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Abstract

The Beta coalescents are stochastic processes modeling the genealogy of a population.
They appear as the rescaled limits of the genealogical trees of numerous stochastic
population models. In this article, we take interest in the number of blocs at small
times in the Beta coalescent. Berestycki, Berestycki and Schweinsberg [2] proved a
law of large numbers for this quantity. Recently, Limic and Talarczyk [9] proved that
a functional central limit theorem holds as well. We give here a simple proof for an
unidimensional version of this result, using a coupling between Beta coalescents and
continuous-time branching processes.
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1 Introduction

A coalescent process is a stochastic model for the genealogy of an infinite haploid
population, built backward in time. In such a model, an individual is represented by
an integer n ∈ N. At each time t, we denote by Π(t) the partition of N such that two
individuals i and j belong to the same set in Π(t) (that we call “bloc” from now on) if
they share a common ancestor less than t units of time in the past. In particular, we
always assume that Π(0) = {{1}, {2}, . . .} is the partition in singletons. We construct
(Π(t), t ≥ 0) as a Markov process on the set of partitions, that gets coarser over time.

Let Λ be a probability measure on [0, 1]. The Λ-coalescent is a coalescent process
such that given there are b distinct blocs in Π(t), any particular set of k blocs merge at
rate

λb,k =

∫ 1

0

xk−2(1− x)b−kΛ(dx).

The Λ-coalescent has been introduced independently by Pitman [10] and Sagitov [11].
In this process, several blocs may merge at once, but at most one such coalescing event
may occur at a given time.

For any t ≥ 0, we denote by N(t) the number of blocs in Π(t). We have in particular
N(0) = +∞. We say that the Λ-coalescent comes down from infinity if almost surely
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Second order behavior of the block counting process of beta coalescents

N(t) < +∞ for any t > 0. Pitman [10] proved that if Λ({1}) = 0, either the Λ-coalescent
comes down from infinity, or N(t) = +∞ for any t > 0 a.s. In the rest of the article, we
always assume that Λ has no atom at 1.

Schweinsberg [12] obtained a necessary and sufficient condition for the Λ-coalescent
to come down from infinity, that Bertoin and Le Gall [3] proved equivalent to∫ +∞

1

dq

ψ(q)
< +∞, where ψ(q) =

∫ 1

0

(e−qx − 1 + qx)x−2Λ(dx). (1.1)

Berestycki, Berestycki and Limic [1] obtained the almost sure behaviour for the number
of blocs N(t) as t goes to 0, which they called the speed of coming down from infinity.
More precisely, setting vψ(t) = inf{s > 0 :

∫ +∞
s

dq
ψ(q) ≤ t}, they proved that for a

Λ-coalescent that comes down from infinity,

lim
t→0

N(t)

vψ(t)
= 1 a.s. (1.2)

In this article, we consider the one parameter family of coalescent processes called
Beta-coalescents. For any α ∈ (0, 2), we consider the Λ-coalescent such that the measure
Λ is Beta(2− α, α), i.e.

Λ(dx) =
1

Γ(α)Γ(2− α)
x1−α(1− x)α−1dx.

The Beta-coalescents have a number of interesting properties (see e.g. [4, 2] and
references therein). In particular, if α ∈ (1, 2), it can be constructed as the genealogy of
an α-stable continuous state branching process.

We observe that thanks to (1.1), α ∈ (1, 2) is a necessary and sufficient condition for
the Beta-coalescent to come down from infinity. Moreover, (1.2) can be restated as

lim
t→0

t
1

α−1N(t) = (αΓ(α))
1

α−1 a.s.

The speed of coming down from infinity for the Beta coalescent can also be found in
[2]. The main result of this article is a central limit theorem for the number of blocs, as
t→ 0.

Theorem 1.1. Let α ∈ (1, 2) we set (Π(t), t ≥ 0) the Beta(2 − α, α)-coalescent and
N(t) = #Π(t) the number of blocs at time t, we have

lim
t→0

t
1

α(α−1)

(
N(t)−

(
αΓ(α)

t

) 1
α−1

)
= −DαX in law,

where Dα = (Γ(α)α)
1

α(α−1) (α− 1)−
1
α , and X is the α-stable random variable satisfying

for all λ > 0,

E
(
e−λX

)
= exp

(
λα

α+ 1

)
.

Note that a more precise functional central limit theorem has been obtained by
[9], for any Λ-coalescent with a regularly varying density in a neighbourhood of 0. In
particular, their Theorem 1.2 applied to the number of blocs N(t) of a Beta-coalescent
with parameter α ∈ (1, 2) gives

lim
ε→0

ε−
1
α

(
ε

1
α−1

Nεt

(αΓ(α)/t)
1

α−1

− 1

)
= (Zt, t ≥ 0) for the J1 topology,
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where Zt = −Kt
∫ t

0
udYu, with Y an α-stable spectrally positive Lévy process and K a

positive constant.
The proof of our Theorem 1.1, which is implied by this result, follows from a simple

coupling argument, that might be of independent interest.
In Section 2, we use [2] to couple the Beta-coalescent with a stable continuous state

branching process, and link the small times behaviour of the number of blocs with
the small times behaviour of the continuous-state branching process. In Section 3, we
use the so-called Lamperti transform to transfer the computations into the small times
asymptotic of an α-stable Lévy process, and use scaling properties to conclude.

2 Continuous state branching process

A continous-state branching process (or CSBP for short) is a càdlàg (right-continuous
with left limits at each point) Markov process (Z(t), t ≥ 0) on R+ that satisfies the
so-called branching property: For any x, y ≥ 0, if (Zx(t), t ≥ 0) and (Zy(t), t ≥ 0) are
two independent versions of Z starting from x and y respectively, then the process
(Zx(t) + Zy(t), t ≥ 0) is also a version of Z starting from x+ y.

The study of CSBP started with the seminal work of [6]. As observed in [8, 13], there
exists a deep connexion between CSBP and Lévy processes. In effect, we observe that
for any x, t, λ ≥ 0, the Laplace transform of the CSBP Z satisfies

E (exp(−λZx(t)) = exp(−xut(λ)),

where u is the solution of the following differential equation

∂tut(λ) = φ(ut(λ)), with u0(λ) = λ, (2.1)

and φ is the Lévy-Khinchine exponent of a spectrally positive Lévy process (i.e. a Lévy
process with no negative jump). The function φ is called the branching mechanism of
the CSBP. If φ : λ 7→ λα with α ∈ (1, 2), we call Z the α-stable CSBP.

Let α ∈ (1, 2). Berestycki, Berestycki and Schweinsberg gave in [2] a coupling
between the α-stable CSBP and the Beta(2− α, α)-coalescent, that we recall here. Let
(Za(t), t ≥ 0, a ∈ [0, 1]) be a random field, càdlàg in t and a, such that for any a < b, the
process (Zb(t)−Za(t), t ≥ 0) is the α-stable CSBP starting from b− a, and is independent
with (Zc(t), t ≥ 0, c < a). For any t > 0, the function a 7→ Za(t) is a.s. increasing, and we
set

D(t) = # {a ∈ (0, 1) : Za−(t) < Za(t)} (2.2)

the number of atoms in the measure µt satisfying µt([0, a]) = Za(t) a.s.
We also introduce R(t) = Cα

∫ t
0
Z1(s)1−αds, where Cα = α(α− 1)Γ(α), as well as its

generalized inverse
R−1(t) = inf {s ≥ 0 : R(s) > t} . (2.3)

The coupling between the CSBP and the Beta-coalescent is obtained as a straightforward
combination of Lemmas 2.1 and 2.2 in [2].

Lemma 2.1 ([2]). For any t > 0, we have N(t)
(d)
=D(R−1(t)).

Using this result, to compute the small times behaviour of N(t), it is enough to study
the asymptotic behaviour of D(r) and R−1(t) separately. We first provide a straightfor-
ward estimate on the asymptotic behaviour of D.

Theorem 2.2. For any α ∈ (1, 2), for any ε > 0, we have

lim
r→0

D(r)− ((α− 1)r)−
1

α−1

r−
1

2(α−1)
−ε

= 0 a.s.
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Proof. We note that (D(r), r > 0) is decreasing. Moreover, for any r ≥ 0, D(r) is a Poisson

random variable with parameter θr = ((α − 1)r)−
1

α−1 , by Lemma 2.2 of [2]. Therefore,
by a deterministic change of variables, it is enough to observe that for any increasing
process (P (t), t ≥ 0) such that P (t) is a Poisson random variable with parameter t, we
have

lim
t→+∞

P (t)− t
t
1
2 +ε

= 0 a.s.

Using the exponential Markov inequality, for any λ > 0 we have

P(P (t)− t > t
1
2 +ε) ≤ e−λt

1
2
+ε

E
(
eλ(P (t)−t)

)
= exp

(
t(eλ − 1− λ)− λt 1

2 +ε
)
.

Applying this inequality with λ = t−1/2, there exists Cε > 0 such that for any t ≥ 1,
P(P (t)− t > t

1
2 +ε) ≤ Cεe−t

ε

. With similar computations, we have

P(P (t)− t < −t 1
2 +ε) ≤ Cεe−t

ε

.

We apply the Borel-Cantelli lemma, yielding lim supn→+∞
|P (n)−n|
n

1
2
+ε

≤ 1 a.s. As P is

increasing, we obtain that for any ε > 0, limt→+∞
P (t)−t
t
1
2
+ε

= 0 a.s. concluding the

proof.

3 The Lamperti transform

The connexion between CSBP and spectrally positive Lévy processes observed in (2.1)
can be strengthen. In [8], Lamperti observed that a CSBP with branching mechanism φ

could be constructed as a random time change of a Lévy process with Lévy-Khinchine
exponent φ. A proof of this result can be found in [5]. More precisely, let (Y (t), t ≥ 0) be
a spectrally positive Lévy process starting from a, such that E(e−λY (t)) = e−aλ+tφ(λ). We
set T = inf{s ≥ 0 : Y (s) ≤ 0} and

U(t) = inf

{
s ≥ 0 :

∫ s

0

dr

Y (r ∧ T )
> t

}
.

The Lamperti transform states that for Z a CSBP with branching mechanism φ such that
Z(0) = a, we have

(Z(t), t ≥ 0)
(d)
= (Y (U(t)), t ≥ 0) (3.1)

In the rest of the section, we denote by (Y (t), t ≥ 0) a Lévy process with Lévy-
Khinchine exponent φ(λ) = λα such that Y (0) = 1 a.s. We also set Y0(t) = Y (t)− 1. We
write T = inf {s ≥ 0 : Y (s) ≤ 0} and

U(t) = inf

{
s ≥ 0 :

∫ s

0

du

Y (u ∧ T )
≥ t
}
.

Using (3.1), the process defined in (2.3) satisfies(
R−1(t), t ≥ 0

) (d)
=

(
inf

{
s ≥ 0 : Cα

∫ s

0

Y (U(u))1−αdu ≥ t
}
, t ≥ 0

)
. (3.2)

Therefore, up to a slight abuse of notation, we write

R(t) = Cα

∫ t

0

Y (U(s))1−αds = Cα

∫ U(t)

0

Y (u)−αdu, (3.3)

by change of variable, and again R−1(t) = inf {s ≥ 0 : R(s) ≥ t}. We first prove a central
limit theorem for the asymptotic behaviour of R(t) as t→ 0.
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Theorem 3.1. We denote by X =
∫ 1

0
Y0(s)ds. We have

lim
t→0

R(t)− Cαt
t1+ 1

α

= (1− α)CαX in law.

Remark 3.2. Observe that the random variable X defined above is an α-stable random
variable that satisfies for all λ ≥ 0:

E
(
e−λX

)
= exp

(
λα

α+ 1

)
Proof. For any ε > 0 and t > 0, we write At,ε = {|Y (s) − 1| ≤ ε, s ≤ 2t} the event such
that Y stays in an ε neighbourhood of 1 until time 2t. As observed in [2, Lemma 4.1],
there exists C > 0 such that P(Act,ε) ≤ Ctε−α.

We first prove that limt→0
U(t)
t = 1 and limt→0

R(t)
t = Cα a.s. Let ε < 1/2, observe that

on the event At,ε, we have T > 2t, therefore for any s ≤ t, we have

U(s) = inf

{
r ≥ 0 :

∫ r

0

du

Y (u)
≥ s
}
∈
[

s
1+ε ,

s
1−ε

]
.

In particular, letting t→ 0 we obtain

1

1 + ε
≤ lim inf

s→0

U(s)

s
≤ lim sup

s→0

U(s)

s
≤ 1

1− ε
a.s.

Letting ε→ 0, this yields limt→0
U(s)
s = 1 a.s. Similarly, by (3.3) we have

1

(1 + ε)1+α
≤ lim inf

s→0

R(s)

Cαs
≤ lim sup

s→0

R(s)

Cαs
≤ 1

(1− ε)1+α
,

yielding limt→0
R(t)
t = Cα a.s.

We set R̃(t) = R(t)− Cαt, we have

R̃(t) = Cα

∫ U(t)

0

(
Y (s)−α − 1

Y (s)

)
ds = Cα

∫ U(t)

0

(1 + Y0(s))1−α − 1

1 + Y0(s)
ds.

As a consequence, we have

R̃(t) = Cα(1− α)

∫ U(t)

0

Y0(s)ds+ ∆(t), (3.4)

where ∆(t) = Cα
∫ U(t)

0
(1+Y0(s))1−α−1−(1−α)Y0(s)−(1−α)Y0(s)2

1+Y0(s) ds. Note that as Y0 is an α-
stable Lévy process, the following scaling property holds for any λ > 0:

(Y0(t), t ≥ 0)
(d)
=
(
λ

1
αY0(t/λ), t ≥ 0

)
. (3.5)

We first prove that limt→0
∆(t)

t1+
1
α

= 0 in probability. There exists Kα > 0 such that

|(1 + x)1−α − 1− (1− α)x− (1− α)x2| ≤ Kαx
2 for any x ∈ (− 1

2 ,
1
2 ). Therefore, for ε < 1

2 ,
on the event At,ε, for any s ≤ t, we have

|∆(s)| ≤
∫ U(s)

0

∣∣(1 + Y0(r))1−α − 1− (1− α)Y0(r)− (1− α)Y0(r)2
∣∣

Y (r)
dr

≤ Kα

1− ε

∫ (1+ε)s

0

Y0(r)2dr.
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Using (3.5) with λ = t, for any δ > 0, we have

P(|∆(t)| ≥ δt1+ 1
α ) ≤ P(Act,ε) + P

(
Kαt

1+ 2
α

1− ε

∫ 1+ε

0

Y0(r)2 ≥ δt1+ 1
α

)

≤ Ctε−α + P

(
Kα

1− ε

∫ 1+ε

0

Y0(r)2 ≥ δt− 1
α

)
.

Letting t→ 0, we have limt→0 t
−1− 1

α∆(t) = 0 in probability.

We now study the asymptotic behaviour of t−1− 1
α

∫ U(t)

0
Y0(s)ds. First observe that for

any δ, η > 0, we have

P

(∣∣∣∣∣
∫ U(t)

t

Y0(s)ds

∣∣∣∣∣ ≥ ηt1+ 1
α

)

≤P (|U(t)− t| ≥ δt) + P

(∫ (1+δ)t

(1−δ)t
|Y0(s)|ds ≥ ηt1+ 1

α

)

≤P
(∣∣∣∣U(t)

t
− 1

∣∣∣∣ ≥ δ)+ P

(∫ 1+δ

1−δ
|Y0(s)|ds ≥ η

)
,

using (3.5). As limt→0
U(t)
t = 1 a.s, letting t→ 0 then δ → 0, we conclude that

lim
t→0

∫ U(t)

t

Y0(s)ds = 0 in probability.

Finally, using (3.5) again, we have t−1− 1
α

∫ t
0
Y0(s)ds

(d)
=
∫ 1

0
Y0(s)ds = X for any t > 0. As a

conclusion, (3.4) yields lim
t→0

t−1− 1
α R̃t = (1− α)CαX in law.

As a straightforward consequence of Theorem 3.1, we obtain the asymptotic behaviour
of R−1 at small times.

Corollary 3.3. We have limt→0
R−1(t)− t

Cα

t1+
1
α

= (α−1)

C
1+ 1

α
α

X in law.

Proof. Let x ∈ R and t ≥ 0, we observe that

P

(
R−1(t)− t

Cα
> t1+ 1

αx

)
= P (R(τx,t) < t) ,

where we set τx,t = t
Cα

+ t1+ 1
αx. Observe that for any fixed x ∈ R, we have

t = Cατx,t − xC
2+ 1

α
α τ

1+ 1
α

x,t + o(τ
1+ 1

α
x,t ),

as t→ 0. Therefore, by Theorem 3.1, we obtain

lim
t→0

P

(
R−1(t)− t

Cα
> t1+ 1

αx

)
= P

(
(1− α)CαX < −xC2+ 1

α
α

)
= P

(
(α− 1)X

C
1+ 1

α
α

> x

)
.

Using this result, we now compute the asymptotic behaviour of R−1(t)−
1

α−1 , which is
used to prove Theorem 1.1.
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Lemma 3.4. We denote by Dα = (αΓ(α))
1

α(α−1)

(α−1)
1
α

, we have

lim
t→0

t
1

α(α−1)

((
(α− 1)R−1(t)

)− 1
α−1 − (αΓ(α)/t)

1
α−1

)
= −DαX in law.

Proof. The proof follows the same lines as Corollary 3.3. For any x ∈ R, for any t > 0

small enough we have

P
((

(α− 1)R−1(t)
)− 1

α−1 − (αΓ(α)/t)
1

α−1 > xt−
1

α(α−1)

)
= P

(
(α− 1)R−1(t) <

(
(αΓ(α)/t)

1
α−1 + xt−

1
α(α−1)

)1−α
)

= P

(
(α− 1)R−1(t) <

t

αΓ(α)
+

(1− α)x

(αΓ(α))
α
α−1

t1+ 1
α + o(t1+ 1

α )

)
.

Therefore, using Corollary 3.3, we obtain for any x ∈ R

lim
t→0

P
((

(α− 1)R−1(t)
)− 1

α−1 − (αΓ(α)/t)
1

α−1 > xt−
1

α(α−1)

)
= P(DαX < −x),

which concludes the proof.

Proof of Theorem 1.1. By Lemma 2.1, the asymptotic behaviours of the number of blocs
N(t) and D(R−1(t)) are the same. Therefore, we only have to prove that

lim
t→0

t
1

α(α−1)

(
D(R−1(t))− (αΓ(α)/t)

1
α−1

)
= −DαX in law.

Observe that by Corollary 3.3, we have limt→0 CαR
−1(t)/t = 1 in probability. More-

over, as α ∈ (1, 2), we have 1
α(α−1) >

1
2(α−1) , thus

lim
τ→0

D(τ)− ((α− 1)τ)
−1
α−1

τ
−1

α(α−1)

= 0 a.s.

by Theorem 2.2. We conclude that

lim
t→0

t
1

α(α−1)

(
D(R−1(t))−

(
(α− 1)R−1(t)

) −1
α−1

)
= 0 in probability.

Therefore, using Lemma 3.4, we have

lim
t→0

t
1

α(α−1)

(
D(R−1(t))− (αΓ(α)/t)

1
α−1

)
= lim
t→0

t
1

α(α−1)

((
(α− 1)R−1(t)

) −1
α−1 − (αΓ(α)/t)

1
α−1

)
= −DαX in law.

The alternative definition of the law of X in Remark 3.2 allows to conclude the proof.
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