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Abstract

A piecewise constant local martingale M with boundedly many jumps is a uniformly
integrable martingale if and only if M−∞ is integrable.
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1 Main theorem

Let (Ω,F , (Ft)t≥0, P) denote a filtered probability space with
⋃
t≥0 Ft ⊂ F . In

Section 2, we shall prove the following theorem.

Theorem 1.1. Assume for some N ∈ N0 and some stopping times 0 ≤ ρ1 ≤ · · · ≤ ρN we
have a local martingale M of the form

M =

N∑
m=1

Jm1[[ρm,∞[[, that is, Mt =

N∑
m=1

Jm1{t≥ρm}, t ≥ 0, (1.1)

where Jm is Fρm–measurable for each m = 1, · · · , N . If

E

[
lim inf
t↑∞

M−t

]
<∞ (1.2)

then M is a uniformly integrable martingale.

In (1.2), we could replace the limit inferior by a limit since M only has finitely many
jumps and hence converges to a random variable M∞. Hence, (1.2) is equivalent to
E[M−∞] <∞.

Corollary 1.2. Suppose the notation and assumptions of Theorem 1.1 hold, but with
(1.2) replaced by

E
[
M−t

]
<∞, t ≥ 0.

Then M is a martingale.
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Piecewise constant local martingales

Proof. Fix a deterministic time T ≥ 0 and consider the local martingale M̃ = MT ; that
is, M̃ is the local martingale M stopped at time T . Then M̃ satisfies the conditions of
Theorem 1.1, with Jm replaced by Jm1{ρm≤T} for each m = 1, · · · , N . Hence, M̃ is a
uniformly integrable martingale. Since T was chosen arbitrarily the assertion follows.

[1] prove the following special case of Theorem 1.1.

Proposition 1.3. Fix N ∈ N0 and assume we have a discrete-time filtration G =

(Gm)m=0,1,··· ,N and a G–local martingale Y = (Ym)m=0,1,··· ,N . If E[Y −N ] < ∞ then Y

is a G–uniformly integrable martingale.

Note that Proposition 1.3 follows from Theorem 1.1. Indeed, define the continuous-
time process M and the filtration (Ft)t≥0 by Mt = Y[t]∧N and Ft = G[t]∧N , respectively,
where [t] denotes the largest integer smaller than or equal to t. Then M is a local
martingale as in (1.1), with N replaced by N + 1. To see this, set ρm = m − 1 and
Jm = Ym−1 − Ym−2 with Y−1 = 0, for each m = 1, · · · , N + 1. Applying Theorem 1.1 then
yields Proposition 1.3.

2 Proofs of Theorem 1.1

In the following, we will provide two proofs of Theorem 1.1. The first one assumes
Proposition 1.3 is already shown and reduces the more general situation of Theorem 1.1
to the discrete-time setup of Proposition 1.3. The second proof does not assume Proposi-
tion 1.3, but instead provides a direct argument based on an induction.

Proof I, relying on Proposition 1.3. Let us set ρ0 = 0 and ρN+1 = ∞ and let (τn)n∈N
denote a localization sequence of M such that Mτn is a uniformly integrable martingale
for each n ∈ N. For any stopping time τ we may define a sigma algebra

Fτ− = σ ({A ∩ {t < τ}, A ∈ Ft, t ≥ 0} ∪F0) .

Note that {τ =∞} =
⋂
n∈N{n < τ} ∈ Fτ−.

Let us now define a filtration G = (Gm)m=0,··· ,N and a process Y = (Ym)m=0,1,··· ,N by
Gm = Fρm ∨Fρm+1− and Ym = Mρm , respectively. Note that Y is adapted to G. Next, let
us define a non-decreasing sequence (σn)n∈N of random times, each taking values in
{0, · · · , N − 1,∞} by

σn =

N−1∑
m=0

m1{ρm≤τn<ρm+1<∞} +∞1⋃N
m=0{ρm≤τn}∩{ρm+1=∞}.

Then, σn is a G–stopping time for each n ∈ N since

{σn = m} = {ρm ≤ τn < ρm+1 <∞} ∈ Fρm ∨Fρm+1− = Gm, m = 0, · · · , N − 1,

and, furthermore, limn↑∞ σn =∞.
We now fix n ∈ N and prove that Y σn is a G–martingale, which then yields that Y is a

G–local martingale. To this end, we have, for each m = 0, · · · , N ,

Y σn
m =

N−1∑
k=0

Mρm∧k1{σn=k} +Mρm1{σn=∞}

=

N−1∑
k=0

Mρm∧k1{ρk≤τn<ρk+1<∞} +Mρm1
⋃N

k=0{ρk≤τn}∩{ρk+1=∞}

= Mτn
ρm ,
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Piecewise constant local martingales

yielding E[|Y σn
m |] <∞. Now, fix m = 1, · · · , N . First, for any A ∈ Fρm−1, we have

E[Y σn
m 1A] = E[Mτn

ρm1A] = E[Mτn
ρm−1

1A] = E[Y σn
m−11A];

next, for any t ≥ 0 and A ∈ Ft, we have

E[Y σn
m 1A∩{t<ρm}] = E[Mτn

ρm1A∩{t<ρm}] = E[Mτn
t 1A∩{t<ρm}] = E[Mτn

ρm−11A∩{t<ρm}]

= E[Y σn
m−11A∩{t<ρm}],

yielding that E[Y σn
m 1A] = E[Y σn

m−11A] for all A ∈ Gm−1. Hence, Y is indeed a G–local
martingale.

The assumptions of the theorem yield that E[Y −N ] < ∞; hence Y a G–uniformly
integrable martingale by Proposition 1.3. Now, fix t ≥ 0 and A ∈ Ft. Then we get
E[|Mt|] + E[|M∞|] ≤ 2

∑N
m=0 E[|Ym|] <∞ and

E[M∞1A] =

N∑
m=0

E[YN1A∩{ρm≤t<ρm+1}] =

N∑
m=0

E[Ym1A∩{ρm≤t<ρm+1}]

=

N∑
m=0

E[Mt1A∩{ρm≤t<ρm+1}] = E[Mt1A]

since A ∩ {ρm ≤ t < ρm+1} ∈ Gm for each m = 0, · · · , N . Hence, M is indeed a uniformly
integrable martingale.

Proof II, relying on an induction argument. We proceed by induction over N . The case
N = 0 is clear. Hence, let us assume the assertion is proven for some N ∈ N0 and
consider the assertion with N replaced by N + 1. Let (τn)n∈N denote a corresponding
localization sequence such that Mτn is a uniformly integrable martingale for each n ∈ N.

Step 1 : In the first step, we want to argue that the nondecreasing sequence (τ̂n)n∈N,
given by

τ̂n = τn1{τn<ρ1} +∞1{τn≥ρ1} ≥ τn,

is also a localization sequence for M . To this end, fix k ∈ N and consider the process

M̃ = (M −Mτk)1{τk≥ρ1}.

Then we have

M̃− ≤M− + |Mτk |;

hence

E

[
lim inf
t↑∞

M̃−t

]
≤ E

[
lim inf
t↑∞

M−t

]
+ E [|Mτk

∞ |] <∞. (2.1)

Next, we argue that M̃ is also a local martingale, again with localization sequence
(τn)n∈N. Indeed, for n ∈ N, t, h ≥ 0, and A ∈ Ft note that

E
[
M̃τn
t+h1A

]
=E

[(
Mτn
t+h−M

τn∧τk
t+h

)
1A∩{ρ1≤τk≤t}

]
+E
[(
Mτn
t+h−M

τn∧τk
t+h

)
1A∩{ρ1≤τk}∩{τk>t}

]
=E

[(
Mτn
t −M

τn∧τk
t

)
1A∩{ρ1≤τk≤t}

]
+E
[(
Mτn∧τk
t+h −Mτn∧τk

t+h

)
1A∩{ρ1≤τk}∩{τk>t}

]
=E

[
M̃τn
t 1A

]
,

where we used the definition of M̃ , {ρ1 ≤ τk ≤ t} ∈ Ft, A ∩ {ρ1 ≤ τk} ∩ {τk > t} ∈ Fτk ,
and the martingale property of Mτn . Alternatively, we could have observed that M̃· =
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∫ ·
0
1{ρ1≤τk<s}dMs (using the fact that 1{ρ1≤τk}1]]τk,∞[[} is bounded and predictable since

it is adapted and left-continuous). Hence, M̃ is a local martingale of the form

M̃ =

N+1∑
m=2

(
Jm1{ρ1≤τk<ρm}

)
1[[ρm,∞[[,

satisfying (2.1), and the induction hypothesis yields that M̃ is a uniformly integrable
martingale. This again yields that

M τ̂k = Mτk + M̃

is also a uniformly integrable martingale, proving the claim that (τ̂n)n∈N is a localization
sequence for M .

Step 2 : We want to argue that Mt ∈ L1 for each t ∈ [0,∞]. To this end, fix t ∈ [0,∞]

and note

E[|Mt|] ≤ lim inf
n↑∞

E
[∣∣∣M τ̂n

t

∣∣∣] (2.2)

= E[M0] + 2 lim inf
n↑∞

E

[(
M τ̂n
t

)−]
(2.3)

≤ E[M0] + 2 lim inf
n↑∞

E

[(
M τ̂n
∞

)−]
(2.4)

≤ E[M0] + 2E[M−∞] (2.5)

<∞. (2.6)

Here, the inequality in (2.2) is an application of Fatou’s lemma. The equality in (2.3)
relies on the fact that for any uniformly integrable martingale X we have E[|Xt|] =

E[X+
t ] + E[X−t ] = E[X0] + 2E[X−t ]. The inequality in (2.4) uses that (M τ̂n)− is a uniformly

integrable submartingale, thanks to Jensen’s inequality, for each n ∈ N. The inequality
in (2.5) (which is, actually, an equality) uses the fact that Mτ̂n ∈ {0,M∞}, for each n ∈ N,
by construction of the localization sequence (τ̂n)n∈N. Finally, the inequality in (2.6) holds
by assumption.

Step 3 : We now argue that M is a uniformly integrable martingale. To this end, fix
t ≥ 0 and A ∈ Ft. Observe that

E [M∞1A]= lim
n↑∞

(
E
[
M∞1A∩{τ̂n<ρ1<∞}

]
+E
[
M∞1A∩{τ̂n<ρ1}∩{ρ1=∞}

]
+E
[
M∞1A∩{τ̂n≥ρ1}

])
= lim
n↑∞

E
[
M τ̂n
∞ 1A∩{τ̂n=∞}

]
(2.7)

= lim
n↑∞

(
E
[
M τ̂n
∞ 1A∩{τ̂n>t}

]
−E
[
M τ̂n
∞ 1A∩{t<τ̂n<∞}

])
= lim
n↑∞

E
[
M τ̂n
t 1A∩{τ̂n>t}

]
(2.8)

=E [Mt1A] . (2.9)

We obtained the equality in (2.7) since τ̂n = ∞ on the event {τ̂n ≥ ρ1}, and since the
first term on the left-hand side is zero by the dominated convergence theorem and the
second one thanks to the form of M . In (2.8), we used the martingale property of M τ̂n in
the first term and the fact that Mτ̂n = 0 on the event {τ̂n <∞} in the second term, for
each n ∈ N. Finally, we exchanged limit and expectation in (2.9), again by an application
of the dominated convergence theorem. This then concludes the proof.
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3 Two examples concerning the assumptions in Theorem 1.1

Example 3.1. Assume (Ω,F , P) allows for a sequence (θm)m∈N of independent random
variables with P[θ1 = 2] = 1 and P[θm = −1] = 1/2 = P[θm = 1] for all m ≥ 2. Fix families
(Jm)m∈N and (ρm)m∈N of random variables with

Jm = 2m−2θm and ρm = (1− 1/m)1⋂m−1
k=2 {θk=1} +∞1⋃m−1

k=2 {θk=−1}
.

Next, define M as in (1.1) with N =∞ and assume that (Ft)t≥0 is the filtration generated
by M . Then M is a local martingale, with localization sequence (ρm)m∈N. Indeed, M is a
process that starts in one, and then, at times 1/2, 2/3, · · · doubles its value or jumps to zero,
each with probability 1/2. Since it eventually jumps to zero as P[

⋃∞
m=2{θm = −1}] = 1,

we have M1 = 0. In particular, M is not a true martingale, but satisfies E[M−1 ] = 0 <∞.
Thus, the assertions of Theorem 1.1 or Corollary 1.2 are not valid if N = ∞, even if
P[
⋃
m∈N{ρm =∞}] = 1.

The next example illustrates that the assumptions of Corollary 1.2 are not sufficient
to guarantee that M is a uniformy integrable martingale, even if there is only one jump
possible, that is, even if N = 1. The example is adapted from [2], where it is used as a
counterexample for a different conjecture.

Example 3.2. Let ρ be an N ∪ {∞}–valued random variable with

P [ρ = i] =
1

2i2
, i ∈ N.

This then yields that

P [ρ =∞] = 1− π2

12
.

Moreover, let θ be an independent {−1, 1} valued random variable with P[θ = 1] = P[θ =

−1] = 1/2. Define J = θρ2. Then the stochastic process

M = J1[[ρ,∞[[,

along with the filtration (Ft)t≥0 it generates, satisfies exactly the conditions of Corol-
lary 1.2. Indeed, ρ is an F–stopping time and M−t ≤ ρ21{ρ≤t} ≤ t2, hence M−t ∈ L1 for
each t ≥ 0. Thus, M is a martingale. This fact would also be very easy to check by hand.

We have M∞ = limt↑∞Mt exists and satisfies |M∞| = ρ21{ρ<∞}. Thus,

E[|M∞|] =
∑
i∈N

i2
1

2i2
=∞,

and M cannot be a uniformly integrable martingale.
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