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Abstract

The first aim of the present note is to quantify the speed of convergence of a con-
ditioned process toward its Q-process under suitable assumptions on the quasi-
stationary distribution of the process. Conversely, we prove that, if a conditioned
process converges uniformly to a conservative Markov process which is itself ergodic,
then it admits a unique quasi-stationary distribution and converges toward it expo-
nentially fast, uniformly in its initial distribution. As an application, we provide a
conditional ergodic theorem.
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1 Introduction

Let (Ω, (Ft)t≥0, (Xt)t≥0, (Px)x∈E∪{∂}) be a time homogeneous Markov process with
state space E ∪ {∂}, where E is a measurable space. We assume that ∂ 6∈ E is an
absorbing state for the process, which means that Xs = ∂ implies Xt = ∂ for all t ≥ s,
Px-almost surely for all x ∈ E. In particular,

τ∂ := inf{t ≥ 0, Xt = ∂}

is a stopping time. We also assume that Px(τ∂ <∞) = 1 and Px(t < τ∂) > 0 for all t ≥ 0

and ∀x ∈ E.
A probability measure α on E is called a quasi-stationary distribution if

Pα(Xt ∈ · | t < τ∂) = α, ∀t ≥ 0.

We refer the reader to [7, 9, 4] and references therein for extensive developments and
several references on the subject. It is well known that a probability measure α is a
quasi-stationary distribution if and only if there exists a probability measure µ on E such
that

lim
t→+∞

Pµ(Xt ∈ A | t < τ∂) = α(A) (1.1)
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for all measurable subsets A of E.
In [2], we provided a necessary and sufficient condition on X for the existence of a

probability measure α on E and constants C, γ > 0 such that

‖Pµ(Xt ∈ · | t < τ∂)− α‖TV ≤ Ce
−γt, ∀µ ∈ P(E), t ≥ 0, (1.2)

where ‖ · ‖TV is the total variation norm and P(E) is the set of probability measures on
E. This immediately implies that α is the unique quasi-stationary distribution of X and
that (1.1) holds for any initial probability measure µ.

The necessary and sufficient condition for (1.2) is given by the existence of a proba-
bility measure ν on E and of constants t0, c1, c2 > 0 such that

Px(Xt0 ∈ · | t0 < τ∂) ≥ c1ν, ∀x ∈ E

and

Pν(t < τ∂) ≥ c2Px(t < τ∂), ∀t ≥ 0, x ∈ E.

The first condition implies that, in cases of unbounded state space E (like N or R+), the
process (Xt, t ≥ 0) comes down from infinity in the sense that, there exists a compact
set K ⊂ E such that infx∈E Px(Xt0 ∈ K | t0 < τ∂) > 0. This property is standard
for biological population processes such as Lotka-Volterra birth and death or diffusion
processes [1, 3]. However, this is not the case for some classical models, such as linear
birth and death processes or Ornstein-Uhlenbeck processes.

Many properties can be deduced from (1.2). For instance, this implies the existence
of a constant λ0 > 0 such that

Pα(t < τ∂) = e−λ0t

and of a function η : E → (0,∞) such that
∫
η dα = 1 and

lim
t→+∞

sup
x∈E

∣∣eλ0tPx(t < τ∂)− η(x)
∣∣ = 0 (1.3)

as proved in [2, Prop. 2.3]. It also implies the existence and the exponential ergodicity of
the associated Q-process, defined as the process X conditioned to never be extinct [2,
Thm. 3.1]. More precisely, if (1.2) holds, then the family (Qx)x∈E of probability measures
on Ω defined by

Qx(Γ) = lim
t→+∞

Px(Γ | t < τ∂), ∀Γ ∈ Fs, ∀s ≥ 0, (1.4)

is well defined and the process (Ω, (Ft)t≥0, (Xt)t≥0, (Qx)x∈E) is anE-valued homogeneous
Markov process. In addition, this process admits the unique invariant probability
measure (sometimes refered to as the doubly limiting quasi-stationary distribution [5])

β(dx) = η(x)α(dx)

and there exist constants C ′, γ′ > 0 such that, for any x ∈ E and all t ≥ 0,

‖Qx(Xt ∈ ·)− β‖TV ≤ C
′e−γ

′t. (1.5)

The first aim of the present note is to refine some results of [2] in order to get
sharper bounds on the convergence in (1.3) and to prove that the convergence (1.4)
holds in total variation norm, with uniform bounds over the initial distribution (see
Theorem 2.1). Using these new results, we obtain in Corollary 2.3 that the uniform
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exponential convergence (1.2) implies that, for all bounded measurable function f : E →
R and all T > 0, ∣∣∣∣∣Ex

(
1

T

∫ T

0

f(Xt) dt | T < τ∂

)
−
∫
E

f dβ

∣∣∣∣∣ ≤ a‖f‖∞
T

, (1.6)

for some positive constant a. This result improves the very recent result obtained
independently by He, Zhang and Zu [6, Thm. 2.1] by providing the convergence estimate
in 1/T . The interested reader might look into [6] for nice domination properties between
the quasi-stationary distribution α and the probability β.

The second aim of this note is to prove that the existence of the Q-process with
uniform bounds in (1.4) and its uniform exponential ergodicity (1.5) form in fact a
necessary and sufficient condition for the uniform exponential convergence (1.2) toward
a unique quasi-stationary distribution.

2 Main results

In this first result, we improve (1.3) and provide a uniform exponential bound for the
convergence (1.4) of the conditioned process toward the Q-process.

Theorem 2.1. Assume that (1.2) holds. Then there exists a positive constant a1 such
that

∣∣eλ0tPx(t < τ∂)− η(x)
∣∣ ≤ a1 e

λ0tPx(t < τ∂)e−γt, (2.1)

where λ0 and η are the constant and function appearing in (1.3) and where γ > 0 is the
constant from (1.2).

Moreover, there exists a positive constant a2 such that, for all t ≥ 0, for all Γ ∈ Ft
and all T ≥ t,

‖Qx(Γ)− Px(Γ | T < τ∂)‖TV ≤ a2 e
−γ(T−t), (2.2)

where (Qx)x∈E is the Q-process defined in (1.4).

We emphasize that (2.1) is an improvement of (1.3), since the convergence is actually
exponential and, in many interesting examples, infx∈E Px(t < τ∂) = 0. This is for example
the case for elliptic diffusion processes absorbed at the boundaries of an interval, since
the probability of absorption converges to 1 when the initial condition converges to the
boundaries of the interval. The last theorem has a first corollary.

Corollary 2.2. Assume that (1.2) holds. Then there exists a positive constant a3 such
that, for all T > 0, all probability measure µT on [0, T ] and all bounded measurable
functions f : E → R,

∣∣∣∣∣Ex
(∫ T

0

f(Xt)µT (dt) | T < τ∂

)
−
∫
E

f dβ

∣∣∣∣∣
≤ a3‖f‖∞

∫ T

0

(
e−γ

′t + e−γ(T−t)
)
µT (dt). (2.3)

This follows from (2.2), the exponential ergodicity of the Q-process stated in (1.5)
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and the inequality∣∣∣∣∣Ex
(∫ T

0

f(Xt)µT (dt) | T < τ∂

)
−
∫
E

f dβ

∣∣∣∣∣
≤
∫ T

0

∣∣Ex(f(Xt) | T < τ∂)− EQx(f(Xt))
∣∣ µT (dt)

+

∫ T

0

∣∣∣∣EQx(f(Xt))−
∫
E

f dβ

∣∣∣∣ µT (dt),

where EQx is the expectation with respect to Qx.

In particular, choosing µT as the uniform distribution on [0, T ], we obtain a conditional
ergodic theorem.

Corollary 2.3. Assume that (1.2) holds. Then there exists a positive constant a4 such
that, for all T > 0 and all bounded measurable functions f : E → R,∣∣∣∣∣Ex

(
1

T

∫ T

0

f(Xt) dt | T < τ∂

)
−
∫
E

f dβ

∣∣∣∣∣ ≤ a4 ‖f‖∞
T

.

Considering the problem of estimating β from N realizations of the unconditioned
process X, one wishes to take T as small as possible in order to obtain the most samples
such that T < τ∂ (of order NT = Ne−λ0T ). It is therefore important to minimize the error
in (2.3) for a given T . It is easy to check that µT = δt0 with t0 = γT/(γ + γ′) is optimal
with an error of the order of exp(−γ′γT/(γ + γ′)). Combining this with the Monte Carlo
error of order 1/

√
NT , we obtain a global error of order

eλ0T/2

√
N

+ e−γγ
′T/(γ+γ′).

In particular, for a fixed N , the optimal choice for T is T ≈ logN
λ0+2γγ′/(γ+γ′) and the error is

of the order of N−ζ with ζ = γγ′

2γγ′+λ0(γ+γ′) . Conversely, for a fixed T , the best choice for

N is N ≈ exp((λ0 + 2γγ′/(γ + γ′))T ) and the error is of the order of exp(−γγ′T/(γ + γ′)).

We conclude this section with a converse to Theorem 2.1. More precisely, we give a
converse to the fact that (1.2) implies both (1.5) and (2.2).

Theorem 2.4. Assume that there exists a Markov process (Qx)x∈E with state space E
such that, for all t > 0,

lim
T→+∞

sup
x∈E
‖Qx(Xt ∈ ·)− Px(Xt ∈ · | T < τ∂)‖TV = 0 (2.4)

and such that

lim
t→+∞

sup
x,y∈E

‖Qx(Xt ∈ ·)−Qy(Xt ∈ ·)‖TV = 0. (2.5)

Then the process (Px)x∈E admits a unique quasi-stationary distribution α and there exist
positive constants γ,C such that (1.2) holds.

It is well known that the strong ergodicity (2.5) of a Markov process implies its
exponential ergodicity [8, Thm. 16.0.2]. Similarly, we observe in our situation that,
if (2.4) and (2.5) hold, then the combination of the above results implies that both
convergences hold exponentially.
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3 Proofs

3.1 Proof of Theorem 2.1

For all x ∈ E, we set

ηt(x) =
Px(t < τ∂)

Pα(t < τ∂)
= eλ0tPx(t < τ∂),

and we recall from [2, Prop. 2.3] that ηt(x) is uniformly bounded w.r.t. t ≥ 0 and x ∈ E.
By Markov’s property

ηt+s(x) = eλ0(t+s)Ex (1t<τ∂PXt
(s < τ∂))

= ηt(x)Ex (ηs(Xt) | t < τ∂) .

By (1.2), there exists a constant C ′ independent of s such that∣∣∣∣Ex (ηs(Xt) | t < τ∂)−
∫
E

ηsdα

∣∣∣∣ ≤ C ′ e−γt.
Since

∫
ηsdα = 1, there exists a constant a1 > 0 such that, for all x ∈ E and s, t ≥ 0,∣∣∣∣ηt+s(x)

ηt(x)
− 1

∣∣∣∣ ≤ a1 e
−γt.

Hence, multiplying on both side by ηt(x) and letting s tend to infinity, we deduce
from (1.3) that, for all x ∈ E,

|η(x)− ηt(x)| ≤ a1 e
−γtηt(x), ∀t ≥ 0,

which is exactly (2.1). We also deduce that(
1− a1e

−γt) ηt(x) ≤ η(x) ≤
(
1 + a1e

−γt) ηt(x) (3.1)

and hence, for t large enough,

η(x)

1 + a1e−γt
≤ ηt(x) ≤ η(x)

1− a1e−γt
. (3.2)

Let us now prove the second part of Theorem 2.1. For any t ≥ 0, Γ ∈ Ft and 0 ≤ t ≤ T ,

Px (Γ | T < τ∂) =
Px (Γ ∩ {T < τ∂})
Px(T < τ∂)

=
eλ0TPx (Γ ∩ {T < τ∂})

η(x)

η(x)

eλ0TPx(T < τ∂)
.

We deduce from (2.1) that ∣∣∣∣ η(x)

eλ0TPx(T < τ∂)
− 1

∣∣∣∣ ≤ a1e
−γT ,

while, for all T > log a1
γ , (3.2) entails∣∣∣∣eλ0TPx (Γ ∩ {T < τ∂})

η(x)

∣∣∣∣ ≤ ηT (x)

η(x)
≤ 1

1− a1e−γT
.

Hence, for all t ≥ 0 and all T > log a1
γ ,∣∣∣∣Px (Γ | T < τ∂)− eλ0TPx (Γ ∩ {T < τ∂})

η(x)

∣∣∣∣ ≤ a1e
−γT

1− a1e−γT
. (3.3)
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Now, the Markov property implies that

Px (Γ ∩ {T < τ∂}) = Ex (1ΓPXt
(T − t < τ∂)) ,

and we deduce from (3.3) that, for all T > t+ log a1
γ ,∣∣∣eλ0(T−t)PXt(T − t < τ∂)− η(Xt)
∣∣∣ ≤ a1e

−γ(T−t)

1− a1e−γ(T−t) η(Xt).

Thus we have∣∣∣∣eλ0TPx (Γ ∩ {T < τ∂})
η(x)

− eλ0tEx (1Γη(Xt))

η(x)

∣∣∣∣
≤ eλ0t

η(x)
Ex

[
1Γ

∣∣∣eλ0(T−t)PXt
(T − t < τ∂)− η(Xt)

∣∣∣]
≤ a1e

−γ(T−t)

1− a1e−γ(T−t)
eλ0tEx(η(Xt))

η(x)

=
a1e
−γ(T−t)

1− a1e−γ(T−t) ,

where we used the fact that Exη(Xh) = e−λ0hη(x) for all h > 0 (see [2, Prop. 2.3]). This
and (3.3) allows us to conclude that, for all t ≥ 0 and all T > t+ log a1

γ ,∣∣∣∣Px (Γ | T < τ∂)− eλ0tEx (1Γη(Xt))

η(x)

∣∣∣∣ ≤ 2a1e
−γT

1− a1e−γT
.

Since Qx(Γ) = eλ0tEx (1Γ η(Xt)) /η(x) (see [2, Thm. 3.1 (ii)]), we deduce that (2.2) holds
true.

This concludes the proof of Theorem 2.1.

3.2 Proof of Theorem 2.4

We deduce from (2.4) and (2.5) that there exists t1 > 0 and T1 > 0 such that, for all
T ≥ T1,

sup
x,y∈E

‖Px(Xt1 ∈ · | T < τ∂)− Py(Xt1 ∈ · | T < τ∂)‖TV ≤ 1/2.

In particular, for all s ≥ 0 and all T ≥ s+ T1,

sup
x,y∈E

∥∥δxRTs,s+t1 − δyRTs,s+t1∥∥TV ≤ 1/2, (3.4)

where, for all 0 ≤ s ≤ t ≤ T , RTs,t is the linear operator defined by

δxR
T
s,tf = Ex(f(Xt−s) | T − s < τ∂)

= E(f(Xt) | Xs = x, T < τ∂)

= δxR
T−s
0,t−sf,

where we used the Markov property. Now, for any T > 0, the family (RTs,t)0≤s≤t≤T is a
Markov semi-group. This semi-group property and the contraction (3.4) classically imply
that, for all T ≥ T1,

sup
x,y∈E

∥∥δxRT0,T − δyRT0,T∥∥TV ≤ (1/2)
bT−T1c/t1 .

Then, proceeding as in [2, Section 5.1], we deduce that (1.2) holds true. This concludes
the proof of Theorem 2.4.
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