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Abstract

We give a heat flow derivation for the Godbillon Vey class. In particular we prove that
if (M, g) is a compact Riemannian manifold with a codimension 1 foliation F , defined
by an integrable 1-form ω such that ||ω|| = 1, then the Godbillon-Vey class can be
written as [−Aω ∧ dω]dR for an operator A : Ω∗(M) → Ω∗(M) induced by the heat
flow.

Keywords: foliation; diffusion process; stochastic calculus.

AMS MSC 2010: Primary 58J65; 53C12, Secondary 60H30; 60J60.

Submitted to ECP on October 2, 2014, final version accepted on June 28, 2015.

1 Introduction

Let (M, g) be a compact Riemannian manifold with a codimension 1 foliation F
defined by an integrable 1-form ω on M , this is ker(ω) = TF . The integrability of ω
guarantees the existence of a 1-form η such that dω = η ∧ ω. In [4] Godbillon and Vey
proved that the 3-form η ∧ dη defines a cohomology class gv(F) ∈ H3

dR(M) that depends
only on F . Since then, many studies and aproaches had been given in order to interpret
this class (see, for example, the work of S. Hurder [5] and the references therein for a
good account of it ).

The main purpouse of this work is to give a heat flow expression for the Godbillon
Vey class. The idea is the following: Consider a drifted Brownian motion as a solution of
a Stochastic Differential Equation and the associated flow φt (see, for example, [1], [6]).
Denote by φ∗tω to the action of this flow on the 1-form ω, and let ωt be the 1-form defined
by (see [3], [7])

ωt(v) = E[φ∗tω(v)] v ∈ X (M).

Then ωt is a heat flow perturbation of ω, since ω0 = ω. Our main result is the following

Theorem The Godbillon Vey class of F , denoted by gv(F), is given by

gv(F) = −
[
d

dt

∣∣∣∣
t=0

(ωt ∧ dωt)

]
.
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2 Godbillon-Vey class

Let M be a compact differentiable manifold and denote by Ω∗(M) the space of
differential forms over M . Recall that the exterior differential d : Ω∗(M)→ Ω∗(M) and
the inner product iX : Ω∗(M) → Ω∗(M), with respect to a vector field X, satisfy the
following basic formulae: if α is a k−form and β is another differential form, then

d(ω ∧ β) = dω ∧ β + (−1)kα ∧ dβ,

and

iX(α ∧ β) = iXα ∧ β + (−1)kα ∧ β.

Let ω be an integrable 1-form M , this is ω satisfy dω ∧ ω = 0, and consider a
Riemannian metric g on M such that ||ω|| = 1. Denote by F to the the codimension 1
foliation defined by the integrable subbundle E = ker(ω) of TM . The integrability of ω
guarantees the existence of a 1-form η in M such that dω = η ∧ ω. Since

(η − η(ω])ω) ∧ ω = η ∧ ω = dω,

we can choose η, such that
η(ω]) = 0,

without loosing generality.
The Godbillon Vey class of F is defined by de Rham cohomology class

gv(F) = [η ∧ dη].

Let gE the metric on E induced by g. By the Nash theorem we can do an isometric
immersion of M into a RN for N large enough. The gradients of the height functions as-
sociated to the immersion defines vector fields {X̃1, . . . , X̃N}. Consider their projections
{X1, . . . , XN} to E, then, by the usual argument of isometric immersion, the Laplace
operators ∆E on the leaves L ∈ F can be written as

∆E =

N∑
i=1

X2
i .

Lemma 2.1. The Laplace operator on M can be decomposed as follows

∆M = (ω])2 + ∆E −∇ω]ω].

Proof. For a smooth function f we obtain

div(∇f) = Tr{(u, v)→ g(u,∇v∇f)}

= g(ω],∇ω]∇f) +

N∑
i=1

g(Xi,∇Xi
∇f)

= (ω])2f − (∇ω]ω])f + ∆Ef.

Fix a filtered probability space (Ω,G,P). Let B = (B0, . . . , BN ) be a Brownian motion
on RN+1 and let V be a vector field on M . Denote by X0 = ω] and Z = − 1

2∇ω]ω]. The
solution of the Stratonovitch stochastic differential equation

dxt = (V + Z)(xt) dt+

N∑
i=0

Xi(xt) ◦ dBn
t ,

x0 = x,
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is a diffusion process with infinitesimal generator given by V + 1
2∆M , which is a drifted

Brownian motion on M.

Since M is compact we can guarantee the existence of a solution flow φ : R+ × Ω×
M →M for this equation (see, for example, [1] or [6] ). Associated to the flow φ there is
the heat semigroup {Pt : Ωk(M)→ Ωk(M)} acting on the space of differential forms by

(Ptα)(v1, . . . , vk) = E[α(φt∗v1, . . . , φt∗vk)].

It is well known that Ptω solves the evolution equation (see, for example, Kunita [7] or
Elworthy et. al. [3])

d

dt
(Ptα) =

(
LV+Z +

1

2

N∑
i=0

L2
Xi

)
(Ptα), (2.1)

P0α = α. (2.2)

Also Pt ◦ d = d ◦ Pt.
We observe that, in general,

Pt(α ∧ β) 6= Ptα ∧ Ptβ.

Remark 2.2. In [3], Elworthy, Le-Jan and Li, study the divergent operator δ̂ = Ω∗(M)→
Ω∗(M) defined by

δ̂ =

N∑
i=0

iXiLXi .

Following them, if A =
∑n

i=0 L
2
Xi

, we can show that

A = dδ̂ + δ̂d.

Therefore, the operator A is a kind of Hodge Laplacian.

We can see that:

Lemma 2.3. Let α, β be differential forms. Then

d
d

dt
(Ptα ∧ Ptβ) =

d

dt
d (Ptα ∧ Ptβ) .

Proof. It follows from (2.1) and that LX ◦ d = d ◦ LX .

Now, we apply the above formalism to the integrable 1-form ω that defines the
foliation. Denote ωt = Ptω.

Theorem 2.4. With the notation above,

gv(F) = −
[
d

dt

∣∣∣∣
t=0

(ωt ∧ dωt)

]
.

In order to prove this result we need some lemmata.

Lemma 2.5. Let ω be a 1-form such that dω = η ∧ ω and X a vector field on M . Then

LXω ∧ dω = d(iXω ∧ ω),

and
LXω ∧ dLXω = dβ + (iXω ∧ diXη − iXη ∧ diXω) ∧ dω + (iXω)2η ∧ dη,

for a 2−form β.
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Proof. Since dω = η ∧ ω, then

η ∧ dω = 0, ω ∧ dω = 0 and dη ∧ ω = 0.

To show the first expression follows we calculate

(LXω) ∧ dω = (diXω + iXdω) ∧ dω
= d(iXω ∧ dω) + (iXη) ∧ ω ∧ dω − (iXω) ∧ η ∧ dω
= d(iXω ∧ dω).

To prove the second expression we observe that

iXdω ∧ diXdω = (iXη ∧ ω − iXω ∧ η) ∧ d(iXη ∧ ω − iXω ∧ η)

= −iXη ∧ ω ∧ diXω ∧ η − iXω ∧ η ∧ diXη ∧ ω
+(iXω)2η ∧ dη

= (iXω ∧ diXη − iXη ∧ diXω) ∧ dω + (iXω)2η ∧ dη,

therefore

LXω ∧ LXdω = (diXω + iXdω) ∧ dLXω

= d(iXω ∧ dLXω) + iXdω ∧ dLXω

= d(iXω ∧ dLXω) + (iXω ∧ diXη − iXη ∧ diXω) ∧ dω
+ (iXω)2η ∧ dη.

Lemma 2.6. Let {Xi}Ni=0 be the vector fields over M defined as above, A =
∑N

i=0 L
2
Xi

and ω a 1-form such that ||ω|| = 1 and dω = η ∧ ω, then

[Aω ∧ dω]dR = −[η ∧ dη]dR.

Proof. By usual computations and Lemma 2.5 we have,

(L2
Xω) ∧ dω = LX(LXω ∧ dω)− LXω ∧ dLXω

= d(iXω ∧ ω)− (iXω)2η ∧ dη +

−(iXω ∧ diXη − iXη ∧ diXω) ∧ dω + dβ,

for an arbitrary vector field X. Specializing on Xi and doing the sum we observe that

N∑
i=0

(iXi
ω)2 = (iX0

ω)2 = ||ω|| = 1,

and

N∑
i=0

(iXiωdiXiη − iXiηdiXiω) = iX0ωdiX0η − iX0ηdiX0ω = 0.

Therefore,
n∑

i=0

(L2
Xi
ω) ∧ dω = −η ∧ dη + dγ,

for a 2−form γ = α+ β.

Now we have the ingredients to prove our main result.
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Proof of theorem 2.4. We calculate

d

dt
(ωt ∧ dωt) =

(
L(V+Z)ωt ∧ dωt + ωt ∧ dL(V+Z)ωt

)
+

1

2

N∑
i=0

(
L2
Xi
ωt ∧ dωt + ωt ∧ dL2

Xi
ωt

)
= 2(L(V+Z)ωt ∧ dωt) + d(L(V+Z)ωt ∧ ωt)

+
1

2

N∑
i=0

(
2L2

Xi
ωt ∧ dωt + d(ωt ∧ L2

Xi
ωt)
)

= 2(L(V+Z)ωt ∧ dωt) +Aωt ∧ dωt

+
1

2
d (ωt ∧ Aωt) + d(L(V+Z)ωt ∧ ωt).

Then, at t = 0

d

dt

∣∣∣∣
t=0

ωt ∧ dωt = 2(L(V+Z)ω ∧ dω) +Aω ∧ dω

+
1

2
d (ω ∧ Aω) + L(V+Z)ω ∧ ω.

By the first statement of Lemma 2.5,

LV+Zω ∧ dω = d(i(V+Z)ω ∧ dω),

and by Lemma 2.6

Aω ∧ dω = −η ∧ dη + dα,

for a 2-form α. Thus
d

dt

∣∣∣∣
t=0

ωt ∧ dωt = −η ∧ dη + dγ,

for a 2-form γ.

Corollary 2.7. With the notation of Remark 2.2, if δ̂dω = 0 then gv(F) = 0.

Corollary 2.8. For all k ≥ 1, the differential forms

γk = ω ∧ (dAω)k,

are exact.

Proof. When k = 1 then

ω ∧ dAω = η ∧ dη + dβ,

which is closed. For k > 1 we have that

γk = ω ∧ dAω ∧ (dAω)k−1

= η ∧ dη ∧ (dAω)k−1

= η ∧ dη ∧ (dAω) ∧ (dAω)k−2

= ±d(η ∧ dη ∧ Aω ∧ (dAω)k−2)± (dη)2 ∧ Aω ∧ (dAω)k−2)

= ±d(η ∧ dη ∧ Aω ∧ (dAω)k−2).
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