together with (4.10) and (4.12) this implies Lemma 4.1, given Lemmas 4.2 and
4.3.

We will prove Lemma 4.2 in Section 4.1 and Lemma 4.3 in Section 4.2. The proofs
will make excessive use of (1.5). Let us now introduce some notation that will be used
throughout.

For any λ ∈ (−1,+∞) and any n ∈ N let us define

λ∗n =
1

n
bnλc. (4.14)

Now λ∗n ∈ Z
n ∩ (−1,+∞), which is required if we want to use (1.5).

Having fixed t > 1, we note that λ∗n approximates λ well, i.e., we have

fn,t(λ
∗
n, k)

(1.4)
= fn,t(λ, k) exp

(
O
(
k

n

))
, e−t − 1 ≤ λ ≤ 1, 1 ≤ k ≤ e−t

2
n. (4.15)

We will often implicitly use that for any λ > −1 we have

fn,t(λ
∗
n, k) = 0 if n+ bnλc < k ≤ n and fn,t(λ

∗
n, k) ≥ 0 if k ∈ [n]. (4.16)

Having fixed t > 1, we note that if we let

λ̃ :=
1

t
− 1 then we have x̃ := max

λ
e−λt(1 + λ) = e−λ̃t(1 + λ̃) =

1

t
et−1

(∗)
> 1, (4.17)

where (∗) follows from the inequality ex > 1 + x applied to x = t− 1.
In Sections 4.1 and 4.2 we will dominate fn,t(λ, k) by fn,t(λ̃∗n, k) for k ∈ Jn (defined in

(4.8)) in order to show that “nothing interesting happens” in the interval Jn.
We will write f(n) = Ω (g(n)) if there exists a constant c > 0 (that may depend on t)

such that f(n) ≥ cg(n) for any n ∈ N.
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4.1 Proof of Lemma 4.2

Before we outline the strategy of the proof of Lemma 4.2 in the paragraph below
(4.18), we need to introduce some notation. Let us abbreviate

X = fn,t(−θ, |C|) and X∗
(4.14)

= fn,t((−θ)∗n, |C|).

Recalling the definition of the intervals In and Jn from (4.8), we have

1 + (−θ)∗n
(1.5)
= E [X∗; |C| ∈ In] + E [X∗; |C| ∈ Jn] + E

[
X∗; n3/4 ≤ |C|

]
. (4.18)

We will estimate the three terms on the r.h.s. of (4.18). We will show that the first term
approximates P (|C| ∈ In) as n→∞, while the second and third terms vanish as n→∞.

Proof of Lemma 4.2. Before we start estimating the three terms of (4.18), we observe

fn,t(−θ, k)
(1.4),(1.11)

=

k−1∏
i=0

(
1− θ

1− θ

i
n

1− i
n

)
, k ∈ [n]. (4.19)

Note that (−θ)∗n > e−t − 1 for large enough n, since θ < 1− e−t by (1.10) and (1.11),
so we can apply (4.15) in (4.20) and (4.24) below. Now we bound the three terms of
(4.18).

First term:

E [X∗; |C| ∈ In]
(4.8),(4.15)

= E
[
XeO(n−3/4) ; |C| ∈ In

]
(4.8),(4.19)

= P (|C| ∈ In) +O
(

1√
n

)
.

(4.20)
Second term (E [X∗; |C| ∈ Jn]):

e−(−θ)∗nt

(
1 +

(−θ)∗n
1− i

n

)
(1.11),(4.14),(4.17)

≤
(

1 + x̃

2

)−1

e−λ̃
∗
nt

(
1 +

λ̃∗n
1− i

n

)
, 1 ≤ i ≤ n3/4,

(4.21)

E [X∗; |C| ∈ Jn]
(1.4),(4.8),(4.21)

≤ E

[(
1 + x̃

2

)−|C|
fn,t(λ̃

∗
n, |C|); |C| ∈ Jn

]
(4.8)
≤
(

1 + x̃

2

)−n1/4

E
[
fn,t(λ̃

∗
n, |C|)

]
(1.5)
=

(
1 + x̃

2

)−n1/4 (
1 + λ̃∗n

) (4.14),(4.17)
≤ e−Ω(n1/4).

(4.22)

Third term (E
[
X∗; n3/4 ≤ |C|

]
):

e−(−θ)∗nt

(
1 +

(−θ)∗n
1− i

n

)
≤ eθt(1− θ) (1.11)

= 1 for any i ≥ dn3/4e, (4.23)

E
[
X∗; n3/4 ≤ |C|

] (1.4),(4.23)
≤ fn,t((−θ)∗n, dn3/4e) (4.15)

= fn,t(−θ, dn3/4e)eO(n−1/4)

(4.19)
≤ exp

− θ

1− θ

dn3/4e−1∑
i=0

i

n

 eO(n−1/4) ≤ e−Ω(
√
n). (4.24)

The statement of Lemma 4.2 follows from (4.18), (4.20), (4.22) and (4.24).
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4.2 Proof of Lemma 4.3

Before we outline the strategy of the proof of Lemma 4.3 in the paragraph below
(4.26), we need to introduce some notation. If we define

α∗∗n :=
b
√
nαc√
n

then

(
α√
n

)∗
n

(4.14)
=

α∗∗n√
n

and |α∗∗n − α| ≤
1√
n
. (4.25)

Let us abbreviate

Y ∗ = fn,t

(
α∗∗n√
n
, |C|

)
.

Recall the definitions of the five intervals from (4.8) and (4.9). We have(
1 +

α∗∗n√
n

)(
1− Pn+b

√
nαc,p[ |C| > n ]

) (1.5)
= E[Y ∗; |C| ∈ In] + E[Y ∗; |C| ∈ Jn]

+ E[Y ∗; |C| ∈ Kn] + E[Y ∗; |C| ∈ Ĩn] + E[Y ∗; |C| ∈ K̃n]. (4.26)

We will estimate the five terms on the r.h.s. of (4.26). We will show that the terms
corresponding to In and Ĩn in (4.26) approximate the terms corresponding to In and Ĩn
in (4.11) as n→∞, while the terms corresponding to Jn, Kn and K̃n in (4.26) vanish as
n→∞.

Proof of Lemma 4.3. Before we start estimating the five terms of (4.26), we note that
if k ∈ In ∪ Jn ∪Kn ∪ Ĩn then we can use Taylor expansion of ln(1 + x) to obtain for any
α ∈ R the formula

fn,t

(
α√
n
, k

)
(1.4)
= exp

(
− α√

n
kt+

k−1∑
i=0

ln

(
1 +

α√
n

1− i
n

))

= exp

(
− α√

n
kt+

k−1∑
i=0

α√
n

1

1− i
n

− 1

2

k−1∑
i=0

α2

n

1

(1− i
n )2

+O
(

1√
n

))

= exp

(
α√
n

(
−kt+ n

∫ k
n

0

1

1− x
dx

)
− α2

2

∫ k
n

0

1

(1− x)2
dx+O

(
1√
n

))
(1.10)

= exp

(
α
√
nϕ

(
k

n

)
− α2

2

k
n

1− k
n

+O
(

1√
n

))
. (4.27)

Now we can estimate the five terms on the r.h.s. of (4.26).

First term:

E[Y ∗; |C| ∈ In]
(1.10),(4.8),(4.27)

= P (|C| ∈ In) +O
(
n−1/4

)
. (4.28)

Second term: The bound

E[Y ∗; |C| ∈ Jn] ≤ e−Ω(n1/4) (4.29)

can be deduced analogously to (4.22) using that for large enough n we have

e
−α
∗∗
n√
n
t

1 +

α∗∗n√
n

1− i
n

 (4.14),(4.17)
≤

(
1 + x̃

2

)−1

e−λ̃
∗
nt

(
1 +

λ̃∗n
1− i

n

)
, 1 ≤ i ≤ n3/4. (4.30)

Third term (E[Y ∗; |C| ∈ Kn]): We note

fn,t

(
α∗∗n√
n
, k
)

fn,t

(
(α−1)∗∗n√

n
, k
) (4.27)

= exp

(√
nϕ

(
k

n

)
+O(1)

)
(1.10),(1.11),(4.8)

≤ e−Ω(n1/8), k ∈ Kn, (4.31)
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E[Y ∗; |C| ∈ Kn]
(4.31)
≤ e−Ω(n1/8)E

[
fn,t

(
(α− 1)∗∗n√

n
, |C|

)
; |C| ∈ Kn

]
(1.5)
≤ 2e−Ω(n1/8). (4.32)

Fourth term (E[Y ∗; |C| ∈ Ĩn]): If x ∈ [−n1/8, n1/8], i.e., if k = bθn+ x
√
nc ∈ Ĩn then

fn,t

(
α√
n
, k

)
(1.11),(4.27)

= exp

(
αϕ′(θ)x− α2

2

θ

1− θ
+O

(
n−1/4

))
, (4.33)

fn,t

(
α∗∗n√
n
, k

)
(4.25),(4.33)

= exp

(
αϕ′(θ)x− α2

2

θ

1− θ

)
+O

(
n−1/4fn,t

(
α∗∗n√
n
, k

))
, (4.34)

E[Y ∗; |C| ∈ Ĩn]
(1.5),(4.9),(4.34)

= E

[
exp

(
αϕ′(θ)

|C| − θn√
n
− α2

2

θ

1− θ

)
; |C| ∈ Ĩn

]
+O

(
n−1/4

)
.

(4.35)
Fifth term (E[Y ∗; |C| ∈ K̃n]): We observe that

fn,t

(
α∗∗n√
n
, bθn+ n1/8

√
nc
)

fn,t

(
(α+1)∗∗n√

n
, bθn+ n1/8

√
nc
) (4.33)

= exp
(
−ϕ′(θ)n1/8 +O(1)

) (1.12)
≤ e−Ω(n1/8), (4.36)

exp

(
−α
∗∗
n√
n
t

)1 +

α∗∗n√
n

1− i
n

 (1.12)
≤ exp

(
− (α+ 1)∗∗n√

n
t

)1 +

(α+1)∗∗n√
n

1− i
n

 , bθn+n1/8
√
nc ≤ i,

(4.37)

fn,t

(
α∗∗n√
n
, k

)
(1.4),(4.36),(4.37)

≤ e−Ω(n1/8)fn,t

(
(α+ 1)∗∗n√

n
, k

)
, bθn+ n1/8

√
nc ≤ k, (4.38)

E[Y ∗; |C| ∈ K̃n]
(4.9),(4.38)
≤ e−Ω(n1/8)E

[
fn,t

(
(α+ 1)∗∗n√

n
, |C|

)
; |C| ∈ K̃n

]
(1.5)
≤ 2e−Ω(n1/8).

(4.39)
Finally, the proof of the fact that the error term Pn+b

√
nαc,p[ |C| > n ] that appears on

the l.h.s. of (4.26) goes to zero as n→∞ is analogous to the α = 0 case of (4.39). The
statement of Lemma 4.3 follows from (4.26), (4.28), (4.29), (4.32), (4.35) and (4.39).
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