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Abstract

The trie-based radix sort algorithm stores pairwise different infinite binary strings in
the leaves of a binary tree in a way that the Ulam-Harris coding of each leaf equals a
prefix (that is, an initial segment) of the corresponding string, with the prefixes being
of minimal length so that they are pairwise different. We investigate the radix sort tree
chains – the tree-valued Markov chains that arise when successively storing the finite
collections of random infinite binary strings Z1, . . . , Zn, n = 1, 2, . . . according to the
trie-based radix sort algorithm, where the source strings Z1, Z2, . . . are independent
and identically distributed. We establish a bijective correspondence between the full
Doob–Martin boundary of the radix sort tree chain with a symmetric Bernoulli source
(that is, each Zk is a fair coin-tossing sequence) and the family of radix sort tree
chains for which the common distribution of the Zk is a diffuse probability measure
on {0, 1}∞. In essence, our result characterizes all the ways that it is possible to
condition such a chain of radix sort trees consistently on its behavior “in the large”.
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1 Introduction

Various sorting algorithms proceed by storing the data in the leaves of a tree. If the
data are infinite binary strings z1, . . . , zn ∈ {0, 1}∞, then a natural choice for the tree is
the rooted binary tree with n leaves chosen such that the Ulam-Harris coding of each of
the leaves coincides with a finite initial segment (otherwise called a prefix or left factor)
of one of the zj , and such that these initial segments are pairwise different and have
minimal length (see below for a fuller description). This data structure is the basis of the
Radix Sort algorithm. The tree R(z1, . . . , zn) in whose leaves the n strings are stored is
sometimes called a trie, alluding to the word retrieval.

When the n strings are random, drawn i.i.d. from a diffuse probability distribution ν
on {0, 1}∞, then this construction gives rise to a random tree νRn := R(Z1, . . . , Zn). In
order to obtain a probabilistic analysis of the Radix Sort algorithm, asymptotic properties
of these random trees as n→∞ have been considered for the symmetric Bernoulli or
unbiased memoryless source model, where ν is the fair coin tossing measure, e.g. in [11]
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Radix sort chain

ch. 5 and [9] §5.2.2., and for more general inputs of random strings in [15]. The density
model, where ν is the image under the binary expansion of an absolutely continuous
probability measure on [0, 1], was considered in [2]. Dynamical sources appear in [1];
these include Markovian inputs, where ν is the shift-invariant distribution of a Markov
chain, see [14], [10].

In this paper we analyze the tree-valued Markov chains (νRn)n∈N from a more
synoptic point of view. We show that any such chain is a harmonic transform of the
Markov chain (γRn)n∈N, with γ the fair coin-tossing measure, and we prove that the
family (νRn)n∈N as ν varies constitute the full Doob–Martin boundary of (γRn)n∈N.
Loosely speaking, this means that all consistent ways of conditioning a chain of radix
sort trees “in the large” are described by precisely the family (νRn)n∈N.

In order to state our main result more formally, we first fix some notation. Denote
by {0, 1}? :=

⊔∞
k=0{0, 1}k the set of finite tuples or words drawn from the alphabet

{0, 1} (with the empty word ∅ allowed) – the symbol
⊔

emphasizes that this is a disjoint
union. Write an `-tuple v = (v1, . . . , v`) ∈ {0, 1}? more simply as v1 . . . v` and set |v| = `.
Define a directed graph with vertex set {0, 1}? by declaring that if u = u1 . . . uk and
v = v1 . . . v` are two words, then (u, v) is a directed edge (that is, u → v) if and only
if ` = k + 1 and ui = vi for i = 1, . . . , k. Call this directed graph the complete rooted
binary tree. Say that u < v for two words u = u1 . . . uk and v = v1 . . . v` in {0, 1}? if
k < ` and u1 . . . uk = v1 . . . vk; that is, u < v if there exist words w0, w1, . . . , w`−k with
u = w0 → w1 → . . . → w`−k = v. This partial order extends to {0, 1}? t {0, 1}∞ in the
obvious way: if u ∈ {0, 1}? and v ∈ {0, 1}∞, then u < v when u = u1 . . . uk and v = v1v2 . . .

with u1 . . . uk = v1 . . . vk (and no two elements of {0, 1}∞ are comparable). It will be
convenient to introduce the notation τ(y) := {z ∈ {0, 1}∞ : y < z} for y ∈ {0, 1}?.

A finite rooted binary tree is a non-empty subset t of {0, 1}? with the property that
if v ∈ t and u ∈ {0, 1}? is such that u → v, then u ∈ t. The vertex ∅ (that is, the empty
word) belongs to any such tree t and is the root of t. The leaves of t are the elements
v ∈ t such that if v → w, then w /∈ t, and we use the notation L(t) for the leaves of t. A
finite rooted binary tree is uniquely determined by its leaves: it is the smallest rooted
binary tree that contains the set of leaves and it consists of the leaves and the points
u ∈ {0, 1}? such that u < v for some leaf v. In general, write

T(y1, . . . , ym) :=

m⋃
j=1

{u ∈ {0, 1}? : u ≤ yj}

for the smallest finite rooted binary tree containing y1, . . . , ym ∈ {0, 1}?; the leaves of
this tree form a subset of {y1, . . . , ym} and this subset is proper if and only if yi < yj for
some pair 1 ≤ i 6= j ≤ m.

A collection z1, . . . , zn of distinct elements of {0, 1}∞ determines a finite rooted binary
tree in the following manner. For n = 1, put H1,1(z1) := 0 and ζ1,1(z1) := ∅. For n ≥ 2 and
1 ≤ j ≤ n, let

Hn,j(z1, . . . , zn) := min{` : (zj,1, . . . , zj,`) 6= (zk,1, . . . , zk,`), k 6= j}

be the minimal length at which a prefix of zj differs from the prefixes of the same length
of all the other zk, k 6= j, and denote the corresponding prefix by

ζn,j(z1, . . . , zn) := (zj,1, . . . , zj,Hn,j(z1,...,zn)) ∈ {0, 1}
?, 1 ≤ j ≤ n. (1.1)

The words ζn,j(z1, . . . , zn), 1 ≤ j ≤ n, are distinct and ζn,j(z1, . . . , zn) < zj for 1 ≤ j ≤
n. Note that if σ is a permutation of [n] := {1, . . . , n}, then

ζn,σ(j)(zσ(1), . . . , zσ(n)) = ζn,j(z1, . . . , zn). (1.2)
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The radix sort tree determined by the input z1, . . . , zn is defined as

R(z1, . . . , zn) := T(ζn,1(z1, . . . , zn), . . . , ζn,n(z1, . . . , zn)).

Thus, R(z1, . . . , zn) is the finite rooted binary tree whose n leaves are coded by the n
finite strings of (1.1). Observe that

R(z1, . . . , zn) = R(zσ(1), . . . , zσ(n)) (1.3)

for any permutation σ of [n].
Let Z1, Z2, . . . be i.i.d. {0, 1}∞-valued random variables with common distribution

some diffuse probability measure ν. Then Z1, Z2, . . . are a.s. pairwise distinct, and on
this event we set νRn := R(Z1, . . . , Zn). When ν is fair coin-tossing measure γ (that is, γ
is the infinite product of the uniform measure on {0, 1}), we drop the ν and simply write
Rn for γRn. It is not hard to see that (νRn)n∈N is a Markov chain; we call it a radix sort
tree chain.

Note for y ∈ {0, 1}∗ and n ≥ k ≥ 2 that with probability one

#{1 ≤ j ≤ n : y ≤ ζn,j(Z1, . . . , Zn)} = k

if and only if
#{1 ≤ j ≤ n : Zj ∈ τ(y)} = k,

Thus,

ν(τ(y)) = lim
n→∞

1

n
#{1 ≤ j ≤ n : y ≤ ζn,j(Z1, . . . , Zn)} P− a.s.

and ν can be recovered almost surely from the tail σ-field of (νRn)n∈N; in particular,
different choices of ν result in different distributions for (νRn)n∈N. It follows from (1.3)
and the Hewitt–Savage zero–one law that the tail σ-field of (νRn)n∈N is P-a.s. trivial.

In order to describe our results, we need to use some notions and facts from Doob–
Martin boundary theory. A quick summary tailored to the sort of setting we are in of a
process which “goes off to infinity” and never revisits states may be found in [4, 5], where
there are also references to expositions of the general theory for arbitrary transient
Markov chains following on from the seminal paper [3]. Analyses of binary-search-tree
and digitial-search-tree chains from the Doob–Martin point of view are presented in [4].

Let Sn be the set of trees that can arise as R(z1, . . . , zn) for some choice of z1, . . . , zn
and set S =

⊔
n∈N Sn. Of course, S1 = {∅}. For n ≥ 2, a finite rooted binary tree

t with n leaves belongs to Sn if and only if whenever u1u2 . . . um−1um ∈ L(t), then
u1u2 . . . um−1ūm ∈ t, where 0̄ := 1 and 1̄ := 0.

Given a binary tree t ∈ S with M(t) leaves (that is, t ∈ SM(t)), write Rt
1, R

t
2, . . . , R

t
M(t)

for the bridge process obtained by conditioning R1, . . . , RM(t) on the event {RM(t) = t}.
This Markov chain has the same backward transition probabilities as (Rn)n∈N; that is,

P{Rt
n = r |Rt

n+1 = s} = P{Rn = r |Rn+1 = s}

for n+ 1 ≤M(t).
An infinite bridge for (Rn)n∈N is a Markov chain (R∞n )n∈N with R∞n ∈ Sn for n ∈ N

and the same backward transition probabilities as (Rn)n∈N. We show in Sec. 4 that
each chain (νRn)n∈N is an infinite bridge for (Rn)n∈N. Any infinite bridge is a Doob
h-transform of (Rn)n∈N; that is, it has forward transition probabilities of the form

P{R∞n+1 = t |R∞n = s} = h(s)−1P{Rn+1 = t |Rn = s}h(t),

where the nonnegative function h is given up to a constant multiple by

h(t) =
P{R∞n = t}
P{Rn = t}

.
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The function h is harmonic for (Rn)n∈N; that is,∑
t

P{Rn+1 = t |Rn = s}h(t) = h(s).

Conversely, any Markov chain with initial state the trivial tree ∅ and transition proba-
bilites that arise from those of (Rn)n∈N through the h-transform construction for some
nonnegative harmonic function h (normalized, without loss of generality, so that h(∅) = 1)
is an infinite bridge.

The distribution of an infinite bridge is a mixture of distributions of infinite bridges
with almost surely trivial tail σ-fields. Equivalently, the collection of nonnegative har-
monic functions h with h(∅) = 1 is a compact convex set (for the product topology on RS+)
and any such function is a unique convex combination of the extreme points of this set.
In particular, there is a bijective correspondence between the extreme points of these
two sets; that is between the set of infinite bridges with trivial tail σ-fields and extremal
normalized nonnegative harmonic functions.

One way to construct infinite bridges is to look for sequences (tk)k∈N withM(tk)→∞
as k →∞ such that initial segments of the finite bridges (Rtk

1 , R
tk
2 , . . . , R

tk
M(tk)

) converge
in distribution as k →∞. A necessary condition for an infinite bridge to have an almost
surely trivial tail σ-field is that is arises from such a construction.

The nonnegative harmonic function corresponding to an infinite bridge constructed
in this way (normalized to have h(∅) = 1) is

h(s) = lim
k→∞

K(s, tk), (1.4)

where

K(s, t) :=
P{Rt

M(s) = s}
P{RM(s) = s}

=
P{RM(t) = t |RM(s) = s}

P{RM(t) = t}
(1.5)

is the Doob–Martin kernel. A necessary condition for a normalized nonnegative harmonic
function to be an extreme point is that it arises as such a limit.

The following is our main result characterizing all the ways that it is possible to
condition the radix sort tree chain with inputs distributed according to fair coin-tossing
measure. We prove this result in Section 6.

Theorem 1.1. An infinite bridge for the radix sort tree chain with inputs distributed
according to fair coin-tossing measure on {0, 1}∞ has an almost surely trivial tail σ-
field if and only if it is a Markov chain with the same distribution as the radix sort
tree chain with inputs distributed according to some diffuse probability measure on
{0, 1}∞. Consequently, the distribution of an infinite bridge for the radix sort tree
chain with inputs distributed according to fair coin-tossing measure is a unique mixture
of distributions of radix sort tree chains with inputs distributed according to diffuse
probability measures on {0, 1}∞. Moreover, an infinite bridge (R∞n )n∈N has an almost
surely trivial tail σ-field if and only if there is a sequence (tk)k∈N with M(tk) → ∞ as
k →∞ such that for all n ∈ N the initial segment (Rtk

1 , . . . , R
tk
n ) converges in distribution

to (R∞1 , . . . , R
∞
n ) as k →∞.

We mention in passing that ideas similar to those in this paper apply to another
Markov chain that is closely related to the radix sort tree chain. We describe this chain
and make some comments about the counterpart of Theorem 1.1 for it in the next few
paragraphs.

The out-degree 1 vertices in the radix sort tree R(z1, . . . , zn) for the input sequence
z1, . . . , zn don’t provide any information that is useful for the purpose of sorting z1, . . . , zn
into lexicographical order. The associated PATRICIA tree R̄(z1, . . . , zn) := Φ◦R(z1, . . . , zn),
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where Φ is the transformation that takes a binary tree, removes the out-degree 1 vertices,
and “closes up the gaps,” doesn’t lose any information that is relevant for sorting the
inputs (PATRICIA is an acronym for “Practical Algorithm To Retrieve Information Coded
In Alphanumeric”). PATRICIA trees were invented independently in [12, 6]. Features of
PATRICIA trees for random inputs were first studied in [8] and this topic has since been
the subject of quite a large literature.

Given i.i.d. {0, 1}∞-valued random variables Z1, Z2, . . .with common distribution some
diffuse probability measure ν, set

ν
R̄n := R̄(Z1, . . . , Zn). When ν is the fair coin-tossing

measure γ, drop the ν and simply write Rn for
γ
R̄n. As the composition of a Markov chain

with a non-injective function, the process (
ν
R̄n)n∈N is not a priori Markovian. Indeed,

it is not hard to see that Dynkin’s classical criterion for the composition of a Markov
chain with a function to be Markovian (see, for example, Equation (8) of [13]) does not
hold. However, it follows from the description of the backward transition probabilities of
(νRn)n∈N in Section 3 that Dynkin’s criterion does apply to show that the time-reversal
of (

ν
R̄n)n∈N is Markovian, so that (

ν
R̄n)n∈N is itself Markovian.

We remarked above that ν can be recovered with probability one from the sample
paths of (νRn)n∈N and hence different choices of ν result in different distributions for
(νRn)n∈N. The latter is not true for the PATRICIA chain: as a trivial example, if ν′ = γ

and ν′′ = δ0 ⊗ γ, then (
ν′

R̄n)n∈N and (
ν′′

R̄n)n∈N have the same distribution. This obser-
vations suggest the definition of an equivalence relation on diffuse probability measures
on {0, 1}∞, where we regard two probability measures ν′ and ν′′ to be equivalent if

(ν
′
Rn)n∈N and (ν

′′
Rn)n∈N have the same distribution – it is not difficult to characterize

this equivalence relation more simply and concretely, but we don’t do so here.

If we correct for this lack of uniqueness, then it is natural to conjecture that a close
analogue of Theorem 1.1 holds: namely, the extremal infinite bridges for the PATRICIA
chain built from i.i.d. fair coin-tossing measure distributed inputs are exactly the chains
of the form (

ν
R̄n)n∈N as ν ranges over some complete collection of equivalence class

representatives. The family of extremal infinite bridges for the PATRICIA chain is
actually much richer than this, as we note in Remark 6.2. We will present the details in
a forthcoming paper.

The structure of the remainder of the paper is as follows. In Sections 2, 3, and 4
we obtain the forward transition probabilities, backward transition probabilities, and
Doob–Martin kernels of the radix sort tree chains. In Section 4 we also show that each
radix sort tree chain (νRn)n∈N is a Doob h-transform of the Markov chain (Rn)n∈N. We
consider infinite bridges for the Markov chain (Rn)n∈N in Section 5 and introduce an
auxiliary consistent labeling of the leaves of the state of the bridge at each time n by
[n] := {1, . . . , n} such that, intuitively, these labelings determine a labeling of the limit
of the bridge at time∞ and the whole bridge path can be recovered from the limit and
its labeling. We prove two results, Theorem 6.1 and Corollarly 6.3, in Section 6 that
together establish Theorem 1.1.

2 Forward transition probabilities

Recall that Sn is the set of trees that can arise as R(z1, . . . , zn) for some choice of
distinct z1, . . . , zn ∈ {0, 1}∞. It is clear that R(z1, . . . , zn) is the unique finite rooted
binary tree t ∈ Sn with the following property: if L(t) = {y1, . . . , yn}, then there is a
permutation π of [n] such that zi ∈ τ(yπ(i)) for i ∈ [n].

For n ∈ N, the distribution of νRn is specified by

P{νR1 = ∅} = 1
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and, for n ≥ 2 and t ∈ Sn with {y1, . . . , yn} = L(t),

P{νRn = t} = P{{ζn,1(Z1, . . . , Zn), . . . , ζn,n(Z1, . . . , Zn)} = {y1, . . . , yn}}}

= n!

n∏
k=1

ν(τ(yk)).
(2.1)

In particular,

P{Rn = t} = n!

n∏
k=1

γ(τ(yk)) = n!

n∏
k=1

2−|yk|. (2.2)

The radix sort chain (νRn)n∈N has the following forward transition dynamics. Con-
sider s ∈ Sn. There are two classes of trees t ∈ Sn+1 such that

P{νRn+1 = t | νRn = s} > 0.

Case I. Here t ∈ Sn+1 is a tree with L(t) = L(s) t {w}, where w = xūm for some
x = u1u2 . . . um−1 with xum ∈ s \ L(s). In this case,

P{νRn+1 = t | νRn = s} = ν(τ(w)). (2.3)

In particular,

p(s, t) := P{Rn+1 = t |Rn = s} = 2−|w| = 2−(|x|+1). (2.4)

Case II. Here t ∈ Sn+1 is a tree with L(t) = (L(s) \ {y}) t {y′, y′′}, where y =

u1u2 . . . um−1um ∈ L(s), y′ = u1u2 . . . um−1umv1 . . . vp and y′′ = u1u2 . . . um−1umv1 . . . v̄p
for some p ≥ 1 and v1, . . . , vp ∈ {0, 1}. In this case,

P{νRn+1 = t | νRn = s} = ν(τ(y′))
ν(τ(y′′))

ν(τ(y))
+ ν(τ(y′′))

ν(τ(y′))

ν(τ(y))

= 2
ν(τ(y′))ν(τ(y′′))

ν(τ(y))
.

(2.5)

In particular,

p(s, t) := P{Rn+1 = t |Rn = s} = 2
2−|y

′|2−|y
′′|

2−|y|
. (2.6)

For later use we note that, with d := T(v1 . . . vp−1vp, v1 . . . vp−1v̄p), this may be written as

p(s, t) = 2−|y|P{R2 = d}. (2.7)

3 Backward transition probabilities

Note that if s ∈ Sn and t ∈ Sn+1 are such that P{νRn+1 = t | νRn = s} > 0, then the
leaf set of s is obtained either by removing a leaf from the leaf set of t that has a sibling
which is not a leaf (corresponding to Case I above), in which case (1.2) implies that

P{νRn = s | νRn+1 = t} =
1

n+ 1
, (3.1)

or by removing two sibling leaves from the leaf set of t and replacing them by a single
new leaf positioned at the start of the path that led from the rest of t to their common
parent (corresponding to Case II above), in which case (1.2) implies that

P{νRn = s | νRn+1 = t} =
2

n+ 1
. (3.2)
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These backward transition probabilities can also be obtained directly. We have, of course,
that

P{νRn = s | νRn+1 = t} =
P{νRn = s}P{νRn+1 = t | νRn = s}

P{νRn+1 = t}
. (3.3)

Write L(s) = {y1, . . . , yn}. In Case I (using the notation that was introduced to first
describe this case),

P{νRn = s} = n!

n∏
k=1

ν(τ(yk)) (3.4)

by (2.1),
P{νRn+1 = t | νRn = s} = ν(τ(w)) (3.5)

by (2.3), and

P{νRn+1 = t} = (n+ 1)!

(
n∏
k=1

ν(τ(yk))× ν(τ(w))

)
(3.6)

by (2.1). Substituting (3.4), (3.5), and (3.6) into (3.3) gives (3.1). In Case II (also using
the notation that was introduced to first describe this case), (3.4) still holds,

P{νRn+1 = t | νRn = s} =
2ν(τ(y′))ν(τ(y′′))

ν(τ(y))
(3.7)

by (2.5),

P{νRn+1 = t} = (n+ 1)!

(∏n
k=1 ν(τ(yk))

ν(τ(y))
× ν(τ(y′))× ν(τ(y′′))

)
, (3.8)

by (2.1). Substituting (3.4), (3.7), and (3.8) into (3.3) gives (3.2).
The above observations are summarized in the following Definition and Remark.

Definition 3.1. Suppose that t ∈ Sn+1 and v = v1 . . . vm is a leaf of t. If v1 . . . v̄m is not a
leaf of t, let κ(t, v) ∈ Sn be the tree t\{v} (that is, κ(t, v) is the tree with the same leaf
set as t except that v has been removed).

If v1 . . . v̄m is also a leaf of t, then there is a largest ` < m such that v1 . . . v` and
v1 . . . v`−1v̄` are both vertices of t, and in this case let κ(t, v) ∈ Sn be the tree t\({v1 . . . vp :

`+ 1 ≤ p ≤ m} ∪ {v1 . . . vm−1v̄m}) (that is, κ(t, v) is the tree with the same leaf set as t

except that v and its sibling leaf v1 . . . vm−1v̄m have both been removed and replaced by
the single leaf v1 . . . v`).

Remark 3.2. Using Definition 3.1, we can describe the backward evolution of (νRn)n∈N
by saying that conditional on {νRn+1,

νRn+2, . . .} one of the n + 1 leaves of νRn+1 is
chosen uniformly at random and, denoting this leaf by Vn+1, the random tree νRn is
constructed as κ(νRn+1, Vn+1).

4 The Doob-Martin kernel and harmonic functions

Suppose that s ∈ Sm and t ∈ Sm+n are such that P{Rm+n = t |Rm = s} > 0, a state of
affairs which we denote by s/t. Write x1, . . . , xp for the vertices of s that have out-degree
1 and y1, . . . , yq for the leaves of s. Of course, q = m, but it will be clearer to use this
alternative notation. Then t is obtained from s by attaching subtrees to some of the
vertices {x1, . . . , xp} ∪ {y1, . . . , yq}. More precisely, t \ s = (

⊔p
i=1 ai) t (

⊔q
j=1 bj) where

the subtrees ai and bj are as follows. Suppose that xi = xi1 . . . xifi and ui ∈ {0, 1} is
such that xi1 . . . xifiui = xiui /∈ s, then either ai = ∅ (that is, no subtree is attached
to xi, in which case we set αi = 0) or there is an αi ≥ 1 and ci ∈ Sαi

such that
ai = {xiuiw : w ∈ ci}. Suppose that yj = yj1 . . . yjgj , then either bj = ∅ (that is, no
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Radix sort chain

subtree is attached to yj , in which case we set βj = 0) or there is a βj ≥ 1 and dj ∈ Sβj+1

such that bj = {yjw : w ∈ dj} \ {yj}. We have n =
∑
i αi +

∑
j βj . Given a tree

r ∈ Sh for some h ∈ N, set M(r) = h (so that M(r) is the number of leaves of r) and
π(r) := P{Rh = r}.

Then, by iterating the arguments that lead to (2.4) and (2.7),

P{Rm+n = t | Rm = s}

=
n!∏

i αi!
∏
j βj !

∏
i

(2−(|xi|+1))αi

∏
j

(2−|yj |)βj

∏
αi 6=0

π(ci)
∏
βj 6=0

π(dj).

Also, because of (2.2),

P{Rm+n = t}

= (m+ n)!
∏
αi 6=0

(2−(|xi|+1))αi
1

αi!
π(ci)

∏
βj=0

(2−|yj |)
∏
βj 6=0

(2−|yj |)(βj+1) 1

(βj + 1)!
π(dj)

=
(m+ n)!∏

i αi!
∏
j(βj + 1)!

∏
i

(2−(|xi|+1))αi

∏
j

(2−|yj |)(βj+1)
∏
αi 6=0

π(ci)
∏
βj 6=0

π(dj).

Note also, that
s / t⇐⇒ {v : v ∈ L(t), yj ≤ v} 6= ∅, 1 ≤ j ≤ m.

Therefore, the Doob-Martin kernel is

K(s, t) =
P{Rm+n = t | Rm = s}

P{Rm+n = t}

= 1{s / t}
∏m
j=1 2|yj |(βj + 1)

(n+ 1) · · · (n+m)

= 1{s / t}
∏m
j=1 2|yj |#{v : v ∈ L(t), yj ≤ v}

M(t)(M(t)− 1) · · · (M(t)−m+ 1)

=

∏m
j=1 2|yj |#{v : v ∈ L(t), yj ≤ v}

M(t)(M(t)− 1) · · · (M(t)−m+ 1)
.

Remark 4.1. It follows that, for s ∈ Sm, m ∈ N with leaves L(s) = {y1, . . . , ym} and a
sequence (tn)n∈N with limn→∞M(tn) =∞, the sequence K(s, tn) converges as n→∞
if and only if the limit of

m∏
j=1

[
#{v : v ∈ L(tn), yj ≤ v}

M(tn)

/
γ(τ(yj))

]
(4.1)

exists, in which case the limits coincide. Recall that for y ∈ {0, 1}? the cardinality
#{1 ≤ j ≤ n : y ≤ ζn,j(z1, . . . , zn)} equals #{1 ≤ j ≤ n : y ≤ zj} if the latter cardinality is
at least two and it is zero otherwise. Hence a sufficient condition for the limit as n→∞
of K(s, tn) (equivalently, of (4.1)) to exist for all s ∈ S is that tn = R(z1, . . . , zn) for a
sequence (zn)n∈N of distinct elements of {0, 1}∞ such that for some probability measure
ν on {0, 1}∞ we have

ν{z ∈ {0, 1}∞ : y ≤ z} = lim
n→∞

1

n
#{1 ≤ j ≤ n : y ≤ zj}

for all y ∈ {0, 1}?; that is, the sequence of empirical probability distributions
( 1
n

∑n
j=1 δzj )n∈N converges weakly to ν (where we put the usual topology on {0, 1}∞

for which the sets τ(y) are both closed and open). In this case

lim
n→∞

K(s, tn) = νh(s) :=
∏

a∈L(s)

ν(τ(a))

γ(τ(a))
. (4.2)
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Radix sort chain

The function νh is excessive as a pointwise limit of excessive functions. Moreover, if ν is
diffuse, then

lim
n→∞

K(s, νRn) = νh(s), P− a.s.

for all s ∈ S.

It is immediate from the expressions for the forward transition probabilities derived
in Section 2 that

P{νRn+1 = t | νRn = s} = νh(s)−1P{Rn+1 = t |Rn = s} νh(t).

Thus, the nonnegative function νh is harmonic, the Markov chain (νRn)n∈N is the
h-transform of (Rn)n∈N with the harmonic function νh, and hence (νRn)n∈N is an infinite
bridge for (Rn)n∈N. Recall that the tail σ-field of (νRn)n∈N is P-a.s. trivial. It follows that
the normalized nonnegative harmonic function νh is extremal. We show in Theorem 6.1
and Corollary 6.3 that the extremal normalized nonnegative harmonic functions are
precisely those of this form and that they are, in turn, precisely the harmonic functions
that arise as a limit of the form r 7→ limk→∞K(r, tk), where (tk)k∈N is such that M(tk)→
∞ as k →∞. In the language of Doob–Martin theory, this shows that the the minimal
Doob–Martin boundary of the radix sort tree chain (Rn)n∈N coincides with the full Doob–
Martin boundary. It may be feasible to prove this fact “bare–hands”, but the simpler
indirect route we take is, we believe, more informative.

5 Labeled infinite bridges

Recall that the backward transition dynamics of any finite bridge (Rt
n)
M(t)
n=1 and any

infinite bridge (R∞n )n∈N may be described in terms of the “pruning” operation κ from
Definition 3.1 and Remark 3.2:

• Suppose that the value of the process at time n+ 1 is t ∈ Sn+1.

• Pick a leaf v uniformly at random.

• Replace t by κ(t, v) ∈ Sn to produce the value of the process at time n.

Consider a binary tree t′′ ∈ Sn+1. Label the n+ 1 leaves of t′′ with [n+ 1] uniformly at
random (that is, all (n+ 1)! labelings are equally likely). Let V be the leaf labeled n+ 1.
Set t′ := κ(t′′, V ). If the sibling of V was not a leaf in t′′, then the leaves of t′ were also
leaves of t′′ and we maintain their labels. If the sibling of V was also a leaf of t′′, labeled,
say, k ∈ [n], then in passing from t′′ to t′ we remove V and its sibling along with some
vertices on the path leading to their parent, thereby creating a new leaf which we label
k while leaving the labels of the remaining leaves (which are common to both t′′ and t′)
unchanged. The distribution of t′ is that arising from one step starting from t′′ of the
backward radix sort dynamics (that is, the common backward dynamics of all infinite
bridges). Moreover, the labeling of t′ by [n] is uniformly distributed over the n! possible
labelings.

Now suppose that (R∞n )n∈N is an infinite bridge. For some N , let SN be a random
binary tree with the same distribution as R∞N . Label SN uniformly at random with [N ]

to produce a leaf-labeled binary tree S̃N . The pruning procedure described above is
deterministic once the labeling is given and applying it successively for n = N − 1, . . . , 1

produces leaf-labeled binary trees S̃N−1, . . . , S̃1, where S̃n has n leaves labeled by [n] for
1 ≤ n ≤ N − 1. Write Sn for the underlying binary tree obtained by removing the labels
of S̃n. It follows from the observations above that the sequence (S1, . . . , SN ) has the
same joint distribution as (R∞1 , . . . , R

∞
N ). Note that the joint distribution of the sequence

(S̃1, . . . , S̃N ) is uniquely determined by the distribution of R∞N and hence, a fortiori, by
the joint distribution of (R∞n )n∈N. Note also that if we perform this construction for two
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different values of N , say N ′ < N ′′, to produce, with the obvious notation, sequences
(S̃′1, . . . , S̃

′
N ′) and (S̃′′1 , . . . , S̃

′′
N ′′), then (S̃′1, . . . , S̃

′
N ′) has the same joint distribution as

(S̃′′1 , . . . , S̃
′′
N ′).

By Kolmogorov’s extension theorem we may therefore suppose that there is a Markov
process (R̃∞n )n∈N such that for each n ∈ N the random element R̃n is a leaf-labeled
binary tree with n leaves labeled by [n] and the following hold.

• The binary tree obtained by removing the labels of R̃n is Rn.

• For every n ∈ N, the conditional distribution of R̃∞n given R∞n is uniform over the
n! possible labelings of R∞n .

• In going backward from time n+1 to time n, R̃∞n+1 is transformed into R̃∞n according
to the deterministic procedure described above.

The distribution of the labeled infinite bridge (R̃n)n∈N is uniquely specified by the
distribution of (R∞n )n∈N and the above requirements. Because of this distributional
uniqueness, we refer to (R̃∞n )n∈N as the labeled version of (R∞n )n∈N and (R∞n )n∈N as the
unlabeled version of (R̃∞n )n∈N and speak of the “leaf of R∞n labeled with i ∈ [n] in R̃∞n .”

Definition 5.1. Given i ∈ [n], let 〈i〉n ∈ {0, 1}? be the leaf of R∞n labeled i in R̃∞n .
Observe that 〈i〉i ≤ 〈i〉i+1 ≤ . . . and so 〈i〉∞ = limn→∞〈i〉n ∈ {0, 1}? t {0, 1}∞ is well-
defined. Moreover, for distinct i, j ∈ N, 〈i〉n ∧ 〈j〉n is the same for all n ≥ i ∧ j and
coincides with 〈i〉∞ ∧ 〈j〉∞.

Remark 5.2. We have R∞1 ⊂ R∞2 ⊂ . . . and

R∞∞ :=
⋃
n∈N

R∞n =
⋃
i∈N
{v ∈ {0, 1}? t {0, 1}∞ : v ≤ 〈i〉∞}.

That is, R∞∞ is the subtree of {0, 1}? t {0, 1}∞ with leaves {〈i〉∞ : i ∈ N} and we define
R̃∞∞ to be the tree R∞∞ with the leaf 〈i〉∞ labeled i, i ∈ N. We will drop the subscripts and
write 〈i〉 for 〈i〉∞, i ∈ N.

6 Proof of Theorem 1.1

Theorem 1.1 is an immediate consequence of Theorem 6.1 and Corollary 6.3 below.

Theorem 6.1. Consider an infinite bridge (R∞n )n∈N and its associated labeled version
(R̃∞n )n∈N.

(a) The sequence (〈i〉)i∈N is exchangeable.

(b) The tail σ-field of (R∞n )n∈N is P-a.s. trivial if and only if (〈i〉)i∈N is an independent
identically distributed sequence.

(c) If (〈i〉)i∈N is independent and identically distributed with common distribution ν,
then ν is concentrated on {0, 1}∞ and diffuse.

(d) The tail σ-field of (R∞n )n∈N is P-a.s. trivial if and only if (R∞n )n∈N has the same
distribution as (νRn)n∈N for some diffuse probability measure ν on {0, 1}∞.

Proof. (a) It is clear by construction that (〈i〉n)i∈[n] is (finitely) exchangeable and the
claim follows upon taking limits as n→∞.
(b) The bijective correspondence between the distributions of the infinite bridges
(R∞n )n∈N and the distributions of their labeled versions (R̃∞n )n∈N is compatible with
convex combinations, and hence preserves extremality. Therefore the tail σ-field of the
infinite bridge (R∞n )n∈N is P-a.s. trivial if and only if the exchangeable sequence (〈i〉)i∈N
is ergodic. (This situation closely parallels one appearing in the analysis of Rémy’s tree
growth chain in [5], and we refer to the more detailed argument in Proposition 5.19
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of [5].) Finally, a well-known consequence of de Finetti’s theorem is that an exchangeable
sequence is ergodic if and only if it is independent and identically distributed.

(c) For any u ∈ {0, 1}?, the sequence (1{u = 〈k〉})k∈N is independent and identically
distributed, and hence #{k ∈ N : u = 〈k〉} = 0 P-a.s. or #{k ∈ N : u = 〈k〉} = ∞
P-a.s. Now, if P{〈i〉 ∈ {0, 1}?} > 0 there would be a u ∈ {0, 1}? such that with positive
probability 〈i〉n = 〈i〉 = u for all n sufficiently large. Then, on the event {〈i〉 = u} we
would have #{k ∈ N : 〈k〉 = u} = 1, since it follows from the construction in Definition
5.1 that 〈j〉 6= 〈i〉 for j 6= i when 〈i〉 ∈ {0, 1}?. This shows that P{〈i〉 ∈ {0, 1}?} = 0.

We therefore have that (〈k〉)k∈N is an independent identically distributed sequence of
{0, 1}∞-valued random variables. Because 〈i〉 ∧ 〈j〉 = 〈i〉n ∧ 〈j〉n ∈ {0, 1}? for all n ≥ i ∨ j
P-a.s. when i 6= j, it follows that 〈i〉 6= 〈j〉 P-a.s. for i 6= j and the common distribution of
(〈k〉)k∈N is diffuse.

(d) We have already seen that when ν is a diffuse probability measure on {0, 1}∞ the
process (νRn)n∈N is an infinite bridge which, by the Hewitt-Savage zero-one law, has a
trivial tail σ-field.

Conversely, suppose that the infinite bridge (R∞n )n∈N has a trivial tail σ-field. Let ν
be the common diffuse distribution of the independent, identically distributed sequence
of {0, 1}∞-valued random variables (〈i〉)i∈N. In the notation of the Introduction, it is
clear that R∞n = R(〈1〉, . . . , 〈n〉), n ∈ N, and so (R∞n )n∈N has the same distribution as
(νRn)n∈N.

Remark 6.2. One might expect that the analogue of Theorem 6.1 holds, with a similar
proof, for the infinite bridges of the PATRICIA chain with i.i.d. fair coin-tossing inputs.
Note, however, that the proof cannot be carried through mutatis mutandis because the
monotonicity of the sequences (〈i〉n)n≥i, i ∈ N, observed in Definition 5.1 does not hold
for the counterpart of these sequences for an infinite PATRICIA bridge. However, it
follows from the identification of the backward transition probabilities of (νRn)n∈N in
Section 3 that the conditional distribution of

ν
R̄n given {νR̄n+1 = t} is that of the random

tree obtained by picking one of the n + 1 leaves of t uniformly at random, deleting it
and its sibling, and “closing up the gap” if there is one. These backward transition
probabilities are exactly the same as those for the Rémy chain in [5], and so a description
of the extremal infinite bridges of the PATRICIA chain along with a characterization of
its Doob–Martin boundary can be read from there; in particular, although each process
(
ν
R̄n)n∈N is an extremal infinite bridge for (R̄n)n∈N, there are other extremal infinite

bridges which are not of this type. We will lay out the details in a forthcoming paper.

Corollary 6.3. The extremal normalized nonnegative harmonic functions are precisely
those that arise as s 7→ limk→∞K(s, tk) for a sequence (tk)k∈N with M(tk)→∞ as k →
∞. There is a bijective correspondence between diffuse probability measures on {0, 1}∞
and such functions: the measure ν corresponds to the normalized nonnegative harmonic
function νh of (4.2) and, conversely, if h is an extremal normalized nonnegative harmonic
function and (R∞n )n∈N is the infinite bridge constructed as the Doob h-transform of
(Rn)n∈N using the function h, then h = νh, where ν is the common distribution of the
independent identically distributed sequence (〈i〉)i∈N associated with the labeled infinite
bridge (R̃∞n )n∈N.

Proof. We know from Theorem 6.1 that the extremal normalized nonnegative harmonic
functions correspond to infinite bridges of the form (νRn)n∈N where ν is a diffuse
probability measure on {0, 1}∞, and hence they are the harmonic functions νh. In order
to see that the correspondence between ν and the distribution of (νRn)n∈N is bijective,
we observe that ν is determined uniquely by the distribution of the labeled version of
(νRn)n∈N and hence by the distribution of (νRn)n∈N itself.
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It remains to check that if the normalized nonnegative harmonic function h is given
by h(s) = limk→∞K(s, tk) for a sequence (tk)k∈N with M(tk)→∞ as k →∞, then h is
extremal. We will follow an argument similar to the proof of Corollary 5.21 in [5]. Writing
(R∞n )n∈N for the infinite bridge given by the Doob h-transform of (Rn)n∈N associated
with h, we recall that extremality of h is equivalent to the tail σ-field of (R∞n )n∈N being
P-a.s. trivial. By Theorem 6.1, this is in turn equivalent to showing that the exchangeable
sequence (〈i〉)i∈N has the equivalent properties of being ergodic or independent and
identically distributed.

Note that 〈i〉 is the unique v ∈ {0, 1}∞ such that 〈i〉∧〈j〉 ≤ v for all j 6= i. It follows that
there is a measurable bijection mapping the sequence (〈i〉)i∈N to the jointly exchangeable
{0, 1}?-valued array {〈i〉 ∧ 〈j〉 : i, j ∈ N, i 6= j} in such a way that the sequence will be
ergodic if and only if the array is ergodic. By a result of Aldous (see, for example, [7,
Lemma 7.35]), the array is ergodic if and only if for any disjoint finite subsets H1, . . . ,Hs

of N the finite subarrays {〈i〉 ∧ 〈j〉 : i, j ∈ Hr, i 6= j}, 1 ≤ r ≤ s, are independent.
Recall that (Rtk

1 , . . . , R
tk
M(tk)

) denotes the bridge to tk. For any ` ∈ N, Rtk
` converges

in distribution to R∞` as k → ∞. We can build a labeled version (R̃tk
1 , . . . , R̃

tk
m(tk)

) of

(Rtk
1 , . . . , R

tk
m(tk)

) in much the same way that we built a labeled version of an infinite

bridge: R̃tk
m(tk)

consists of the tree Rtk
m(tk)

= tk with its M(tk) leaves labeled uniformly

at random with the set [M(tk)] and the backward evolution of such a labeled finite
bridge is the same as that of the labeled infinite bridge. It is clear that R̃tk

` converges
in distribution to R̃∞` as k →∞ for all ` ∈ N: indeed, R̃tk

` and R̃∞` are just Rtk
` and R∞` ,

respectively, equipped with uniform random labelings of their ` leaves by the set [`].
Write 〈i〉k` for the element of {0, 1}? labeled i in R̃tk

` for 1 ≤ i ≤ ` ≤ M(tk). The
finite array {〈i〉k` ∧ 〈j〉k` : 1 ≤ i 6= j ≤ `} converges in distribution to the finite array
{〈i〉` ∧ 〈j〉` : 1 ≤ i 6= j ≤ `} = {〈i〉 ∧ 〈j〉 : 1 ≤ i 6= j ≤ `} as k →∞.

Write uk1 , . . . , u
k
M(tk)

for the leaves of tk. Suppose that Ik1 , . . . , I
k
M(tk)

is a listing of

[M(tk)] in uniform random order and Jk1 , . . . , J
k
M(tk)

is a sequence of independent random

variables uniformly distributed on [M(tk)]. By definition, (〈i〉k` )1≤i≤` has the same
distribution as (uk

Iki
)1≤i≤`. We may couple Ik1 , . . . , I

k
M(tk)

and Jk1 , . . . , JM(tk)k together on

the same probability space in such a way that limk→∞P{∃1 ≤ i ≤ ` : Iki 6= Jki } = 0

and hence limk→∞P{∃1 ≤ i 6= j ≤ ` : ukIi ∧ u
k
Ikj
6= uk

Jk
i
∧ uk

Jk
j
} = 0. If H1, . . . ,Hs is a

collection of disjoint subsets of [`], and k is so large that M(tk) ≥ `, then it is clear that
the arrays {uk

Jk
i
∧ uk

Jk
j

: i, j ∈ Hr, i 6= j}, 1 ≤ r ≤ s, are independent and hence the arrays

{〈i〉 ∧ 〈j〉 : i, j ∈ Hr, i 6= j}, 1 ≤ r ≤ s, are also independent, as required.

References

[1] J. Clément, P. Flajolet, and B. Vallée, Dynamical sources in information theory: a general
analysis of trie structures, Algorithmica 29 (2001), no. 1-2, 307–369, Average-case analysis
of algorithms (Princeton, NJ, 1998). MR-1887308

[2] Luc Devroye, A study of trie-like structures under the density model, Ann. Appl. Probab. 2
(1992), no. 2, 402–434. MR-1161060

[3] J. L. Doob, Discrete potential theory and boundaries, J. Math. Mech. 8 (1959), 433–458;
erratum 993. MR-0107098

[4] Steven N. Evans, Rudolf Grübel, and Anton Wakolbinger, Trickle-down processes and their
boundaries, Electron. J. Probab. 17 (2012), no. 1, 58. MR-2869248

[5] Steven N. Evans, Rudolf Grübel, and Anton Wakolbinger, Doob-Martin boundary of Rémy’s
tree growth chain, Ann. Probab. 45 (2017), no. 1, 225–277. MR-3601650

[6] G. Gwehenberger, Anwendung einer binären Verweiskettenmethode beim Aufbau von Listen,
Elektronische Rechenanlagen 10 (1968), 223–226.

ECP 22 (2017), paper 68.
Page 12/13

http://www.imstat.org/ecp/

http://www.ams.org/mathscinet-getitem?mr=1887308
http://www.ams.org/mathscinet-getitem?mr=1161060
http://www.ams.org/mathscinet-getitem?mr=0107098
http://www.ams.org/mathscinet-getitem?mr=2869248
http://www.ams.org/mathscinet-getitem?mr=3601650
http://dx.doi.org/10.1214/17-ECP77
http://www.imstat.org/ecp/


Radix sort chain

[7] Olav Kallenberg, Probabilistic symmetries and invariance principles, Probability and its
Applications (New York), Springer, New York, 2005. MR-2161313

[8] Donald E. Knuth, The art of computer programming. Volume 3, Addison-Wesley Publishing
Co., Reading, Mass.-London-Don Mills, Ont., 1973, Sorting and searching, Addison-Wesley
Series in Computer Science and Information Processing. MR-0445948

[9] Donald E. Knuth, The art of computer programming. Vol. 3, Addison-Wesley, Reading, MA,
1998, Sorting and searching, Second edition [of MR0445948]. MR-3077154

[10] Kevin Leckey, Ralph Neininger, and Wojciech Szpankowski, A limit theorem for Radix Sort
and tries with Markovian input, 2015, Available at arXiv:1505.07321 [math.PR].

[11] Hosam M. Mahmoud, Evolution of random search trees, Wiley-Interscience Series in Discrete
Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1992, A Wiley-Interscience
Publication. MR-1140708

[12] Donald R. Morrison, Patricia—Practical Algorithm To Retrieve Information Coded in Alphanu-
meric, Journal of the ACM 15 (1968), 514–534.

[13] L. C. G. Rogers and J. W. Pitman, Markov functions, Ann. Probab. 9 (1981), no. 4, 573–582.
MR-624684

[14] W. Szpankowski and Ph. Jacquet, Analysis of digital tries with Markovian dependency, IEEE
Trans. Information Theory 27 (1991), 1470–1475.

[15] Wojciech Szpankowski, Average case analysis of algorithms on sequences, Wiley-Interscience
Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2001, With
a foreword by Philippe Flajolet. MR-1816272

Acknowledgments. We thank Kevin Leckey and Ralph Neininger for valuable informa-
tion about the literature around radix sort algorithms. We thank the anonymous referee
for a very careful reading of the paper and for suggesting that our results for the radix
sort chain may have counterparts for the PATRICIA chain.

ECP 22 (2017), paper 68.
Page 13/13

http://www.imstat.org/ecp/

http://www.ams.org/mathscinet-getitem?mr=2161313
http://www.ams.org/mathscinet-getitem?mr=0445948
http://www.ams.org/mathscinet-getitem?mr=3077154
http://arXiv.org/abs/1505.07321
http://www.ams.org/mathscinet-getitem?mr=1140708
http://www.ams.org/mathscinet-getitem?mr=624684
http://www.ams.org/mathscinet-getitem?mr=1816272
http://dx.doi.org/10.1214/17-ECP77
http://www.imstat.org/ecp/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Forward transition probabilities
	Backward transition probabilities
	The Doob-Martin kernel and harmonic functions
	Labeled infinite bridges
	Proof of Theorem 1.1
	References

