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1 Introduction

Let (Ω,F ,Ft,Px, Xt) be the rotationally invariant α-stable process on Rd with gen-
erator H = (−∆)α/2, (0 < α < 2). Denote by (E ,F) the corresponding Dirichlet form
on L2(Rd,m), where m stands for the Lebesgue measure. We assume the transience of
{Xt}. Let µ be a positive Radon measure with Green-tightness (see Definition 2.1). Then
we define the Schrödinger form by

Eµ(u, u) = E(u, u)−
∫
Rd
u2(x)µ(dx) = (Hµu, u)m, u ∈ F ,

where Hµ is the corresponding Schrödinger generator and (·, ·)m stands for the inner
product of L2(Rd). We describe the smallness of the measure µ using the bottom of the
spectrum of the time-changed process by µ as follows:

λ(µ) := inf

{
E(u, u)

∣∣∣ u ∈ F ,∫
Rd
u2(x)µ(dx) = 1

}
.

Note that if µ1 ≤ µ2, then λ(µ1) ≥ λ(µ2). The measure µ is said to be subcritical
(resp. critical, supercritical ) if λ(µ) > 1 (resp. λ(µ) = 1, λ(µ) < 1). Since the measure
µ is smooth, there exists a unique positive continuous additive functional (PCAF in
abbreviation) {Aµt }t≥0 in the Revuz correspondence. Moreover, the Green-tightness of µ
implies the finiteness of the expectation Ex[exp(Aµt )] by [1, Theorem 6.1 (i)]. We here
define a new family of probability measures as follows:

Q
µ
x,t(B) =

1

Ex[exp(Aµt )]

∫
B

exp(Aµt (ω))Px(dω), B ∈ Ft.
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Feynman-Kac penalization problem

We are interested in the limit measure of {Qµx,t}t≥0 as t→∞, so called the Feynman-Kac
penalization problem. The studies of penalization problem have been developed for this
decade. In [4, 5] Roynette, Vallois and Yor considered penalization by various stochastic
processes derived from Brownian motions. In [11] K. Yano, Y. Yano and Yor treated the
penalization by negative Feynman-Kac functional for one-dimensional Lévy processes. In
this paper we consider the penalization by positive Feynman-Kac functional for multi-
dimensional α-stable processes similarly to Takeda [7], where the limit measure has
already been determined under the condition that µ is subcritical or supercritical. We
briefly review this preceding result below.

If µ is subcritical, Aµt is gaugeable and h(x) = Ex[exp(Aµ∞)] is a harmonic function
with respect to Eµ. Moreover we can define the probability measure Phx of Doob’s
h-transformed Markov process as follows:

Phx(B) = Ex[1BL
h
t ], Lht =

h(Xt)

h(X0)
exp(Aµt ), B ∈ Ft. (1.1)

Then, for any bounded random variable Z ∈ Fs and s ≥ 0, it follows that

lim
t→∞

Ex[Z exp(Aµt )]

Ex[exp(Aµt )]
= Ehx[Z], (x ∈ Rd).

In the sequel, we simply write the statement above by Qµx,t → Phx as t→∞.
If µ is supercritical, then

C(µ) := − inf {Eµ(u, u) | u ∈ F , (u, u)m = 1} > 0.

and there exists a continuous function h ∈ F such that ‖h‖2 = 1 and Eµ(h, h) = −C(µ).
Define the probability measure Phx by

Phx(B) = Ex[1BL
h
t ], Lht =

h(Xt)

h(X0)
exp(−C(µ)t+Aµt ), B ∈ Ft.

Then we have Qµx,t → Phx as t→∞.
The purpose of this paper is to consider the same problem under the condition that

µ is critical. Takeda [7] also treated the case where µ is critical, however, there was a
restriction on µ called special property, i.e.

sup
x∈Rd

(
|x|d−α

∫
Rd

µ(dy)

|x− y|d−α

)
<∞. (1.2)

This condition played a crucial role since the method of the proof is mainly based on the
Chacon-Ornsterin type ergodic theorem. Under this restriction, [7] showed Qµx,t → Phx
as t→∞, where h(x) is a continuous function satisfying Eµ(h, h) = 0 and the probability
measure Phx is defined as (1.1). Moreover, as an application of this result, he showed that
the Feynman-Kac functional Ex[exp(Aµt )] grows proportionally to t as t→∞ if d/α > 2.
In this paper, however, we first consider the large time asymptotics of the Feynman-Kac
functional without the restriction d/α > 2. In [9] the growth order of Ex[exp(Aµt )] is
given provided that µ has compact support. Since the measure with compact support
satisfies the special property (1.2), we must extend this result for the measure µ whose
support is not compact. This extension is valid so long as µ is of finite 0-order energy
integral, i.e. µ satisfies ∫∫

Rd×Rd
G(x, y)µ(dx)µ(dy) <∞.

Moreover, we also establish the large time asymptotics of Eν [exp(Aµt )] for a finite Green-
tight measure ν. These exact calculations enable us to extend the penalization problem
for critical measure and our main result is as follows:
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Feynman-Kac penalization problem

Theorem 1.1. Suppose the Green-tight measure µ is critical and of finite 0-order energy
integral. Then, for any bounded Z ∈ Fs, it follows that

lim
t→∞

Ex[Z exp(Aµt )]

Ex[exp(Aµt )]
= Eh0

x [Z] (x ∈ Rd), (1.3)

where h0(x) is the ground state of Eµ, a positive continuous function determined uniquely
up to multiple constant and satisfying Eµ(h0, h0) = 0.

This paper is organized as follows: In Section 2, we introduce basic materials such as
Dirichlet form, Green-tight measures, time-changed processes and so on. In Section 3, we
give the estimate of the principal eigenvalue for the Green operator of the time-changed
processes. In Section 4, we obtain the large time asymptotics of the Feynman-Kac
functionals. In Section 5, we prove Theorem 1.1 and mention an example of the measure
µ which does not satisfy the special property but is of finite 0-order energy integral. We
use ci’s for unimportant positive constants which may vary from line to line.

2 Time changed processes and Green operators

Let M = (Ω,F ,Ft,Px, Xt) be the rotationally invariant α-stable process (0 < α < 2)

on Rd, i.e. the Hunt process with generator (−∆)α/2. Then, the corresponding Dirichlet
form (E ,F) on L2(Rd) is given by

E(u, v) =
1

2

∫∫
Rd×Rd

(u(y)− u(x))(v(y)− v(x))
Ad,α

|x− y|d+α
dxdy, F = H

α
2 (Rd),

where H
α
2 (Rd) is the Sobolev space of order α/2 and

Ad,α =
α · 2α−1Γ(d+α2 )

πd/2Γ(1− α
2 )

, Γ(s) =

∫ ∞
0

xs−1e−xdx.

Let p(t, x, y) be the transition density function of M and denote by {pt}t≥0 the corre-
sponding semigroup, i.e. for any bounded Borel function f ,

ptf(x) =

∫
Rd
p(t, x, y)f(y)dy.

In the sequel, we assume the transience of {Xt}t≥0, equivalently d/α > 1. For β ≥ 0, we
define the β-order resolvent kernel Gβ(x, y) by

Gβ(x, y) =

∫ ∞
0

e−βtp(t, x, y)dt.

In particular, we call G0(x, y) Green kernel and write simply G(x, y). Define the β-killed
process of M by Mβ = (Ω,F ,Ft,P

β
x , Xt), where Pβx(Λ) = e−βtPx(Λ) for Λ ∈ Ft. Note

that Gβ(x, y) equals the Green kernel of Mβ and the corresponding Dirichlet form is
given by

Eβ(u, u) = E(u, u) + β

∫
Rd
u2(x)dx, u ∈ F .

For an open set O, we define the (1-)capacity Cap(O) by

Cap(O) = inf{E1(u, u) | u ∈ F , u ≥ 1 m-a.e. on O}.

For general set A, we define the capacity by

Cap(A) = inf{Cap(O) | A ⊂ O,O : open}.
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A set N is called exceptional if Cap(N) = 0. A statement depending on x ∈ Rd is said to
hold q.e. on Rd if there exists an exceptional set N such that the statement is valid for
x ∈ Rd\N . Here ‘q.e.’ is an abbreviation of ‘quasi everywhere’. Next we introduce some
classes of measures.

Definition 2.1. Suppose µ is a positive Radon measure.

(1) The measure µ is said to be in the Kato class (µ ∈ K in abbreviation) if

lim
a→0

sup
x∈Rd

∫
|x−y|≤a

G(x, y)µ(dy) = 0.

(2) The measure µ ∈ K is said to be Green-tight (µ ∈ K∞ in abbreviation) if for any
ε > 0 there exists a positive constant Rε such that

sup
x∈Rd

∫
|y|≥Rε

G(x, y)µ(dy) < ε.

(3) The measure µ is said to be of finite 0-order energy integral if∫∫
Rd×Rd

G(x, y)µ(dy)µ(dx) <∞.

In the sequel, we assume that µ ∈ K∞ is of finite 0-order energy integral. Since M
admits the absolute continuous transition density function with respect to the Lebesgue
measure m on Rd, µ is smooth in the strict sense by [1, Proposition 3.8, Theorem 3.9].
Moreover, there exists a unique positive continuous additive functional (PCAF in the
abbreviation) in the strict sense Aµt which is in the Revuz correspondence with µ by
[2, Theorem 5.1.7]: for any bounded Borel function f and γ-excessive function h (i.e.
e−γtpth(x) ≤ h(x) for some γ ≥ 0), it follows

lim
t→0

1

t
Eh·m

[∫ t

0

f(Xs)dA
µ
s

]
=

∫
Rd
f(x)h(x)µ(dx).

Let Y be the quasi support of µ, equivalently the support of Aµt , i.e.

Y = {x ∈ Rd | Px(T = 0) = 1}, T = inf{t > 0 | Aµt > 0}.

Then we can construct M̌β , the time-changed process of Mβ by Aµt as follows:

{Xτt}t≥0, τt = inf{s > 0 | Aµs > t}.

Moreover M̌β generates a Dirichlet form (Ěβ , F̌β) on L2(Y, µ) given by

F̌β = {ψ ∈ L2(Y, µ) |ψ = u µ-a.e. for some u ∈ Fβe },
Ěβ(ψ,ψ) = Eβ(HY u,HY u), HY u(x) = Eβx [u(XσY )] = Ex[e−βσY u(XσY )].

Here σY is the first hitting time of Y and Fβe is the extended Dirichlet space of (Eβ ,F).
More precisely, Fβe = F for β > 0 and F0

e is the family of the function u such that there
exists an E-Cauchy sequence {un}n≥1 ⊂ F satisfying limn→∞ un = u m-a.e.. We write
simply Fe for F0

e . In order to give a relation between Fβe and F̌β , we define a restriction
map r and an extension map e by

r : Fβe −→ F̌β , r(u) = u|Y , e : F̌β −→ Fβe , e(ψ) = HY u.

Here ψ and u are chosen according to the definition of (Ěβ , F̌β). Note that Ěβ(ψ,ψ) =

Eβ(e(ψ), e(ψ)) and Eβ(u, u) ≥ Ěβ(r(u), r(u)). By [8, Theorem 3.4], Fβe is compactly embed-
ded into L2(Rd, µ). As an analogy of this theorem, we have the following lemma: for a
precise proof, see [9, Lemma 3.1].
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Lemma 2.2. (F̌β , Ěβ) is a Hilbert space and compactly embedded into L2(Y, µ).

In the sequel, we write (·, ·)µ for the inner product of L2(Y, µ). Let Hβ and Gβ be
the generator and Green operator of M̌β respectively, i.e. (Hβψ, φ)µ = Ěβ(ψ, φ) and
Gβ = H−1β . Gβ is an operator defined on L2(Y, µ) by

Gβψ(x) =

∫
Y

Gβ(x, y)ψ(y)µ(dy), x ∈ Y. (2.1)

Since Gβψ ∈ F̌β for ψ ∈ L2(Y, µ), Lemma 2.2 implies that Gβ is compact. For detail, see
[9, Lemma 3.2]. The next lemma shows that e(Gβψ), the extension of Gβψ to Rd, is also
given by the integral using Gβ(x, y).

Lemma 2.3. For ψ ∈ L2(Y, µ), Gβψ satisfies

e(Gβψ)(x) =

∫
Y

Gβ(x, y)ψ(y)µ(dy), x ∈ Rd. (2.2)

Proof. Let f be any function on Rd satisfying f(x) = ψ(x) on x ∈ Y . Then, the right hand
side of (2.2) is equal to

Gβ(fµ)(x) =

∫
Rd
Gβ(x, y)f(y)µ(dy)

and we have

Eβ(Gβ(fµ), Gβ(fµ)) =

∫
Rd
Gβ(fµ)(x)f(x)µ(dx) =

∫
Y

Gβψ(x) ψ(x)µ(dx) <∞.

Hence, Gβ(fµ) ∈ Fβe and we have e(Gβψ) = HY (Gβ(fµ)) from the definition of the
extension map e. Using the strong Markov property, we have

HY (Gβ(fµ))(x) = Ex[e−βσY Gβ(fµ)(XσY )]

= Ex

[
e−βσY EXσY

[∫ ∞
0

e−βtf(Xt)dA
µ
t

]]
= Ex

[
Ex

[∫ ∞
σY

e−βtf(Xt)dA
µ
t

∣∣∣FσY

]]
= Ex

[
Ex

[∫ ∞
0

e−βtf(Xt)dA
µ
t

∣∣∣ FσY

]]
= Gβ(fµ)(x). (2.3)

Since the quasi support of µ is Y , we obtain the desired result.

Let γβ be the principal eigenvalue of Gβ and denote by hβ the corresponding eigen-
function satisfying ‖hβ‖µ = 1. Here ‖ · ‖µ stands for the norm of L2(Y, µ). Then (2.2)
implies

e(hβ)(x) = γ−1β

∫
Y

Gβ(x, y)hβ(y)µ(dy).

In the sequel, we write simply hβ for e(hβ). Since Eβ(u, u) ≥ Ěβ(r(u), r(u)) for u ∈ Fβe
and Gβ = H−1β , we have

inf

{
Eβ(u, u)

∣∣∣ u ∈ Fβe ,∫
Rd
u2(x)µ(dx) = 1

}
= γ−1β (2.4)

and hβ attains the infimum of (2.4).
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3 Estimate of the principal eigenvalue

In the sequel, we assume that the measure µ is critical, i.e.

inf

{
E(u, u)

∣∣∣ u ∈ Fe,∫
Rd
u2(x)µ(dx) = 1

}
= 1.

The function h0 attaining the infimum of the above formula is called the ground state of
the Schrödinger form Eµ. By Takeda and Tsuchida [8], we have

c1(1 ∧ |x|α−d) ≤ h0(x) ≤ c2(1 ∧ |x|α−d).

In particular, we see that h0 ∈ L2(Rd,m) if and only if d/α > 2.
In this section, we give the asymptotic behavior of γβ and hβ as β ↓ 0. We begin with

the following lemma taken from [9, Lemma 3.5].

Lemma 3.1. As β → 0, γβ converges to γ0 = 1 and hβ converges to h0 L2(µ)-strongly
and E-weakly.

For more precise behavior of γβ, we mainly use the asymptotic expansion of the
β-order resolvent kernel given in [10, Theorem 2.4].

Lemma 3.2. (1) For 1 < d/α < 2,

Gβ(x, y) = G(x, y)− κ1β
d
α−1 + Eβ(x, y),

κ1 =
21−dπ1− d2

αΓ(d2 ) sin(( dα − 1)π)
, 0 ≤ Eβ(x, y) ≤ c1β|x− y|2α−d.

(2) For d/α = 2,

Gβ(x, y) = G(x, y)− κ2β log β−1 + Eβ(x, y),

κ2 =
21−dπ−

d
2

Γ(1 + α)
, |Eβ(x, y)| ≤ c1β(1 + | log |x− y||+ β|x− y|α).

(3) For d/α > 2,

Gβ(x, y) = G(x, y)− βG̃(x, y) + Eβ(x, y), G̃(x, y) =

∫ ∞
0

tp(t, x, y)dt,

0 ≤ Eβ(x, y) ≤


c1β

d
α−1 (2 < d/α < 3)

c1β
2 log β−1+ c2β

2(1 + | log |x− y||+ β|x− y|α) (d/α = 3)

c1β
2|x− y|3α−d (d/α > 3).

If µ has compact support, Gβ admits the same asymptotic expansion as Gβ(x, y) and
then we obtain the asymptotic expansion of γβ by the first-order perturbation theory
of compact operator in Kato [3]. For detail, see [9, Lemma 3.4]. Since the asymptotic
expansion of Gβ(x, y) is not necessarily uniform with respect to |x− y|, we cannot apply
the same method for a general µ. To overcome this problem, we consider another
operator

Gεβf(x) =

∫
Y

Gεβ(x, y)f(y)µ(dy), Gεβ(x, y) =

{
Gβ(x, y) (x, y ∈ Kε)

G(x, y) (otherwise),

where Kε = {x : |x| ≤ Rε} and Rε is a positive constant in Definition 2.1. Since
Gβ(x, y) ≤ Gεβ(x, y) ≤ G(x, y), Gεβ is also a compact operator on L2(Y, µ) and denote by
γεβ its principal eigenvalue. Moreover, Gεβ(x, y) admits the same asymptotic expansion as
Gβ(x, y) on the compact set Kε ×Kε. Thus we can obtain the asymptotic expansion or
upper bound of γεβ by the same argument as [9, Lemma 3.4]:
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Lemma 3.3. (1) For 1 < d/α ≤ 2, the principal eigenvalue γεβ admits the following
asymptotic expansion:

γεβ = 1− κ1〈µ, hε0〉2β
d
α−1 + o(β

d
α−1) (1 < d/α < 2), (3.1)

γεβ = 1− κ2〈µ, hε0〉2β log β−1 + o(β log β−1) (d/α = 2), (3.2)

where hε0(x) = h0 · 1Kε(x) and 〈µ, hε0〉 =

∫
Rd
hε0(x)µ(dx).

(2) For d/α > 2, the principal eigenvalue γεβ admits the following upper bound:

γεβ ≤ 1− ((h0 − ε)+, (h0 − ε)+)mβ + o(β), (3.3)

where (h0 − ε)+(x) = (h0(x)− ε) ∨ 0.

Proof. (1) For 1 < d/α < 2, we define

Dε1f(x) = 1Kε(x)

∫
Kε

f(y)µ(dy), Dε2f(x) = 1Kε(x)

∫
Kε

Eβ(x, y)f(y)µ(dy).

Then Gεβ = G0 − κ1β
d
α−1Dε1 +Dε2. Since Dε1 is a bounded operator and the operator

norm of Dε2 is dominated by c1β, γεβ satisfies (3.1) from the first-order perturbation
theory of the compact operators.

For d/α = 2, we have Gεβ = G0−κ2β log β−1Dε1 +Dε2 for the same Dε1 and Dε2 as those
for 1 < d/α < 2. Since the operator norm of Dε2 is dominated by c2β, γεβ satisfies
(3.2).

(2) For d/α > 2, we have Gεβ = G0 − βDε1 +Dε2, where Dε1 satisfies

Dε1f(x) = 1Kε(x)

∫
Kε

G̃(x, y)f(y)µ(dy)

and Dε2 is the same as that for d/α ≤ 2. Since Dε1 is a bounded operator and the
operator norm of Dε2 is dominated by c2β

3
2∧(

d
α−1), we have

γεβ = 1− (Dε1h0, h0)µβ + o(β).

Let G be an operator with the integral kernel G(x, y), i.e. for a function f and a
measure µ,

Gf(x) =

∫
Rd
G(x, y)f(y)dy, G(fµ)(x) =

∫
Rd
G(x, y)f(y)µ(dy).

Then G2 admits the integral kernel G̃(x, y). Indeed, we have

G2f(x) = G(Gf)(x) =

∫ ∞
0

pt(Gf)(x)dt =

∫ ∞
0

∫ ∞
0

pt+sf(x)dsdt

=

∫ ∞
0

∫ t

0

ptf(x)dsdt =

∫ ∞
0

tptf(x)dt =

∫
Rd
f(y)

∫ ∞
0

tp(t, x, y)dtdy.

Thus we have

(Dε1h0, h0)µ =

∫∫
Kε×Kε

G̃(x, y)h0(y)µ(dy)h0(x)µ(dx)

=

∫∫
Rd×Rd

G̃(x, y)h0(y)µRε(dy)h0(x)µRε(dx) = (G(h0µRε), G(h0µRε))m,
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where µRε is the restriction of µ on Kε. Since G(h0µ)(x) = h0(x), h0(x) � 1∧ |x|α−d
and sup

x∈Rd
G(µ− µRε)(x) ≤ ε, we see that G(h0µRε) ≥ (h0 − ε)+ and

(Dε1h0, h0)µ ≥ ((h0 − ε)+, (h0 − ε)+)m.

Hence we obtain (3.3).

Since we see γεβ ≥ γβ from Gεβ(x, y) ≥ Gβ(x, y), we can obtain the upper estimate of
γβ. In order to obtain the lower estimate of γβ, we first consider the lower estimate of
Gβ(x, y). This is easy for d/α 6= 2 because Eβ(x, y) is positive. For d/α = 2, we have the
following lemma:

Lemma 3.4. For d/α = 2, the resolvent kernel Gβ(x, y) satisfies

Gβ(x, y) ≥ (1− c1β)G(x, y)− κ2β log β−1 − c2β. (3.4)

Proof. As we saw in [9] and [10], we have p(t, x, y) = κ2t
−2g

(
|x− y|
t1/α

)
, where g is a

positive function satisfying g(0) = 1, g(w) � 1 ∧ |w|−d−α and g(0) − g(w) ≤ c1w
2. Then

we have

Gβ(x, y) = G(x, y)− κ2
∫ ∞
0

t−2(1− e−βt)g
(
|x− y|
t1/α

)
dt

≥ G(x, y)− κ2
∫ |x−y|α
0

t−2(1− e−βt)g
(
|x− y|
t1/α

)
dt

− κ2
∫ ∞
|x−y|α

t−2(1− e−βt)dt =: G(x, y)− I1 − I2.

Since 1− e−βt ≤ βt and g(w) ≤ c1w−3α for w ≥ 1, we have

I1 ≤ c2β
∫ |x−y|α
0

t2

|x− y|3α
dt ≤ c3β. (3.5)

If β|x− y|α ≤ 1, we have

I2 = κ2β

∫ ∞
β|x−y|α

1

s2
(1− e−s)ds

= κ2β

(
1− e−β|x−y|α

β|x− y|α
− log(β|x− y|α)− γ −

∞∑
n=1

(−β|x− y|α)n

n · n!

)
,

where γ is Euler’s gamma. Note that for z ≤ 0

−
∞∑
n=1

zn

n · n!
= −

∫ z

0

∞∑
n=1

wn−1

n!
dw =

∫ 0

z

ew − 1

w
dw ≤ −z.

Then we obtain

I2 ≤ κ2β(c1 − log(β|x− y|α)) = κ2β log β−1 + κ2β(c1 + log(|x− y|−α))

≤ κ2β log β−1 + β(c2 + |x− y|−α) = κ2β log β−1 + β(c2 + c3G(x, y)). (3.6)

If β|x− y|α ≥ 1, we see that

I2 ≤ c2β
∫ ∞
β|x−y|α

1

t2
dt ≤ c2β

∫ ∞
1

1

t2
dt = c2β. (3.7)

Hence (3.6) and (3.7) imply

I2 ≤ κ2β log β−1 + β(c8 + c9G(x, y)) (3.8)

and we conclude (3.4) from (3.5) and (3.8).

ECP 21 (2016), paper 79.
Page 8/14

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP30
http://www.imstat.org/ecp/


Feynman-Kac penalization problem

For the lower estimate of γβ , we have a lemma as follows:

Lemma 3.5. The principal eigenvalue γβ admits the lower estimate as follows:

γβ ≥ 1− κ1〈µ, h0〉2β
d
α−1 (1 < d/α < 2)

γβ ≥ 1− κ2〈µ, h0〉2β log β−1 − c1β (d/α = 2)

γβ ≥ 1− (h0, h0)mβ (d/α > 2).

Proof. Note that the principal eigenvalue γβ is characterized by

γβ = sup
‖h‖µ=1

∫∫
Y×Y

Gβ(x, y)h(y)µ(dy)h(x)µ(dx).

If 1 < d/α < 2, Lemma 3.2 and the positivity of Eβ(x, y) imply

γβ ≥ sup
‖h‖µ=1

∫∫
Y×Y

(G(x, y)− κ1β
d
α−1)h(y)µ(dy)h(x)µ(dx)

≥
∫∫

Y×Y
(G(x, y)− κ1β

d
α−1)h0(y)µ(dy)h0(x)µ(dx) = 1− κ1〈µ, h0〉2β

d
α−1.

If d/α = 2, Lemma 3.4 implies

γβ ≥ sup
‖h‖µ=1

∫∫
Y×Y

((1− c1β)G(x, y)− κ2β log β−1 − c2β)h(y)µ(dy)h(x)µ(dx)

≥
∫∫

Y×Y
((1− c1β)G(x, y)− κ2β log β−1 − c2β)h0(y)µ(dy)h0(x)µ(dx)

≥ 1− κ2〈µ, h0〉2β log β−1 − c3β.

If d/α > 2, Lemma 3.2 and the positivity of Eβ(x, y) imply

γβ ≥
∫∫

Y×Y
(G(x, y)− G̃(x, y)β)h0(y)µ(dy)h0(x)µ(dx)

= 1− β
∫∫

Y×Y
G̃(x, y)h0(y)µ(dy)h0(x)µ(dx) = 1− (h0, h0)mβ.

Hence we obtain the desired result.

Combining Lemmas 3.3 and 3.5, we have the following theorem.

Theorem 3.6. The principal eigenvalue γβ satisfies lim
β→0

1− γβ
l(β)

= kd,α, where l(β) and

kd,α are given by

l(β) =


β
d
α−1 (1 < d/α < 2)

β log β−1 (d/α = 2)

β (d/α > 2),

kd,α =


κ1〈µ, h0〉2 (1 < d/α < 2)

κ2〈µ, h0〉2 (d/α = 2)

(h0, h0)m (d/α > 2)

Proof. Since 〈µ, hε0〉 ↑ 〈µ, h0〉 and ((h0 − ε)+, (h0 − ε)+)m ↑ (h0, h0)m as ε ↓ 0, we have the
desired result.

4 Growth order of Feynman-Kac functionals

In [9], we gave the large time asymptotics for Feynman-Kac functional for µ with
compact support. Since we have obtained the behavior of the principal eigenvalue in
Theorem 3.6, this result is easily extended to a general µ ∈ K∞ which is of 0-order finite
energy integral.

In the sequel, let ν be a measure in K∞ satisfying ν(Rd) <∞.
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Theorem 4.1. It follows

Eν [eA
µ
t ] = ν(Rd) +

∫ t

0

〈ν, pµsµ〉ds, pµsµ(x) =

∫
Rd
pµ(s, x, y)µ(dy).

Proof. By [9, Lemma 4.1], we have

Ex[eA
µ
t ] = 1 +

∫ t

0

pµsµ(x)ds.

Integration with respect to ν implies the desired result.

Define the resolvent by

Gµβµ(x) =

∫ ∞
0

e−βtpµt µ(x)dt.

We have the following lemma by the resolvent equation.

Lemma 4.2. For β > 0, it follows that r(Gµβµ) = (1− Gβ)−1r(Gβµ).

Proof. Obeying the argument of [9, Lemma 4.2], we have Gµβµ(x)−Gβµ(x) = Gβ(Gµβµ ·
µ)(x) for x ∈ Rd. If we restrict this formula on x ∈ Y , we have r(Gµβµ) − r(Gβµ) =

Gβ(r(Gµβµ)). Since Gβ is a compact operator with principal eigenvalue γβ < 1, we have
the desired formula.

Letting Pβ be the operator on L2(Y, µ) given by Pβf = (f, hβ)µhβ , we have

r(Gµβµ) = (1− γβ)−1Pβ(r(Gβµ)) + (1− Gβ)−1(1− Pβ)(r(Gβµ)). (4.1)

Lemma 4.3. Set Rβ = (1 − Gβ)−1(1 − Pβ)(r(Gβµ)). Then the formula (4.1) on Y is
extended to Rd as follows:

Gµβµ = (1− γβ)−1(Gβµ, hβ)µhβ + e(Rβ). (4.2)

Moreover e(Rβ) ∈ Fe and sup
β≥0
E(e(Rβ), e(Rβ)) <∞.

Proof. Since µ is of finite 0-order energy integral, Gβµ ∈ Fβe and r(Gβµ) ∈ L2(Y, µ).
Lemma 4.2 implies that r(Gµβµ) ∈ L2(Y, µ) and thus Gµβµ ∈ L2(Rd, µ). Noting that

Gµβµ = Gβµ+Gβ(Gµβµ)µ and Gβ(fµ) ∈ Fβe for f ∈ L2(Rd, µ), we have Gµβµ ∈ Fβe . Hence

r(Gµβµ) ∈ F̌β and we have HY (Gµβµ)(x) = Gµβµ(x) similarly to (2.3). Thus we obtain (4.2)
from e(r(Gµβµ)) = Gµβµ and e(hβ) = hβ. Let γ′β be the second largest eigenvalue for Gβ
and put gβ = (1− Pβ)(r(Gβµ)). By the spectral representation of Hβ , we have

Ěβ(Rβ , Rβ) = (HβRβ , Rβ)µ =

∫ ∞
γ′−1
β

λ

(1− λ−1)2
d(Eλgβ , gβ)µ

≤
(

1

1− γ′0

)2 ∫ ∞
γ′−1
0

λd(Eλ(r(Gβµ)), r(Gβµ))µ ≤ c1Ěβ(r(Gβµ), r(Gβµ)).

Noting that Ěβ(Rβ , Rβ) = Eβ(e(Rβ), e(Rβ)) and e(r(Gβµ)) = Gβµ, we have

Eβ(e(Rβ), e(Rβ)) ≤ c1Eβ(Gβµ,Gβµ) ≤ c1
∫
Rd
Gµ(x)µ(dx).

Since µ is of 0-order finite energy integral, the last integral is finite and we have the
desired assertion.
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Note that ‖hβ−h0‖µ → 0 and ‖Gβµ−Gµ‖µ → 0 as β → 0. Moreover, G(h0µ)(x) = h0(x)

implies

(Gβµ, hβ)µ→ (Gµ, h0)µ=

∫
Y

Gµ(x)h0(x)µ(dx) =

∫
Rd

∫
Rd
G(x, y)µ(dy)h0(x)µ(dx)

=

∫
Rd

∫
Rd
G(x, y)h0(x)µ(dx)µ(dy) =

∫
Rd
h0(y)µ(dy) (β → 0). (4.3)

Hence we have the following lemma from Lemmas 3.1, 4.3 and formula (4.3).

Lemma 4.4. l(β)Gµβµ converges E-weakly to k−1d,α〈µ, h0〉h0, where l(β) and kd,α are as in
Theorem 3.6.

Since ν ∈ K∞, Fe is compactly embedded into L2(ν). Thus E-weak convergence
implies the L2(ν)-strong one, in particular L2(ν)-weak one. Noting that ν(Rd) < ∞
implies 1 ∈ L2(ν), we obtain the convergence as follows:

Lemma 4.5. It follows that

lim
β→0

l(β)〈ν,Gµβµ〉 = k−1d,α〈µ, h0〉〈ν, h0〉.

The following lemma is called the Tauberian theorem. For a precise proof, see [6,
Theorem 10.3] or [9, Theorem 4.8]

Lemma 4.6. Let η be a positive Borel measure on [0,∞). If

∫ ∞
0

e−βtη(dt) < ∞ for all

β > 0 and lim
β→0

l(β)

∫ ∞
0

e−βtη(dt) = D ≥ 0, then

lim
t→∞

l(t−1)η[0, t) =
D

Γ((d/α) ∧ 2)
.

We now extend the large time asymptotics of Feynman-Kac functionals in [9, Theorem
1.1] as follows:

Theorem 4.7. Let µ and ν be Green tight measures on Rd. Assume that µ is of finite
0-order energy integral and ν is finite. As t→∞, it follows that

Eν [eA
µ
t ] ∼ 〈ν, h0〉

κ1Γ( dα )〈µ, h0〉
t
d
α−1, Ex[eA

µ
t ] ∼ h0(x)

κ1Γ( dα )〈µ, h0〉
t
d
α−1 (1 < d/α < 2),

Eν [eA
µ
t ] ∼ 〈ν, h0〉t

κ2〈µ, h0〉 log t
, Ex[eA

µ
t ] ∼ h0(x)t

κ2〈µ, h0〉 log t
(d/α = 2),

Eν [eA
µ
t ] ∼ 〈µ, h0〉〈ν, h0〉

(h0, h0)m
t, Ex[eA

µ
t ] ∼ 〈µ, h0〉h0(x)

(h0, h0)m
t (d/α > 2).

Here A ∼ B stands for B/A→ 1 as t→∞.

Proof. For Eν [eA
µ
t ], we can easily obtain the desired result combining Theorem 4.1 with

Lemmas 4.5 and 4.6. For Ex[eA
µ
t ], note that for ε > 0 and x ∈ Rd, ν0(·) = pµ(ε, x, ·)m(·) is

a finite measure on Rd and belongs to K∞ from [9, Lemma 4.6]. Thus, it follows that

Eν0 [eA
µ
t ] =

∫
Rd
Ey[eA

µ
t ]pµ(ε, x, y)m(dy) = pµε (E[eA

µ
t ])(x)

= pµε

(
1 +

∫ t

0

pµsµds

)
(x) = pµε 1(x) +

∫ t+ε

ε

pµsµ(x)ds

= Ex[eA
µ
ε ] +

∫ t+ε

ε

pµsµ(x)ds = 1 +

∫ t+ε

0

pµsµ(x)ds = Ex[eA
µ
t+ε ]

and we have the desired result.
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5 The proof of the penalization problem

Let Mh0 = (Ω,Ph0
x , Xt) be the transformed process of M by h0(x), i.e.

Ph0
x (B) =

∫
B

h0(Xt)

h0(X0)
exp(Aµt )(ω)Px(dω), ∀B ∈ Ft.

We now prove Theorem 1.1 via Theorem 4.7.

(Proof of Theorem 1.1)
For any bounded random variable Z ∈ Fs, we have

Ex[Z exp(Aµt )] = Ex[Ex[Z exp(Aµt )|Fs]] = Ex[Z exp(Aµs )EXs [exp(Aµt−s)]].

Let ν be a measure on Rd defined by

ν(B) = Ex[Z exp(Aµs ) : Xs ∈ B], B ∈ B(Rd).

Since Z is a bounded random variable, ν(dy) is absolutely continuous with respect to
pµ(s, x, y)m(dy) ∈ K∞ and

Ex[Z exp(Aµs )EXs [exp(Aµt−s)]] = Eν [exp(Aµt−s)].

Since ν is a finite measure on Rd, Theorem 4.7 implies

lim
t→∞

Ex[Z exp(Aµt )]

Ex[exp(Aµt )]
= lim
t→∞

Eν [Z exp(Aµt−s)]

Ex[exp(Aµt )]

=
〈ν, h0〉
h0(x)

=
1

h0(x)
Ex[Z exp(Aµs )h0(Xs)] = Eh0

x [Z]. �

If µ satisfies the special property (1.2), we have∫∫
Rd×Rd

G(x, y)µ(dx)µ(dy) =

∫∫
Rd×Rd

c1
|x− y|d−α

µ(dy)µ(dx)

≤
∫
Rd

c2
|x|d−α

µ(dx) = c3

∫
Rd
G(0, x)µ(dx) ≤ c4

and µ is of finite 0-order energy integral. The next example shows that the converse is
not valid in general.

Example 5.1. Define µp(dy) = m(dy)/(1 + |y|p) for p > 0. For (d + α)/2 < p ≤ d, the
measure µp does not satisfy the special property but is of finite 0-order energy integral.

Proof. Since

sup
x∈Rd

∫
|x−y|≤a

G(x, y)µp(dy) ≤ c1
∫
|x−y|≤a

|x− y|α−ddy ≤ c2aα ↓ 0

as a ↓ 0, µp ∈ K. We see that µp ∈ K∞ for p > α. Indeed, for |x| ≤ 2R,∫
|y|≥R

G(x, y)µp(dy) ≤ c1
∫
|y|≥R

|x− y|α−d|y|−pdy

≤ c2
∫
|x−y|≤5R

|x− y|α−dR−pdy + c3

∫
|y|≥3R

(|y| − |x|)α−d|y|−pdy

≤ c4Rα−p + c5

∫
|y|≥3R

|y|α−d−pdy ≤ c6Rα−p. (5.1)
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For |x| ≥ 2R, we have∫
|y|≥R

G(x, y)µp(dy) ≤ c1
∫
|y|≥R

|x− y|α−d|y|−pdy

≤ c1
∫
|x−y|≤|x|/2

dy

|x− y|d−α|y|p
+ c1

∫
|x−y|≥|x|/2, |y|≥R

dy

|x− y|d−α|y|p
. (5.2)

Since |x− y| ≤ |x|/2 implies |y| ≥ |x|/2, the first term of (5.2) is dominated by

c2|x|−p
∫
|x−y|≤|x|/2

dy

|x− y|d−α
= c3|x|α−p ≤ c4Rα−p. (5.3)

Moreover, |x − y| ≥ |x|/2 implies |x − y| ≥ |y|/3 and thus the second term of (5.2) is
dominated by

c5

∫
|y|≥R

|y|α−d−pdy ≤ c6Rα−p. (5.4)

Thus (5.1), (5.3) and (5.4) imply µp ∈ K∞ for p > α.
We next show that µp does not satisfy the special property (1.2) for p ≤ d. Indeed,

|x|d−α
∫
Rd

dy

|x− y|d−α(1 + |y|p)
≥ c1

∫
|y|≤|x|/2

dy

1 + |y|p
= c2

∫ |x|/2
0

rd−1

1 + rp
dr.

Since the last integral diverges as |x| ↑ ∞, µp does not satisfy (1.2). Finally we show
that µp is of finite 0-order energy integral for p > (d + α)/2. Since µp ∈ K∞, we have

sup
x∈Rd

∫
Rd
G(x, y)µp(dy) ≤ c5 for some positive constant c5. Fix R0 > 0 and let |x| ≥ 2R0.

Then we have∫
Rd
G(x, y)µp(dy) =

∫
|y|≤R0

G(x, y)µp(dy) +

∫
|y|≥R0

G(x, y)µp(dy)

≤ c1
(|x| −R0)d−α

∫
|y|≤R0

dy

1 + |y|p
+

∫
|y|≥R0

c1dy

|x− y|d−α|y|p
=: I1 + I2.

We can easily show that I1 ≤ c2|x|α−d. For I2,

I2 ≤ c1
∫
|x−y|≤|x|/2

dy

|x− y|d−α|y|p
+ c1

∫
|x−y|≥|x|/2, |y|≥R0

dy

|x− y|d−α|y|p

≤ c2|x|−p
∫
|x−y|≤|x|/2

|x− y|α−ddy + c3|x|
α−d

2

∫
|y|≥R0

|y|
α−d

2 −pdy

≤ c4|x|
α−d

2 .

Hence we conclude that∫∫
Rd×Rd

G(x, y)µp(dy)µp(dx) ≤
∫
Rd
c5(1 ∧ |x|

α−d
2 )(1 ∧ |x|−p)dx <∞

for p > (d+ α)/2.
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