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Abstract

The aim of this short note is to obtain the existence, uniqueness and moment upper
bounds of the solution to a stochastic heat equation with measure initial data, without
using the iteration method in [1, 2, 3].
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1 Introduction

Consider the stochastic heat equation

∂u

∂t
= Lu+ b(u) + σ(u)Ẇ (1.1)

for (t, x) ∈ (0,∞)×Rd(d > 1) where L is the generator of a Lévy process X = {Xt}t>0.
Ẇ is a centered Gaussian noise with covariance formally given by

E
(
Ẇ (t, x)Ẇ (s, y)

)
= δ(s− t)f(x− y) ,

where f is some nonnegative and nonnegative definite function whose Fourier transform
is denoted by

f̂(ξ) :=

∫
Rd

f(x)e−ixξdx

in distributional sense, and δ denotes the Dirac delta function at 0. For some technical
reasons, we will assume that f is either lower semicoutinuous (see Lemma 2.1 below),
or f = δ, which corresponds to the space time white noise.

Let Φ be the Lévy exponent of Xt, we will assume that

exp(−ReΦ) ∈ Lt(Rd) for all t > 0 . (1.2)

Thus according to Proposition 2.1 in [5], Xt has a transition function pt(x) and we
can (and will) find a version of pt(x) which is continuous on (0,∞)×Rd and uniformly
continuous for all (t, x) ∈ [η,∞)×Rd for every η > 0, and that pt vanishes at infinity for
all t > 0.

The initial condition u(0, ·) is assumed to be a (positive) measure µ(·) such that∫
Rd

pt(x− y)µ(dy) <∞ for all t > 0 and x ∈ Rd . (1.3)

To avoid trivialities, we assume that µ(·) 6≡ 0.
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Using iteration method, the existence, uniqueness and some moment bounds of the
solution have been obtained in [1, 2, 3] for the case b ≡ 0 and for some specific choice of
L. However, these approaches rely on the structure (or asymptotic structure) of pt(x).
In this article, we will study the equation (1.1) with also a Lipschitz drift term b and
establish the existence, uniqueness and p-th moment upper bound, without using the
iteration method in [1, 2, 3], also, our criteria only need some integrability of the Lévy
exponent.

To state the result, let us recall that by a solution u to (1.1) we mean a mild solution.
That is, (i) u is a predictable random field on a complete probability space {Ω,F , P},
with respect to the Brownian filtration generated by the cylindrical Brownian motion
defined by Bt(φ) :=

∫
[0,t]×Rd φ(y)W (ds, dy), for all t > 0 and measurable φ : Rd → R such

that
∫
Rd×Rd φ(y)φ(z)f(y − z)dydz <∞; and (ii) for any (t, x) ∈ (0,∞)×Rd, we have that

E[u(t, x)2] <∞ and the following equation holds a.s.

u(t, x) =

∫
Rd

pt(x− y)µ(dy) +

∫ t

0

∫
Rd

pt−s(x− y)b(u(s, y))dyds

+

∫ t

0

∫
Rd

pt−s(x− y)σ(u(s, y))W (ds, dy) . (1.4)

where pt(x) is the transition function for Xt and the stochastic integral above is in the
sense of Walsh [6]. The following theorem is the main result of this paper.

Theorem 1.1. Assume that the initial condition satisfies (1.3) and assume that

Υ(β) := sup
t>0

∫ t

0

∫
Rd

exp
[
−2sReΦ

(
(1− s

t
)ξ
)
− 2(t− s)ReΦ

(s
t
ξ
)]
e−2β(t−s)f̂(ξ)dξds <∞

(1.5)
and

Υ̃(β) :=

∫
Rd

f̂(ξ)dξ

β + ReΦ(ξ)
<∞ (1.6)

for any β > 0. And assume that σ and b are Lipschitz functions with Lipschitz coefficients
Lσ, Lb > 0 respectively. Then there exists a unique mild solution to equation (1.1).
Moreover, define

γ̄(p) := lim sup
t→∞

1

t
sup
x∈Rd

log

∥∥∥∥ u(t, x)

τ + pt ∗ µ(x)

∥∥∥∥
Lp(Ω)

, (1.7)

where

τ = max

{
|b(0)|
Lb

,
|σ(0)|
Lσ

}
. (1.8)

Then,
γ̄(p) 6 inf{β > 0 : B(β, p) < 1} for all integers p > 2 , (1.9)

where

B(β, p) :=
Lb
β

+
zpLσ

(2π)d/2

√ Υ̃(β)

2
+
√

Υ(β)

 , (1.10)

and zp denotes the largest positive zero of the Hermite polynomial, actually, one may
bound zp above by 2

√
p.

Remark 1.2. If we choose L to be the generator of an a-stable Lévy process Da
θ for

1 < a < 2, where θ is the skewness and |θ| < 2− a(see [2]), or the Laplacian 1
2∆ (a = 2),

then the classical Dalang’s condition∫
Rd

f̂(ξ)dξ

1 + |ξ|a
<∞ (1.11)
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implies condition (1.5), since in this case ReΦ(ξ) = C|ξ|a for some C > 0. Also, in the
case d = 1 and Ẇ is a space-time white noise, that is, f̂(ξ) ≡ 1, condition (1.6) clearly
guarantees that (1.2) holds.

2 Proof of Theorem 1.1

In the proof of Theorem 1.1 we will need some results about taking Fourier transforms,
which we now state.

Lemma 2.1 (Corollary 3.4 in [5]). Assume that f is lower semicontinuous, then for all
Borel probability measures ν on Rd,∫

Rd

∫
Rd

f(x− y)ν(dx)ν(dy) =
1

(2π)d

∫
Rd

f̂(ξ)|ν̂(ξ)|2dξ .

Lemma 2.2. If f is lower semicontinuous, then∫
Rd

∫
Rd

pt−s(x− y1)ps ∗ µ(y1)pt−s(x− y2)ps ∗ µ(y2)f(y1 − y2)dy1dy2

6
[pt ∗ µ(x)]2

(2π)d

∫
Rd

exp
[
−2sReΦ

(
(1− s

t
)ξ
)
− 2(t− s)ReΦ

(s
t
ξ
)]
f̂(ξ)dξ .

Proof. We begin by noting that∫
Rd

∫
Rd

pt−s(x− y1)ps ∗ µ(y1)pt−s(x− y2)ps ∗ µ(y2)f(y1 − y2)dy1dy2

=

∫
Rd

∫
Rd

∫
Rd

∫
Rd

pt−s(x− y1)ps(y1 − z1)

pt(x− z1)

pt−s(x− y2)ps(y2 − z2)

pt(x− z2)
f(y1 − y2)dy1dy2

× pt(x− z1)pt(x− z2)µ(dz1)µ(dz2) ,

and as a function of y, the quotient pt−s(x−y)ps(y−z)
pt(x−z) is the probability density of the Lévy

bridge X̃z,x,t = {X̃z,x,t(s)}06s6t which is at z when s = 0 and at x when s = t. Actually,
X̃z,x,t(s) can be written as

X̃z,x,t(s) = Xs −
s

t
Xt + z +

s

t
(x− z)

= (1− s

t
)Xs −

s

t
(Xt −Xs) + z +

s

t
(x− z) ,

hence by the independence of increment of Lévy process, we have

EeiξX̃z,x,t(s) = exp
(
−sΦ

(
(1− s

t
)ξ
)
− (t− s)Φ

(
−s
t
ξ
))

ei(z+
s
t (x−z)) .

Thus, an application of Lemma 2.1 to νj(dy) =
pt−s(x−y)ps(y−zj)

pt(x−zj) dy, j = 1, 2, yields∫
Rd

∫
Rd

pt−s(x− y1)ps(y1 − z1)

pt(x− z1)

pt−s(x− y2)ps(y2 − z2)

pt(x− z2)
f(y1 − y2)dy1dy2

=
1

(2π)d

∫
Rd

EeiξX̃z1,x,t(s)EeiξX̃z2,x,t(s)f̂(ξ)dξ

6
1

(2π)d

∫
Rd

exp
[
−2sReΦ

(
(1− s

t
)ξ
)
− 2(t− s)ReΦ

(
−s
t
ξ
)]
f̂(ξ)dξ ,

which proves the lemma.

In the case that f = δ, which corresponds to space-time white noise case, Lemma 2.2
is replaced by
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Lemma 2.3. We have that∫
Rd

(pt−s(x− y)ps ∗ µ(y))
2
dy

6
[pt ∗ µ(x)]2

(2π)d

∫
Rd

exp
[
−2sReΦ

(
(1− s

t
)ξ
)
− 2(t− s)ReΦ

(s
t
ξ
)]
dξ .

The proof of Lemma 2.3 goes in the same way as that of Lemma 2.2, except that
instead of using Lemma 2.1, we use Plancherel’s identity. We omit the details of the
proof.

To prove Theorem 1.1, we first define a norm for all β, p > 0 and all predictable
random fields v := v(t, x),

‖v‖β,p = sup
t>0

e−βt sup
x∈Rd

‖v(t, x)‖Lp(Ω) . (2.1)

Let Bβ,p denote the collection of all predictable random fields v := {v(t, x)}t>0,x∈Rd

such that ‖v‖β,p < ∞. We note that after the usual identification of a process with its
modifications, Bβ,p is a Banach space (see Section 5 in [5]).

Proof of Theorem 1.1. We will only do the case that f is a lower semicontinuous function,
the case that f = δ is proved in the same way. We use Picard iteration. Set

u0(t, x) := pt ∗ µ(x) ,

un+1(t, x) := pt ∗ µ(x) +

∫ t

0

∫
Rd

pt−s(x− y)b(un(s, y))dyds

+

∫ t

0

∫
Rd

pt−s(x− y)σ(un(s, y))W (ds, dy) .

We first show that whenever β is chosen such that B(β, p) < 1, where B(β, p) is defined
in (1.10), then, for any n > 1, ∥∥∥∥ τ + |un|

τ + p ∗ µ

∥∥∥∥
β,p

<∞ . (2.2)

Note that by the dominated convergence theorem, the condition B(β, p) < 1 can be
achieved if β is sufficiently large.

Recall that τ is defined in (1.8). We start with the inequality

τ + |un+1(t, x)|
τ + pt ∗ µ(x)

61 +

∣∣∣∣∫ t

0

∫
Rd

pt−s(x− y)[τ + ps ∗ µ(y)]

τ + pt ∗ µ(x)

b(un(s, y))

τ + ps ∗ µ(y)
dyds

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
Rd

pt−s(x− y)(τ + ps ∗ µ(y))

τ + pt ∗ µ(x)

σ(un(s, y))

τ + ps ∗ µ(y)
W (ds, dy)

∣∣∣∣ .
(2.2) is clearly true for n = 0. Using induction, assume (2.2) is true for some n, using
Burkholder inequality (see [4]) and the assumption on σ and b, we obtain∥∥∥∥τ + |un+1(t, x)|

τ + pt ∗ µ(x)

∥∥∥∥
Lp(Ω)

61 + Lb

∫ t

0

∫
Rd

pt−s(x− y)[τ + ps ∗ µ(y)]

τ + pt ∗ µ(x)

∥∥∥∥τ + |un(s, y)|
τ + ps ∗ µ(y)

∥∥∥∥
Lp(Ω)

dyds

+ zpLσ

(∫ t

0

∫
Rd

∫
Rd

pt−s(x− y1)(τ + ps ∗ µ(y1))

τ + pt ∗ µ(x)

pt−s(x− y1)(τ + ps ∗ µ(y1))

τ + pt ∗ µ(x)

×
∥∥∥∥τ + |un(s, y1)|
τ + ps ∗ µ(y1)

∥∥∥∥
Lp(Ω)

∥∥∥∥τ + |un(s, y2)|
τ + ps ∗ µ(y2)

∥∥∥∥
Lp(Ω)

f(y1 − y2)dy1dy2ds

)1/2

,
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multiplying both sides by e−βt and applying Minkowski’s inequality to the third summand
above we obtain

e−βt
∥∥∥∥τ + |un+1(t, x)|
τ + pt ∗ µ(x)

∥∥∥∥
Lp(Ω)

6 1 + Lb

∥∥∥∥ τ + |un|
τ + p ∗ µ

∥∥∥∥
β,p

∫ t

0

∫
Rd

e−β(t−s) pt−s(x− y)[τ + ps ∗ µ(y)]

τ + pt ∗ µ(x)
dyds

+ zpLσ

∥∥∥∥ τ + |un|
τ + p ∗ µ

∥∥∥∥
β,p

×
(∫ t

0

∫
Rd

∫
Rd

e−2β(t−s)pt−s(x− y1)pt−s(x− y2)f(y1 − y2)dy1dy2ds

)1/2

+ zpLσ

∥∥∥∥ τ + |un|
τ + p ∗ µ

∥∥∥∥
β,p

×
(∫ t

0

∫
Rd

∫
Rd

e−2β(t−s) pt−s(x− y1)ps ∗ µ(y1)

pt ∗ µ(x)

pt−s(x− y2)ps ∗ µ(y2)

pt ∗ µ(x)

× f(y1 − y2)dy1dy2ds

)1/2

:= 1 + I1 + I2 + I3 ,

where in obtaining I2 and I3 above, we have used the bound

pt−s(x− y)τ

τ + pt ∗ µ(x)
6 pt−s(x− y) and

pt−s(x− y)ps ∗ µ(y)

τ + pt ∗ µ(x)
6
pt−s(x− y)ps ∗ µ(y)

pt ∗ µ(x)
. (2.3)

We will estimate I1, I2, I3 separately. For I1, the semigroup property of pt(x) yields

I1 6
Lb
β

∥∥∥∥ τ + |un|
τ + p ∗ µ

∥∥∥∥
β,p

.

For I2, an application of Lemma 2.1 to ν(dy) = pt−s(x− y)dy yields∫ t

0

∫
Rd

∫
Rd

e−2β(t−s)pt−s(x− y1)pt−s(x− y2)f(y1 − y2)dy1dy2ds

=
1

(2π)d

∫ t

0

∫
Rd

e−2(t−s)ReΦ(ξ)f̂(ξ)dξe−2β(t−s)ds 6
1

2(2π)d

∫
Rd

f̂(ξ)dξ

β + ReΦ(ξ)
,

thus we obtain

I2 6 zpLσ

(
1

2(2π)d
Υ̃(β)

)1/2 ∥∥∥∥ τ + |un|
τ + p ∗ µ

∥∥∥∥
β,p

.

Finally, an application of Lemma 2.2 yields

I3 6 zpLσ

∥∥∥∥ τ + |un|
τ + p ∗ µ

∥∥∥∥
β,p

(
1

(2π)d
Υ(β)

)1/2

.

Combining the estimates for I1, I2, I3, we arrive at∥∥∥∥τ + |un+1|
τ + p ∗ µ

∥∥∥∥
β,p

6 1 +B(β, p)

∥∥∥∥ τ + |un|
τ + p ∗ µ

∥∥∥∥
β,p

,

where B(β, p) is defined in (1.10). Using the iteration, we see that (2.2) holds for all
n > 1 if B(β, p) < 1.
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Here we note that the stochastic integral∫ t

0

∫
Rd

pt−s(x− y)
σ(un(s, y))

τ + pt ∗ µ(x)
W (ds, dy)

=

∫ t

0

∫
Rd

pt−s(x− y)[τ + ps ∗ µ(y)]

τ + pt ∗ µ(x)

σ(un(s, y))

τ + ps ∗ µ(y)
W (ds, dy)

maps bounded predictable process un

τ+p∗µ in Bβ,p to a predictable process, thus the un+1

in the iteration is predictable. See also the discussion after Definition 5.1 in [5].

The same technique applied to un+1(t,x)−un(t,x)
τ+pt∗µ(x) yields that∥∥∥∥un+1 − un

τ + p ∗ µ

∥∥∥∥
β,p

6 B(β, p)

∥∥∥∥un − un−1

τ + p ∗ µ

∥∥∥∥
β,p

,

and if β is chosen such that B(β, p) < 1, we will obtain that

∞∑
n=1

∥∥∥∥un − un−1

τ + p ∗ µ

∥∥∥∥
β,p

<∞ .

Therefore, we can find a predictable random field u∞ ∈ Bβ,p such that limn→∞ un = u∞

in Bβ,p. It is easy to see that this u∞ is a solution to equation (1.4), and uniqueness is
checked by a standard argument.

To prove (1.9), we note that since u ∈ Bβ,p for those β such that B(β, p) < 1,

sup
x∈Rd

∥∥∥∥ u(t, x)

τ + pt ∗ µ(x)

∥∥∥∥
Lp(Ω)

6 sup
x∈Rd

τ

τ + pt ∗ µ(x)
+ Ceβt

for some C > 0 which does not depend on t, thus (1.9) is proved. The condition
u(t, x) ∈ L2(Ω) for each (t, x) ∈ (0,∞)×Rd follows easily from the case p = 2. The proof
of Theorem 1.1 is complete.
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