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Abstract

This note presents families of inequalities for the Gaussian measure of convex sets
which extend the recently proven Gaussian correlation inequality in various directions.
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1 Introduction and statement of results

Let γ be the standard Gaussian on Rn, defined by

γ(K) =

∫
K

1
(2π)n/2 e

− 1
2‖x‖

2

dx

for Lebesgue measurable K ⊆ Rn.

Recently Royen [8] proved that

γ(A)γ(B) ≤ γ(A ∩B) (1.1)

for all dimensions n and all symmetric convex sets A,B ⊆ Rn. This Gaussian correlation
inequality (1.1) was previously known as the Gaussian correlation conjecture and was
an open problem for over 50 years. See the paper of Latała & Matlak [3] for a discussion
of Royen’s proof.

The purpose of this note is to offer evidence in support of the following strengthening
of inequality (1.1). We will use the notation

A+B = {a+ b : a ∈ A, b ∈ B}

for the Minkowski sum of two sets.

Conjecture 1.1. The inequality

γ(A)γ(B) ≤ γ(A ∩B)γ(A+B) (1.2)

holds for all dimensions n and all symmetric convex sets A,B ⊆ Rn.

*University of Cambridge, United Kingdom. E-mail: m.tehranchi@statslab.cam.ac.uk

http://dx.doi.org/10.1214/17-ECP89
http://www.imstat.org/ecp/
http://arXiv.org/abs/1309.1707v3
mailto:m.tehranchi@statslab.cam.ac.uk


Inequalities for Gaussian measure

It is obvious that inequality (1.2) holds in dimension n = 1. More generally, the
inequality holds whenever A ⊆ B, since in this case A = A ∩ B and B ⊆ A + B. Also
note that inequality (1.2) holds with equality for any dimension n > 1 whenever there
is a dimension m < n and sets Ã ⊆ Rm and B̃ ⊆ Rn−m such that A = Ã × Rn−m and
B = Rm × B̃, since in this case A ∩B = Ã× B̃ and A+B = Rn.

Dar [1] proved that the similar-looking inequality

Leb(A)Leb(B) ≤ Leb(A ∩B)Leb(A+B) (1.3)

holds for all symmetric convex sets A,B ⊆ Rn, where Leb is the Lebesgue measure on
Rn. Since we have the inequality

1
(2π)n/2 e

− 1
2 r

2
K Leb(K) ≤ γ(K) ≤ 1

(2π)n/2Leb(K)

for all bounded measurable K ⊂ Rn, where rK = sup{‖x‖ : x ∈ K} is the radius of the
smallest ball containing K, inequality (1.3) implies

γ(A)γ(B) ≤ γ(A ∩B)γ(A+B)e
1
2 (rA+rB)2+

1
2 (rA∧rB)2 . (1.4)

Inequality (1.4) does not prove Conjecture 1.1, but it does indicate that the conjecture is
plausible. Furthermore, even if Conjecture 1.1 turns out not to be true, inequality (1.4)
shows that the correlation inequality (1.1) can be improved when A and B are contained
in a sufficiently small ball. Indeed, the right-hand side of inequality (1.4) is smaller than
the right-hand side of the correlation inequality (1.1) when rA and rB are sufficiently
small.

Schechtman, Schlumprecht & Zinn [9, Proposition 3] proved the related inequality
that

γ(A)γ(B) ≤ γ
(√

2(A ∩B)
)
γ
(

1√
2
(A+B)

)
(1.5)

for symmetric convex A,B ⊆ Rn. Using the fact that the map

t 7→ t−nγ(tK) =

∫
K

1
(2π)n/2 e

− t
2

2 ‖x‖
2

dx

is decreasing for any measurable K ⊆ Rn, inequality (1.5) implies

γ(A)γ(B) ≤ 2n/2γ(A ∩B)γ
(

1√
2
(A+B)

)
(1.6)

as was observed by Schechtman, Schlumprecht & Zinn. Note that since 1√
2
< 1, the

right-hand side of inequality (1.6) is larger than the right-hand side of the conjectural
inequality (1.2). Also note that replacing A and B with tA and tB and sending t ↓ 0 in
either inequality (1.5) or (1.6) recovers inequality (1.3).

The new result of this paper is the following:

Theorem 1.2. The inequality

γ(A)γ(B) ≤ (1− s)−n/2 γ
(√

2(1−s)
1+t (A ∩B)

)
γ
(√

1−s
2(1−t) (A+B)

)
(1.7)

holds for all dimensions n and all symmetric convex sets A,B ⊆ Rn and all
√
s ≤ t < 1.

The proof of Theorem 1.2 uses a stronger form of the Gaussian correlation inequality
(1.1) which already appears in Royen’s paper, as well as ideas appearing in the papers
of Shao [10] and Schechtman, Schlumprecht & Zinn. We present the proof in the next
section.
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Inequalities for Gaussian measure

Note that setting s = 0 in inequality (1.7) yields the dimension-independent family of
inequalities

γ(A)γ(B) ≤ γ
(√

2
1+t (A ∩B)

)
γ

(
1√

2(1−t)
(A+B)

)
which holds for all 0 ≤ t < 1. This family interpolates between Schechtman, Schlumprecht
& Zinn’s inequality (1.5) corresponding to t = 0 and Royen’s inequality (1.1) correspond-
ing to the limit t ↑ 1. Setting t = 1/2 yields

γ(A)γ(B) ≤ γ
(

2√
3
(A ∩B)

)
γ (A+B) (1.8)

Note that since 2√
3
> 1, the right-hand side of inequality (1.8) is larger than the right-

hand side of the conjectural inequality (1.2).
Note that by setting s = 1

2 (1− t) for 1/2 ≤ t < 1 in inequality (1.7), we have the family
of inequalities

γ(A)γ(B) ≤
(

2
1+t

)n/2
γ (A ∩B) γ

(√
1+t

4(1−t) (A+B)
)
.

Again, the limit t ↑ 1 recovers inequality (1.1). Setting t = 1/2 yields

γ(A)γ(B) ≤
(
4
3

)n/2
γ (A ∩B) γ

(√
3
2 (A+B)

)
. (1.9)

Note that since 1√
2
<
√
3
2 < 1 the right-hand side of inequality (1.9) is larger than

the right-hand side of the conjectural inequality (1.2), but it is smaller than the right-
hand side of inequality (1.6), and therefore improving on the result of Schechtman,
Schlumprecht & Zinn. Finally, setting t = 3/5 yields

γ(A)γ(B) ≤
(
5
4

)n/2
γ (A ∩B) γ (A+B)

which improves upon inequality (1.4) when either A or B is unbounded.
Finally, note that by setting s = 2t− 1 for 1/2 ≤ t < 1 in inequality (1.7), we have the

family of inequalities

γ(A)γ(B) ≤ [2(1− t)]−n/2γ
(√

4(1−t)
1+t (A ∩B)

)
γ (A+B) .

Sending t ↑ 1 yields

γ(A)γ(B) ≤ 1
(2π)n/2Leb (A ∩B) γ (A+B)

≤ γ (A ∩B) γ (A+B) e
1
2 (rA∧rB)2

which again improves upon inequality (1.4) when either A or B is bounded.

2 The proof

Fix the dimension n, and for 0 ≤ t ≤ 1 let γt denote the distribution on Rn ×Rn of
the jointly normal vector (X,Y ) where the distribution of both X and Y is the standard
Gaussian measure γ and the covariance matrix is E(XY >) = tI where I is the n × n
identity matrix. This family of measures (γt)0≤t≤1 interpolates between γ0(K × L) =

γ(K)γ(L) and γ1(K × L) = γ(K ∩ L) and is given explicitly, for t < 1, by the formula

γt(H) =

∫
H

1
(1−t2)n/2(2π)n

e
− 1

2(1−t2) (‖x‖
2−2t〈x,y〉+‖y‖2)

dx dy

for measurable H ⊆ Rn × Rn, where 〈x, y〉 = x1y1 + . . . + xnyn denotes the standard
inner product on Rn. We will need a few facts about the measure γt.
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Inequalities for Gaussian measure

Fact 2.1. Fix a measurable set H ∈ Rn ×Rn with the symmetry property that (x, y) ∈ H
implies (x,−y) ∈ H. The map t 7→ (1− t2)−n/2γt

(√
1− t2H

)
is increasing.

Indeed, let

f(t) = (1− t2)−n/2γt
(√

1− t2H
)

=

∫
H

1
(2π)n e

− 1
2 (‖x‖

2−2t〈x,y〉+‖y‖2)dx dy

=

∫
H

1
(2π)n e

− 1
2 (‖x‖

2+‖y‖2) cosh(t〈x, y〉)dx dy

where we have used the symmetry property of H to go from the second to third line.
Hence, we have the identity

f ′(t) =

∫
H

1
(2π)n e

− 1
2 (‖x‖

2+‖y‖2)〈x, y〉 sinh(t〈x, y〉) dx dy.

Since θ sinh θ ≥ 0 for all real θ, the function f is increasing. A variation of this argument
also appears in the paper of Shao [10, Theorem 1.1].

Fact 2.2. Inspection of Royen’s proof [8, equation (2.3)] of the Gaussian correlation
inequality (1.1) shows that the map

t 7→ γt(A×B)

is increasing on [0, 1] for all symmetric convex A,B ⊆ Rn. This monotonicity property
was already known for the special case of dimension n = 2 by the result of Pitt [5,
Theorem 3]. In Appendix A we provide an interesting reformulation of this monotonicity
property in terms of the function sinc x = sin x

x .

Fact 2.3. Fix 0 ≤ t < 1 and symmetric convex A,B. We have the inequality

γt(A×B) ≤ γ
(√

2
1+t (A ∩B)

)
γ

(
1√

2(1−t)
(A+B)

)
.

To prove the above claim, we will combine a few observations about Gaussian
measure. Firstly, we will need the elementary identity that

γt(K × L) = γ0

{
(x, y) :

√
1+t
2 x+

√
1−t
2 y ∈ K,

√
1+t
2 x−

√
1−t
2 y ∈ L

}
.

Secondly, fix symmetric convex A,B ⊆ Rn and real constant p and note that

γ0{(x, y) : x+ py ∈ A, x− py ∈ B} =
∫
Rn

h(y)dγ(y)

where
h(y) = γ {(A− py) ∩ (B + py)} .

The function h is log-concave by the log-concavity of the Gaussian density, the assumed
convexity of A and B and Prékopa’s theorem [6, Theorem 6]. For completeness a
statement of this important result is included in Appendix B. Since h is even by the
assumed symmetry of A and B we have

h(y) ≤ h(0) = γ(A ∩B)

for all y ∈ Rn. Furthermore, h(y) > 0 only when

(A− py) ∩ (B + py) 6= ∅,
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Inequalities for Gaussian measure

that is, when there exist points a ∈ A and b ∈ B such that

a− py = b+ py

and hence
y = 1

2p (a− b) ∈
1
2p (A+B),

again by the symmetry of B. Therefore∫
Rn

h(y)dγ(y) ≤
∫
y:h(y)>0

h(0)dγ(y)

≤ γ(A ∩B) γ
(

1
2p (A+B)

)
.

Combining these two observations yields

γt(A×B) = γ0

{
(x, y) : x+

√
1−t
1+ty ∈

√
2

1+tA, x−
√

1−t
1+ty ∈

√
2

1+tB
}

≤ γ
(√

2
1+t (A ∩B)

)
γ

(
1√

2(1−t)
(A+B)

)
The idea establishing the above bound on the Gaussian measure of an intersection
was taken from Schechtman, Schlumprecht & Zinn [9, Proposition 3]. In fact, Dar [1,
Observation (4)] also employed a similar idea to bound the Lebesgue measure of an
intersection, and indeed this type of argument seems to have originated in the paper of
Rogers & Shephard [7].

To prove Theorem 1.2, fix
√
s ≤ t < 1 and convex symmetric sets A,B. We have the

following series of inequalities:

γ(A)γ(B) = γ0(A×B)

≤ (1− s)−n/2γ√s
(√

1− s(A×B)
)

(by Fact 2.1)

≤ (1− s)−n/2γt
(√

1− s(A×B)
)

(by Fact 2.2)

≤ (1− s)−n/2γ
(√

2(1−s)
1+t (A ∩B)

)
γ
(√

1−s
2(1−t) (A+B)

)
(by Fact 2.3)

as desired.

Remark 2.4. As noted above, Facts 2.1 and 2.2 yield

γ(A)γ(B) ≤ (1− s)−n/2γt
(√

1− s(A×B)
)

for
√
s ≤ t < 1. Of course, one could also reverse the order by first applying Fact 2.2 and

then Fact 2.1 to yield the inequality

γ(A)γ(B) ≤ γ√s(A×B)

≤
(

1− s
1− t2

)n/2
γt

(√
1− t2
1− s

(A×B)

)
.

However, nothing is gained by this reversal as can be seen by setting

S =
t2 − s
1− s

.

Note 0 ≤ S ≤ t2 and that the reversed inequality becomes

γ(A)γ(B) ≤ (1− S)−n/2γt
(√

1− S(A×B)
)
.
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Inequalities for Gaussian measure

A A sinc reformulation

In this appendix, we provide an interesting equivalent reformulation of Royen’s result
that the map t 7→ γt(A×B) is increasing for symmetric convex set A and B, where the
interpolation measure γt is defined in section 2.

We will use the notation sinc : Rn → R defined by

sinc(x1, . . . , xn) =

n∏
i=1

sinxi
xi

.

Theorem A.1. For all 0 ≤ t < 1 and n× n matrices P and Q we have∫
sinc(Px)sinc(Qy)〈x, y〉 sinh(t〈x, y〉)dγ(x)dγ(y) ≥ 0.

To prove Theorem A.1, we will need a lemma about Gaussian Fourier transforms.
We note that the idea to study Gaussian (and more general) correlation inequalities via
Fourier analysis has appeared in the paper of Koldobsky & Montgomery-Smith [2]. We
need some notation. For integrable f : Rn → C define its Fourier transforms f̂ : Rn → C

by

f̂(u) = 1
(2π)n/2

∫
ei〈u,x〉f(x)dx

as usual.

Lemma A.2. If f and g are integrable then∫
f(x)g(y)dγt(x, y) =

∫
f̂(u)ĝ(v)e−t〈u,v〉dγ(u)dγ(v)

for all 0 ≤ t < 1.

Proof. This is essentially an application of Plancherel’s identity. The proof amounts to
writing f̂ and ĝ in terms of their respective Fourier integrals, and since f and g are
assumed integrable, Fubini’s theorem can be applied. The result is a consequence of the
well-known formula∫

ei(〈u,x〉+〈v,y〉)−t〈u,v〉dγ(u)dγ(v) = 1
(1−t2)n/2 e

− 1
2(1−t2)

(‖x‖2−2t〈x,y〉+‖y‖2)
.

Lemma A.3. Let C = [−1, 1]n = {x ∈ Rn,maxi |xi| ≤ 1} and set A = P>C and B = Q>C

for n× n matrices P and Q. Then

γt(A ∩B) = |det(P ) det(Q)|
∫

sinc(Px)sinc(Qy) cosh(t 〈x, y〉)dγ(x)dγ(y).

Proof. Note that 1̂C(s) = sinc(s) and hence 1̂P>C(s) = |detP |sinc(Ps). By Lemma A.2,
we have

γt(A×B) = |det(P ) det(Q)|
∫

sinc(Px)sinc(Qy)e−t〈x,y〉dγ(x)dγ(y).

The result follows since C is symmetric and sinc is even.

The proof of Theorem A.1 follows from differentiating the expression in Lemma A.3
and applying Royen’s result on the monotonicity of t 7→ γt(A × B). Notice that since
convex sets can be approximated by polyhedra, Theorem A.1 is in fact equivalent to
Royen’s monotonicity result.
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B Log-concave functions

In this appendix we recall some familiar notions involving log-concavity. A non-
negative function g on Rn is called log-concave if

g(θx+ (1− θ)y) ≥ g(x)θg(y)1−θ

for any 0 ≤ θ ≤ 1 and x, y ∈ Rn. In particular, the indicator function of a convex set is
log-concave. The following fundamental result is due to Prékopa [6, Theorem 6].

Theorem B.1. Suppose that the function g on Rm+n is log-concave. Then the function h
on Rn defined by

h(y) =

∫
Rm

g(x, y)dx

is also log-concave.

In section 2 we appeal to Prékopa’s theorem with the log-concave function

g(x, y) = 1
(2π)n/21{(x,y):x+py∈A,x−py∈B}e

−‖x‖2/2.
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