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Abstract

We consider d-dimensional diffusion processes in multi-parameter random environ-
ments which are given by values at different d points of one-dimensional α-stable
or (r, α)-semi-stable Lévy processes. From the model, we derive some conditions of
random environments that imply the dichotomy of recurrence and transience for the
d-dimensional diffusion processes. The limiting behavior is quite different from that
of a d-dimensional standard Brownian motion. We also consider the direct product
of a one-dimensional diffusion process in a reflected non-positive Brownian environ-
ment and a one-dimensional standard Brownian motion. For the two-dimensional
diffusion process, we show the transience property for almost all reflected Brownian
environments.
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1 Introduction and results

It is well-known that a multi-dimensional standard Brownian motion, consisting of d
independent one-dimensional standard Brownian motions, is recurrent if d = 1 or 2, and
transient otherwise. We consider such limiting behavior of multi-dimensional diffusion
processes in stable and semi-stable Lévy environments.

LetW be the space of the R-valued functions W that satisfy the following:

(I) W (0) = 0.

(II) W is right continuous and has left limits on [0,∞).

(III) W is left continuous and has right limits on (−∞, 0].
(IV) W is a non-zero process.

Following [19], we set a probability measure Q on W such that {W (x), x ≥ 0, Q} and
{W (−x), x ≥ 0, Q} are independent, identical in law and strictly semi-stable Lévy pro-
cesses with index α ∈ (0, 2], which have the following semi-selfsimilarity:
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Multi-dimensional diffusion processes in semi-selfsimilar random environments

{W (x), x ∈ R} d
= {a−1/αW (ax), x ∈ R} for some a > 0, (1.1)

where
d
= denotes the equality in all joint distributions. We call a and a1/α in (1.1) an

epoch and a span, respectively, and set

r = inf{a > 1 : a satisfies (1.1)}. (1.2)

In this paper, we call (W,Q) an (r, α)-semi-stable Lévy environment. We remark that the
trivial process, that is W (x) = cx almost surely for x ≥ 0 with c 6= 0, is also a non-zero,
strictly semi-stable Lévy process (Remark 13.17 in [12]). If r = 1, (W,Q) is not only
semi-selfsimilar, but selfsimilar. In this case, we call (W,Q) an α-stable Lévy environment.
If α = 2, then r = 1 and (W,Q) is a Brownian environment (Theorem 14.1 in [12]). Refer
[12] for more properties of semi-stable Lévy processes.

For a fixed W , we consider a d-dimensional diffusion process starting at 0, XW =

{Xk
W (t), t ≥ 0, k = 1, . . . , d} whose generator is

d∑
k=1

1

2
exp{W (xk)}

∂

∂xk

{
exp{−W (xk)}

∂

∂xk

}
. (1.3)

We regard values of W at different d points as constituting a multi-parameter environ-
ment. XW is constructed by d independent standard Brownian motions with a scale
transformation and a time change induced by W (c.f. [9]). Each component of XW is
symbolically described by

dXk
W (t) = dBk(t)− 1

2
W
′
(Xk

W (t))dt, Xk
W (0) = 0, for k = 1, . . . , d,

where Bk(t) is a one-dimensional standard Brownian motion independent of the environ-
ment (W,Q).

In the case where d = 1 and (W,Q) is a Brownian environment, Brox showed that the
distribution of (log t)−2XW (t) converges weakly as t → ∞ in [1]. This shows that XW

moves very slowly by the effect of the environment. This diffusion process is a continuous
model of random walks in random environments studied by Solomon [14] and Sinai [13],
and XW is often called a Brox-type diffusion. Following Brox’s result, Tanaka studied
the cases of α-stable Lévy environments and showed the convergence theorem with the
scaling (log t)−αXW (t) under the assumption that Q{W (1) > 0} > 0 in [19]. Tanaka’s
results were extended to the cases of (r, α)-semi-stable Lévy environments in [16].

In view of the subdiffusive property of the Brox-type diffusion, we expect to see an
exotic limiting behavior for multi-dimensional Brox-type diffusions. We now give a brief
review of investigations related to multi-dimensional Brox-type diffusions. Fukushima et
al. showed the recurrence of the diffusion process whose generator is

1

2
eW (|x|)

d∑
k=1

∂

∂xk

{
e−W (|x|) ∂

∂xk

}
,

where |x| =
√
x21 + x22 + x23 + · · ·+ x2d and W is a one-dimensional standard Brownian

motion in [6]. In the case where the environment is Lévy’s Brownian motion W (x)

with a multi-dimensional time, Tanaka showed the recurrence of the diffusion process
for almost all environments in any dimension in [20]. These results were shown by
Ichihara’s recurrent test introduced in [8]. Mathieu studied asymptotic behavior of
multi-dimensional diffusion processes in random environments by using the Dirichlet
form and showed the convergence theorem for the case where the environment is a non-
negative reflected Lévy’s Brownian motion in [11]. Following this study, Kim obtained
several limit theorems of the multi-dimensional diffusion processes in [10]. He also
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Multi-dimensional diffusion processes in semi-selfsimilar random environments

showed the convergence theorem in the case where the random environment consists
of d independent one-dimensional reflected non-negative Brownian motions, which is a
model studied in [17].

Recently, Gantert et al. showed the recurrence of d independent random walks in
random environments satisfying a uniform ellipticity condition for the environments.
They used estimates of quenched return probabilities to the origin of the one-dimensional
random walks in random environments in [7]. In [18], the multi-dimensional diffusion
process consisting of d independent Brox-type diffusions was studied and the recurrence
of this process for almost all environments in any dimension was shown. The multi-
dimensional diffusion process is a continuous time analogue of the random walks in [7].
We remark that the recurrence property of the multi-dimensional diffusion process is
derived without the uniform ellipticity condition for the environments.

Following the previous studies, we consider limiting behavior of diffusion processes in
(r, α)-semi-stable Lévy environments to be given by (1.1) and (1.2), which are extensions
of the models studied in [7] and [18]. We call an increasing (r, α)-semi-stable or α-stable
Lévy process a subordinator. We obtain some conditions of the random environments
which imply the dichotomy of recurrence and transience of d-dimensional diffusion
processes corresponding to the generator (1.3) as follows.

Theorem 1.1. (i) If {−W (x), x ≥ 0, Q} is not a subordinator, then XW is recurrent for
almost all environments in any dimension.

(ii) If {−W (x), x ≥ 0, Q} is a subordinator, then XW is transient for almost all
environments in any dimension.

Next, we consider d-dimensional diffusion processes consisting of d independent
Brox-type diffusions. Let Qk be the probability measure onW such that

(i) {Wk(−xk), xk ≥ 0, Qk} is an αk-stable Lévy process,
(ii) {Wk(xk), xk ≥ 0, Qk} is a βk-stable Lévy process,

(iii) the Lévy processes on positive and negative sides are independent.

We define an environment (W,Q) by {(Wk, Qk), k = 1, . . . , d} with each (Wk, Qk) being
independent. We remark that Suzuki studied the case where d = 1 with independent an
α-stable and a β-stable Lévy environments, and obtained some convergence theorems in
[15].

For a fixed W, we consider a d-dimensional diffusion process starting at 0, XW =

{X(k)
Wk

(t), t ≥ 0, k = 1, . . . , d} whose generator is

d∑
k=1

1

2
exp{Wk(xk)}

∂

∂xk

{
exp{−Wk(xk)}

∂

∂xk

}
. (1.4)

On the d-dimensional diffusion processes, we obtain the following dichotomy theorem.

Theorem 1.2. (i) If neither {−Wk(−xk), xk ≥ 0, Qk} nor {−Wk(xk), xk ≥ 0, Qk} is a sub-
ordinator for any k, then XW is recurrent for almost all environments in any dimension.

(ii) If either {−Wk(−xk), xk ≥ 0, Qk} or {−Wk(xk), xk ≥ 0, Qk} is a subordinator for
some k, then XW is transient for almost all environments in any dimension.

2 Proofs of Theorems

2.1 Proof of Theorem 1.1

We can show that the generator (1.3) is equal to

1

2
exp


d∑
j=1

W (xj)


d∑
k=1

∂

∂xk

exp

−
d∑
j=1

W (xj)

 ∂

∂xk

 (2.1)
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Multi-dimensional diffusion processes in semi-selfsimilar random environments

through a simple calculation. Since semi-stable or stable Lévy processes are bounded on
finite time intervals almost surely (cf. Chapter VIII in [3]), the Dirichlet form

E(f, g) = 1

2

∫
Rd

(∇f · ∇g) exp

−
d∑
j=1

W (xj)

 dx, f, g ∈ C∞0 (Rd)

is closable on L2
(
Rd, exp

{
−
∑d
j=1W (xj)

}
dx
)

and its closure (denoted by E again) is a

local regular Dirichlet form (see Section 3 in [5]). Furthermore, E is either transient or
recurrent, and the property is the same as that of the diffusion process corresponding to
the generator (2.1). Hence, we study limiting behavior of the process YW corresponding
to the generator

d∑
k=1

∂

∂xk

exp

−
d∑
j=1

W (xj)

 ∂

∂xk

 . (2.2)

The following proposition about a property of (r, α)-semi-stable Lévy environments is
crucial for showing the recurrence of YW .

Proposition 2.1. If Q{W (1) > 0} > 0, then for any positive a0 and any d

Q

 min
1≤θ≤r

 inf
σ∈Sd−1

d∑
j=1

W (θσj)

 > a0

 > 0, (2.3)

where Sd−1 is the surface of the d-dimensional unit ball centered at the origin.

Proof. If {W (x)} is a trivial strictly semi-stable or stable Lévy process, then the assump-
tion that Q{W (1) > 0} > 0 implies that there exists a positive constant c such that
W (x) = cx almost surely (cf. Remark 13.17 in [12]). Hence, we obtain (2.3) for any d.

We next consider non-trivial cases.
In the case where d = 1, since {W (−x), x ≥ 0, Q} is the independent copy of

{W (x), x ≥ 0, Q}, it is sufficient to show that for any a0 > 0

Q

{
inf

1≤x≤r
W (x) > a0

}
> 0. (2.4)

If W (x) is the α-stable Lévy environment, then r = 1. This and the property of the
support of the α-stable Lévy process (cf. Theorem 24.10 in [12]) imply the assertion. If
W (x) is the (r, α)-semi-stable environment, then we also have that Q{W (1) > a0+1} > 0.
Using the local boundedness of Lévy processes, for any u > 0 and any M > 0 we find
that

Q

{
sup

0≤x≤u
|W (x)| < M

}
> 0, (2.5)

which and the Markov property of {W (x)} at x = 1 imply that

Q

{
inf

1≤x≤r
{W (x)−W (1)} > −1

∣∣∣∣W (1) > a0 + 1

}
> 0. (2.6)

Hence, we obtain (2.4).
In the case where d ≥ 2, we set φ(x) = (a0 + 2d)x2 − 2. As

∑d
j=1 σ

2
j = 1, we find that∑d

j=1 φ(θσj) ≥ a0 for any θ ∈ [1, r]. Hence, it is sufficient to show that

Q

 min
1≤θ≤r

 inf
σ∈Sd−1

d∑
j=1

{W (θσj)− φ(θσj)}

 > 0

 > 0. (2.7)
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Multi-dimensional diffusion processes in semi-selfsimilar random environments

In the same manner as the case where d = 1, we consider the positive side and shall
show that

Q

{
inf

0≤x≤r
{W (x)− φ(x)} > 0

}
> 0. (2.8)

For W (x), we define the first exit time from the interval [−1, φ(r) + 1] by τ .

Let 0 < α < 2. Then, the distribution of W (1) (denoted by µ) is strictly (r, α)-
semi-stable or α-stable. Let ν(dx) be the Lévy measure of µ. We can write that W =

W1 +W2 +W3, where they are independent Lévy processes whose Lévy measures are
restrictions of ν such that ν1 := [ν]{x≥φ(r)+2}, ν2 := [ν]{x≤−1} and ν3 := [ν]{−1<x<φ(r)+2},
respectively. For k = 1 and 2, we set the first jump time of Wk by τk and set the total
mass of νk by Jk. We remark that the assumption implies that J1 > 0. Then, we obtain
that

Q

{
τ1 <

1√
a0 + 2d

}
= 1− exp{−J1/

√
a0 + 2d} > 0 (2.9)

and

Q

{
τ2 >

1√
a0 + 2d

}
= exp{−J2/

√
a0 + 2d} > 0. (2.10)

Using the local boundedness of Lévy processes, we find that the probability that W3(x)

does not exit from [−1, φ(r) + 1] with jumps induced by ν3 until the time 1/
√
a0 + 2d is

positive. This positivity of the probability, (2.9) and (2.10) imply that

Q

{
0 < τ <

1√
a0 + 2d

and W (τ) > φ(r) + 1

}
> 0. (2.11)

As for α = 2, W (x) is a Brownian motion and (2.11) is obvious. We thus omit the proof.

Notice that φ(1/
√
a0 + 2d) = −1, which and (2.11) imply that

Q

{
inf

0≤x≤τ
{W (x)− φ(x)} > 0 and W (τ) > φ(r) + 1

}
> 0. (2.12)

The strong Markov property of {W (x)}, (2.12) and (2.5) imply that

Q

{
inf

τ≤x≤r
{W (x)−W (τ)} > −1∣∣∣∣ inf
0≤x≤τ

{W (x)− φ(x)} > 0 and W (τ) > φ(r) + 1

}
> 0. (2.13)

Hence, (2.12) and (2.13) imply (2.8).

Proof of (i) of Theorem 1.1. In the case where d = 1, the scale function of the generator
(2.2) is given by

∫ x
0
exp{W (s)}ds. The assumption that Q{W (1) > 0} > 0 implies that

lim sup|s|→∞W (s) = ∞ almost surely. Hence, we obtain assertion (i) from a general
theory of one-dimensional diffusion processes.

In the case where d ≥ 2, we use Ichihara’s recurrent test ([8] and [5]). It is sufficient
to show that for almost all environments

∫ ∞
1

s1−d


∫
Sd−1

exp

−
d∑
j=1

W (sσj)

 dσ


−1

ds =∞, (2.14)

where dσ is the normalized uniform measure on Sd−1.
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Multi-dimensional diffusion processes in semi-selfsimilar random environments

First, we consider the case of the (r, α)-semi-stable Lévy environment. For each s ≥ 1,
we can find n ∈ Z and θ ∈ [1, r) such that s = rnθ, which implies that the left-hand side
of (2.14) is equal to

∞∑
n=0

rn(2−d)
∫ r

1

θ1−d


∫
Sd−1

exp

−
d∑
j=1

W (rnθσj)

 dσ


−1

dθ. (2.15)

We set a measure preserving transformation for (W,Q) such that for n = 0, 1, 2, . . .

TnW (s) := r−n/αW (rns), s ≥ 1.

Then, the family of transformations {Tn} is ergodic (for detail, see [4]). Setting

M(n) := min
1≤θ≤r

 inf
σ∈Sd−1

d∑
j=1

TnW (θσj)

 , (2.16)

we obtain that

(2.15) =

∞∑
n=0

rn(2−d)
∫ r

1

θ1−d


∫
Sd−1

exp

−rn/α
d∑
j=1

TnW (θσj)

 dσ


−1

dθ

≥ C−1d
∞∑
n=0

rn(2−d)
∫ r

1

θ1−d exp{rn/αM(n)}dθ

≥ Cd,r
∞∑
n=0

exp{n(2− d) log r + rn/αM(n)}, (2.17)

where Cd and Cd,r denote the surface area of the unit sphere and a positive constant
determined by d and r, respectively. We choose m0 which satisfies that for any n

n(2− d) log r + rn/αm0 ≥ 0.

Then,

(the right-hand side of (2.17)) ≥ Cd,r lim
N→∞

N
1

N

N∑
n=0

1[m0,∞)(M(n)). (2.18)

Since Q(W (1) > 0) > 0, we can use Proposition 2.1. This and the ergodicity of {Tn}
imply that

lim
N→∞

1

N

N∑
n=0

1[m0,∞)(M(n))

= E[1[m0,∞)(M(0))]

= Q

 min
1≤θ≤r

 inf
σ∈Sd−1

d∑
j=1

W (θσj)

 > m0

 > 0 Q-almost surely, (2.19)

which and (2.18) show (2.14) for almost all environments.
Second, we consider the case of the α-stable Lévy environment, which is semi-

selfsimilar for any a > 0 in (1.1). Fixing r̃ > 1 as an epoch of the stable Lévy environment,
we obtain that for any positive m0 and any d

Q

 min
1≤θ≤r̃

 inf
σ∈Sd−1

d∑
j=1

W (θσj)

 > m0

 > 0

in the same manner as that for showing Proposition 2.1. Instead of r in (2.15), we use r̃
and obtain (2.14) for almost all environments.
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Multi-dimensional diffusion processes in semi-selfsimilar random environments

Proof of (ii) of Theorem 1.1. According to Ichihara’s transient test introduced in [8], it
is sufficient to show that

E

∫ ∞
1

s1−d exp


d∑
j=1

W (sσj)

 ds

 <∞ (2.20)

on a subset of Sd−1 with positive surface measure.
In the case where d = 1, we show (2.20) for the subset {1} ⊂ S0. As {−W (x), x ≥ 0, Q}

is a subordinator, exp{−W (s)} ≥ 1 for any s ≥ 1. By Theorem 24.11 in [12], we obtain
that

(the left-hand side of (2.20))

=

∫ ∞
1

E [exp{−(−W (s))}] ds

=

∫ ∞
1

exp

{
s

(∫ ∞
0

(e−x − 1)ν̃(dx)− γ0
)}

ds, (2.21)

where ν̃(dx) is the Lévy measure of the distribution of −W (1) and γ0 is the constant term
of the drift of {−W (x)}.

If {−W (x)} is a trivial strictly semi-stable or stable Lévy process, then γ0 > 0 and
ν̃ ≡ 0. We thus obtain (2.20).

We next consider non-trivial cases. Since {−W (x)} is a strictly semi-stable Lévy
process, Theorem 14.7 in [12] implies that γ0 ≡ 0. For the environment, we obtain that

(the right-hand side of (2.21))

≤
∫ ∞
1

exp

{
−s
∫ ∞
1

(1− e−x)ν̃(dx)
}
ds

≤
∫ ∞
1

exp{−s(1− e−1)ν̃((1,∞))}ds

<∞.

For the α-stable Lévy environment, we use semi-selfsimilarity of the environment and
can show the assertion in the same way.

In the case where d ≥ 2, for a fixed W the components of XW are independent since
XW is constructed by d independent standard Brownian motion. Hence we obtain the
transience in any dimension.

2.2 Proof of Theorem 1.2

In the same reason as mentioned in the proof of Theorem 1.1, we study limiting
behavior of the process YW(t) corresponding to the generator

d∑
k=1

∂

∂xk

exp

−
d∑
j=1

Wj(xj)

 ∂

∂xk


for d ≥ 2.

Proof of (i) of Theorem 1.2. We set

ε := (εj)j=1,...,d ∈ {−1,+1}d,

Rj = Rj(εj) :=

{
(−∞, 0] , εj = −1,
[0,∞) , εj = +1,

γj = γj(εj) :=

{
αj , εj = −1,
βj , εj = +1.
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Multi-dimensional diffusion processes in semi-selfsimilar random environments

For each ε, we have that for any a > 0

{Wj(a
γjxj), xj ∈ Rj}

d
= {aWj(xj), xj ∈ Rj}.

We also set Rε := R1 × · · · × Rd \ {(0, . . . , 0)} and Sd−1ε := Sd−1 ∩Rε. On Rε, a point x
and a pair s > 0 and σ ∈ Sd−1ε have one-to-one correspondence to each other such that
xj = sγjσj . We thus denote a function of x by s = s(x) which satisfies that

d∑
j=1

( xj
sγj

)2
= 1.

We set

Eε(s) :=

∫
Sd−1

ε

exp

−
d∑
j=1

Wj(s
γjσj)


∑d
j=1

(
σj/s

γj−1
)2(∑d

j=1 γjσ
2
j

)2 dσ, s ≥ 1,

Jε :=

∫ ∞
1

s1−(γ1+···+γd)E−1ε (s)ds.

By arguments of Ichihara’s recurrent test in [8] and [5], if Jε =∞ for any ε and almost
all environments, then we obtain the assertion. Setting γ̂ := min{αj , βj , j = 1, . . . , d}, we
have that

Jε ≥ γ̂2
∫ ∞
1

s1−(γ1+···+γd)
s2(γ̂−1)∫

Sd−1

ε
exp

{
−
∑d
j=1Wj(sγjσj)

}
dσ
ds

≥ Cd,γ̂
∫ ∞
1

s2γ̂−(1+γ1+···+γd) exp

 inf
σ∈Sd−1

ε

d∑
j=1

Wj(s
γjσj)

 ds, (2.22)

where Cd,γ̂ denotes a positive constant determined by d and γ̂. We set a measure
preserving transformation for (Wj , Qj) such that for all t ∈ R

T
(j)
t Wj(σj) := e−tWj(e

tγjσj), σ ∈ Sd−1ε .

A direct product of strong mixing transformations is strong mixing (cf. Theorem 2 in [2,
p. 229]), which implies that {T (j)

t } is ergodic. We also set

Mε(t) := inf
σ∈Sd−1

ε

d∑
j=1

T
(j)
t Wj(σj).

For each component of W, the positive side and the negative side are independent. In
addition, Wj ’s are also independent. These and (2.8) imply that for any d ≥ 2

Q

 inf
σ∈Sd−1

d∑
j=1

{Wj(σj)− φ(σj)} > 0

 > 0.

Hence, we obtain that for any ε, any a0 > 0 and any t ∈ R

Q {Mε(t) > a0} > 0. (2.23)

We choose m0 > 0 which satisfies that for any t ≥ 0

t{2γ̂ − (γ1 + · · ·+ γd)}+ etm0 ≥ 0.
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Multi-dimensional diffusion processes in semi-selfsimilar random environments

Then, we obtain that

(the right-hand side of (2.22))

= Cd,γ̂

∫ ∞
0

exp
[
t{2γ̂ − (γ1 + · · ·+ γd)}+ etMε(t)

]
dt

≥ Cd,γ̂ lim
N→∞

N
1

N

∫ N

0

1[m0,∞)(Mε(t))dt. (2.24)

The ergodicity of {T (j)
t } and (2.23) imply that

lim
N→∞

1

N

∫ N

0

1[m0,∞)(Mε(t))dt

= E
[
1[m0,∞)(Mε(0))

]
= Q {Mε(0) > m0} > 0 Q-almost surely.

This positivity and (2.24) imply that Jε =∞ for any ε and almost all environments.

Proof of (ii) of Theorem 1.2. If {−Wj2(xj2), xj2 ≥ 0, Qj2} is a subordinator for some j2
(1 ≤ j2 ≤ d), then the proof of (ii) of Theorem 1.1 implies that the j2-th component of XW

is transient for almost all environments. If {−Wj2(−xj2), xj2 ≥ 0, Qj2} is a subordinator,
then for the j2-th component of XW we can also show the transience property for almost
all environments by showing (2.20) for the subset {−1} ⊂ S0. Hence, at least one
component of XW is transient for almost all environments, which implies assertion
(ii).

Remark 2.2. Even in the case where (W,Q) contains semi-stable Lévy environments
instead of some of the stable Lévy environments, the both assertions of Theorem 1.2
hold. The proofs are almost same as above. To prove (i) we need to take a common span
for all the semi-stable Lévy environments.

3 Transience of a two-dimensional diffusion process

In [7], Gantert et al. considered a two-dimensional random walk {Xn, Yn, n ∈ N}
such that {Xn} is a random walk in the random environment studied by Sinai [13], {Yn}
is a centered random walk that converges weakly to a strictly α-stable Lévy process
with α ∈ (1, 2] under a suitable scaling, and they are independent. They showed the
recurrence of the random walk for almost all environments. In [19], Tanaka studied
a one-dimensional diffusion process in a reflected non-positive Brownian environment
(−|W |, Q) and showed the convergence theorem with the same scaling as that of the
diffusion process studied by Brox [1]. Denoting Tanaka’s diffusion process by {X−|W |(t)},
we consider a direct product of {X−|W |(t)} and a one-dimensional standard Brownian
motion (denoting by {B2(t)}). For the two-dimensional diffusion process, we obtain the
transience property.

Proposition 3.1. We assume that {X−|W |(t)} and {B2(t)} are independent. Then, the
two-dimensional diffusion process {X−|W |(t), B2(t)} is transient for almost all environ-
ments.

Proof. By applying Ichihara’s transient test in [8] to the generator

2∑
k=1

∂

∂xk

{
exp {|W (x1)|}

∂

∂xk

}
,
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it is sufficient to show that for almost all environments there exists I ⊂ [0, 1] such that
|I| > 0 and ∫ ∞

1

1

s
exp{−|W (su)|}ds <∞, u ∈ I. (3.1)

We first show that for a fixed ε ∈ (0, 1) there exists I ⊂ [ε, 1] such that |I| > 0 and for
any u ∈ I

E

[∫ ∞
1

1

s
exp {−|W (su)|} ds

]
<∞. (3.2)

Using the inequality ∫ ∞
u

e−z
2/2dz ≤ 1

u
e−u

2/2 for any u > 0,

we obtain that for any u ∈ [ε, 1]

(the left-hand side of (3.2))

=

∫ ∞
1

1

s
E[exp{−

√
su|W (1)|}]ds

=

∫ ∞
1

1

s

{√
2

π
esu/2

∫ ∞
√
su

e−z
2/2dz

}
ds

≤
√

2

π

∫ ∞
1

1

s
esu/2

1√
su
e−su/2ds

≤
√

2

πε

∫ ∞
1

s−3/2ds =
2
√
2√
πε
. (3.3)

We next show that the exceptional set of probability zero does not depend on u.
Fubini’s theorem and the inequality (3.3) imply that

E

[∫ 1

ε

(∫ ∞
1

1

s
exp {−|W (su)|} ds

)
du

]
=

∫ 1

ε

E

[∫ ∞
1

1

s
exp {−|W (su)|} ds

]
du ≤ 2

√
2√
πε

(1− ε).

Hence, we obtain that for almost all environments and a fixed ε ∈ (0, 1)∫ 1

ε

(∫ ∞
1

1

s
exp {−|W (su)|} ds

)
du <∞,

which implies (3.1).
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