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Abstract

This paper constructs a new interacting particle system on Z≥0 ×Z+ with geometric
jumps near the boundary {0}×Z+ which partially reflects the particles. The projection
to each horizontal level is Markov, and on every level the dynamics match stochastic
matrices constructed from pure alpha characters of Sp(∞), while on every other level
they match an interacting particle system from Pieri formulas for Sp(2r). Using a
previously discovered correlation kernel, asymptotics are shown to be the Discrete
Jacobi and Symmetric Pearcey processes.
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1 Introduction

To motivate this paper, first review some previous results. In [11], the authors
construct a continuous–time interacting particle system on Z≥0 ×Z+ using the repre-
sentation theory of symplectic Lie groups. One distinguishing feature of these dynamics
is a wall at {0} ×Z+ which suppresses jumps of particles into the wall. In [5], the Pieri
formulas from the representation theory of the symplectic Lie groups Sp(2r) are used
to construct discrete–time dynamics with geometric jumps, and again jumps into the
wall are suppressed. In [2], there is a construction of continuous–time dynamics using
Plancherel characters of the infinite–dimensional symplectic group Sp(∞), and again
there is a suppressing wall.

Some previous work had been done with the orthogonal groups as well. In [1],
Plancherel characters of the infinite–dimensional orthogonal group O(∞) led to continu-
ous–time dynamics with a reflecting wall, and in [4], Pieri rules for the orthogonal
groups O(2r), O(2r + 1) led to interacting particles with discrete–time geometric jumps,
again with a reflecting wall. In [7], it was shown that the dynamics of [4] on each level
Z≥0 × {k} fit into the general framework of [1] with pure alpha characters of O(∞).
Therefore, it is reasonable to expect that the dynamics of [5] might also fit into the
framework of [2] with pure alpha characters of Sp(∞). However, it turns out that the
dynamics only match on the even levels Z≥0 × {2r}.

In order to create a physically meaningful interacting particle system which matches
that of [2] on every level, we will slightly modify the Pieri formulas of [4],[5]. The
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Particles with a partially reflecting boundary

result is a wall which is partially reflecting. Mathematically, this means that a jump to
−x is reflected to x − 1, rather than being totally reflected to x or totally suppressed
at 0. Observe that after the usual scaling limit of discrete–time geometric jumps to
continuous–time jumps with exponential waiting times, the particles only jump one step,
so the partially reflecting boundary becomes a suppressing boundary.

Note that there may be an algebraic intuition for the discrepancy between the dynam-
ics of [5] and [2]. The odd symplectic groups Sp(2r+1) of [10] are not simple, in contrast
to Sp(2r), O(2r), O(2r + 1). In a sense, the odd symplectic groups are less canonical,
which may explain why the two dynamics only match at the levels corresponding to
Sp(2r).

The paper is outlined as follows. In section 2, the interacting particle system is
defined. In section 3, new formulas for the stochastic matrices from [2] are written. In
section 4, it is shown that the projection to each horizontal level is still Markov, and
the resulting transition probabilities are precisely the ones from section 3. Using the
explicit expression for the correlation kernel in [2], section 5 finds the asymptotics for
our particle system.

Note that despite the algebraic motivation and background, the body of the paper is
written with minimal reference to representation theory.

Acknowledgments. Financial support was provided from the Minerva Foundation
and NSF grant DMS–1502665.

2 Interacting particle system

First define the state space for the interacting particles. For k ≥ 1, define

Wk = {(λ1 ≥ . . . ≥ λr) : λi ∈ N}, where r = bk+1
2 c

If λ = (λ1 ≥ . . . ≥ λr) and µ = (µ1 ≥ . . . ≥ µr) or µ = (µ1 ≥ . . . ≥ µr+1), say that λ ≺ µ if
µi+1 ≤ λi and λi ≤ µi for all possible values of i. For k ≤ l let

Wk,l := {(λ(k) ≺ λ(k+1) ≺ . . . ≺ λ(l)) : λ(j) ∈ Wj}.

The state space for the interacting particles will be

W = {(λ(1) ≺ λ(2) ≺ . . .) : λ(j) ∈ Wj for 1 ≤ j <∞}.

If ξ1 and ξ2 are two independent geometric random variables with parameter q ∈ (0, 1)

(i.e. P(ξi = x) = (1− q)qx for x ≥ 0), then for any x, y ≥ 0

P(x+ ξ1 − ξ2 = y) =

∞∑
c=0

P(ξ2 = c)P(ξ1 = y − x+ c)

= (1− q)2
∞∑

c=min(x−y,0)

qcqy−x+c

=
1− q
1 + q

q|x−y|

Let {x} denote the modified absolute value

{x} =

{
x, x ≥ 0

−x− 1, x < 0

Thus

P({x+ ξ1 − ξ2} = y) =
1− q
1 + q

(q|x−y| + qx+y+1)
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Particles with a partially reflecting boundary

With this in mind, define

R(x, y) =
1− q
1 + q

(q|x−y| + qx+y+1).

Observe that if x ≥ y ≥ z ≥ 0, then

R(x, z) = qx−yR(y, z) (2.1)

The particles live on the lattice N×Z+ where N denotes the non–negative integers
and Z+ denotes the positive integers. The horizontal line N × {k} is often called the
kth level. There are always bk+1

2 c particles on the kth level, whose positions at time
n will be denoted Xk

1 (n) ≥ Xk
2 (n) ≥ Xk

3 (n) ≥ . . . ≥ Xk
b(k+1)/2c(n) ≥ 0. The time can

take integer or half–integer values. For convenience of notation, Xk(n) will denote the
element (Xk

1 (n), X
k
2 (n), X

k
3 (n), . . . , X

k
b(k+1)/2c(n)) ∈ N

b(k+1)/2c. More than one particle
may occupy a lattice point. The particles must satisfy the interlacing property

Xk+1
i+1 (n) ≤ X

k
i (n) ≤ Xk+1

i (n)

for all meaningful values of k and i. This will be denoted Xk ≺ Xk+1. With this notation,
the state space can be described as the set of all sequences (X1 ≺ X2 ≺ . . .) where each
Xk ∈ Nb(k+1)/2c. The initial condition is Xk

i (0) = 0, called the densely packed initial
conditions. Now let us describe the dynamics.

For n ≥ 0, k ≥ 1 and 1 ≤ i ≤ bk+1
2 c, define random variables

ξki (n+ 1/2), ξki (n)

which are independent identically distributed geometric random variables with parame-
ter q. In other words, P(ξ11(1/2) = x) = qx(1− q) for x ∈ N.

At time n, all the particles except Xk
(k+1)/2(n) try to jump to the left one after another

(starting with k = 1, then k = 2, and so forth) in such a way that the interlacing property
is preserved. The particles Xk

(k+1)/2(n) do not jump on their own. The precise definition
is

Xk
(k+1)/2(n+ 1

2 ) = min(Xk
(k+1)/2(n), X

k−1
(k−1)/2(n+ 1

2 )) k odd

Xk
i (n+ 1

2 ) = max(Xk−1
i (n),min(Xk

i (n), X
k−1
i−1 (n+ 1

2 ))− ξ
k
i (n+ 1

2 )),

where Xk−1
0 (n+ 1

2 ) is formally set to +∞.
At time n+ 1

2 , all the particles except Xk
(k+1)/2(n+

1
2 ) try to jump to the right one after

another (starting with k = 1, then k = 2, and so forth) in such a way that the interlacing
property is preserved. The particles Xk

(k+1)/2(n+ 1
2 ) jump according to the law R. The

precise definition is

Xk
(k+1)/2(n+ 1) = min({Xk

(k+1)/2(n) + ξk(k+1)/2(n+ 1)− ξk(k+1)/2(n+ 1
2 )}, X

k−1
(k−1)/2(n))

when k is odd and

Xk
i (n+ 1) = min(Xk−1

i−1 (n+ 1
2 ),max(Xk

i (n+ 1
2 ), X

k−1
i (n+ 1)) + ξki (n+ 1)),

where Xk−1
0 (n+ 1) is formally set to +∞.

Let us explain the particle system. Each particle preserves the interlacing property
in two ways: by pushing particles above it, and being blocked by former positions of
particles below it. So, for example, in the left jumps, the expression min(Xk

i (n), X
k−1
i−1 (n+

1
2 )) represents the location of the particle after it has been pushed by a particle below
and to the right. Then the particle attempts to jump to the left, so the term ξki (n+ 1

2 ) is
subtracted. However, the particle may be blocked a particle below and to the left, so we
must take the maximum with Xk−1

i (n).
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Particles with a partially reflecting boundary

X̃(n) Left Jumps X̃(n+ 1
2 ) Right jumps X̃(n+ 1)

X̃1
1 (n) = 1 X̃1

1 (n+ 1
2 ) = 1 ξ11(n+ 1

2 ) = 1 X̃1
1 (n+ 1) = 3

ξ11(n+ 1) = 3

X̃2
1 (n) = 3 ξ21(n+ 1

2 ) = 3 X̃2
1 (n+ 1

2 ) = 1 ξ21(n+ 1) = 1 X̃2
1 (n+ 1) = 4

X̃3
2 (n) = 2 X̃3

2 (n+ 1
2 ) = 1 ξ32(n+ 1

2 ) = 2 X̃3
2 (n+ 1) = 0

ξ32(n+ 1) = 0

X̃3
1 (n) = 4 ξ31(n+ 1

2 ) = 1 X̃3
1 (n+ 1

2 ) = 4 ξ31(n+ 1) = 0 X̃3
1 (n+ 1) = 5

X̃4
2 (n) = 3 ξ42(n+ 1

2 ) = 2 X̃4
2 (n+ 1

2 ) = 2 ξ42(n+ 1) = 2 X̃4
2 (n+ 1) = 3

X̃4
1 (n) = 4 ξ41(n+ 1

2 ) = 0 X̃1
1 (n+ 1

2 ) = 4 ξ41(n+ 1) = 1 X̃4
1 (n+ 1) = 6

Figure 1: The top figure shows left jumps and the bottom figure shows right jumps. A
yellow arrow means that the particle has been pushed by a particle below it. A green
arrow means that the particle has jumped by itself. A red line means that the particle
has been blocked by a particle below. In the table, keep in mind that ξk(k+1)/2(n+ 1/2)

actually correspond to left jumps, but occur at the same time as the right jumps.

While Xk
i (n) is not simple, applying the shift X̃k

i (n) = Xk
i (n) + bk+1

2 c − i yields a

simple process. In other words, X̃ can only have one particle at each location.

Figure 1 shows an example of X̃.

3 Relation to pure alpha characters of Sp(∞)

For k ≥ 1, define rk = bk+1
2 c and λ̃i = λi + rk − i and
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Particles with a partially reflecting boundary

ak :=

{
−1/2, if k odd

1/2, if k even

Note that 2rk + ak − 1/2 = k. Set

〈f, g〉a =
2a+1/2

π

∫ 1

−1
f(x)g(x)(1− x)a(1 + x)1/2dx

There are explicit functions sk: for k = 2r or k = 2r + 1, and for λ ∈ Wk,

s2r(λ) =
∏

1≤i<j≤r

l2i − l2j
m2
i −m2

j

·
∏

1≤i≤r

li
mi

, s2r−1(λ) =
∏

1≤i<j≤r

l′2i − l′2j
m′2i −m′2j

where li = λi+(rk− i)+1,mi = (rk− i)+1, and l′i = li− 1/2,m′i = mi− 1/2 for 1 ≤ i ≤ r.
These satisfy ∑

λ∈Wk−1

λ≺µ

sk−1(λ) = sk(µ). (3.1)

Note that s1(λ) = 1 for all λ and s2(λ) = λ1+1. These functions come from representation
theory: for each r ≥ 1, s2r(λ) is the dimension of the irreducible representation of Sp(2r)
parameterized by λ.

The following transition probabilities onWn are from section 5.1 of [2] are

Tφk (λ, µ) := det
[〈
Jλ̃i,ak , Jµ̃j ,akφ

〉]rk
i,j=1

sk(µ)

sk(λ)
.

where J are the Jacobi polynomials satisfying

Jk,1/2

(
z + z−1

2

)
=
zk+1 − z−(k+1)

z − z−1
, Jk,−1/2

(
z + z−1

2

)
=
zk+1/2 + z−(k+1/2)

z1/2 + z−1/2
.

When φ(x) = et(x−1), these are the transition probabilities arising from Plancherel
characters of Sp(∞). In this paper a different φ(x) depending on a parameter α ≥ 0

will be considered. Note that for general φ(x), a priori there is not an obvious physical
description of the dynamics.

The following formula is standard (for example, see Lemma 3.3 from [7]). Let
c = (c1 ≥ c2 ≥ . . . ≥ cr) and λ = (λ1 ≥ λ2 ≥ . . . ≥ λr). Set

ψ(s, l) =

{
1, if l ≥ s
0, if l < s.

Then

det[ψ(ci − i+ r, λj − j + r)]r1 =

{
1, if c ≺ λ,
0, if c 6≺ λ.

(3.2)

Set

P2r+1(λ, β) =
∑

c∈Nr,c≺λ,β

(1− q)2r s2r+1(β)

s2r+1(λ)
q
∑r
i=1 λi+βi−2ciR(λr+1, βr+1)

P2r(λ, β) =
∑

c∈Nr,c≺λ,β

(1− q)2r s2r(β)
s2r(λ)

q
∑r
i=1 λi+βi−2ci

Note that the formula for P2r is essentially identical to (2) from [5], and the formula
for P2r+1 is also similar to a related formula from [4] with a different definition of R
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Particles with a partially reflecting boundary

(see Proposition 5.2 and Theorem 7.1). The discussions in [4],[5] describe how to obtain
these formulas from Pieri’s rule.

This next proposition shows that P and T are the same. The proof is similar to the
Proposition 3.1 from [7]. The only difference is that R(·, ·) has a different definition here,
but it turns out that the only relevant information about R for the proof is that (2.1) is
true. The full proof is still included here for completeness, because much of the notation
is different.

Proposition 3.1. Let

φ(x) =
1

1 + α(1− x) + α2

2 (1− x)
, α =

2q

1− q
.

Then
P2r+1 = Tφ2r+1, P2r = Tφ2r

Proof. We first prove this for r = 1. Substituting x = (z + z−1)/2

φ(x) =
(1− q)2

(z − q)(1− qz)
, (1− x)a(1 + x)1/2dx 7→

{
(z1/2+z−1/2)2

4iz , a = −1/2
− (z−z−1)2

8iz , a = 1/2

and the integral over [−1, 1] becomes an integral over the unit circle, with an extra factor
of 1/2 occurring because the map z 7→ x is two–to–one. Thus, the term inside the 1× 1

determinant in Tφn can be calculated from the identities

1

4πi

∮
(zk+1/2 + z−(k+1/2))(zl+1/2 + z−(l+1/2))

(1− q)2dz
(z − q)(1− qz)

=
1− q
1 + q

(qk+l+1 + q|k−l|)

− 1

4πi

∮
(zk+1 − z−k−1)(zl+1 − z−l−1) (1− q)2dz

(z − q)(1− qz)
=

1− q
1 + q

(q|k−l| − qk+l+2)

for n = 1, 2 respectively. The first line is R(k, l) = P1(k, l). For the second line, note that

(1− q)2
min(λ,β)∑
c=0

qλ+β−2c = (1− q)2 q
λ+β − q|λ−β|−2

1− q−2
=

1− q
1 + q

(q|λ−β| − qλ+β+2) (3.3)

which shows that P2 = Tφ2 .
Now proceed to higher values of r. By (3.2),

P2r(λ, β) = (1− q)2r s2r(β)
s2r(λ)

∑
s1>...>sr≥0

det[fsi(λj − j + r)] det[fsi(βj − j + r)]

where
fs(l) = ql−sψ(s, l).

By Lemma 2.1 of [1], this equals

(1− q)2r s2r(β)
s2r(λ)

det

[ ∞∑
s=0

fs(λi − i+ r)fs(βj − j + r)

]
.

By identity (3.3), P2r = Tφ2r.
For P2r+1, start with the following claim: if max(λr+1, βr+1) > min(λr, βr) then

P2r+1(λ, β) = Tψ2r+1(λ, β) = 0. To see this claim, first notice that P2r+1 = 0 follows
immediately from the description of the interacting particle system, or from the fact that
{c ∈ Nr : c ≺ λ, β} is empty. By (2.1), in the matrix of T2r+1 the rth column is a multiple
of the (r + 1)th column, so that T2r+1 = 0.
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Particles with a partially reflecting boundary

Because of this claim, assume that max(λr, βr) ≤ min(λr−1, βr−1).
Lemma 2.1 from [1] is not immediately applicable, because we are summing over

elements of Nr while the determinants are of size r + 1. Notice, however, that c ≺ λ, β
if and only if c ≺ λred, βred (where λred, βred denote (λ1, . . . , λr), (β1, . . . , βr)) and cr ≥
max(λr+1, βr+1). Thus

P2r+1(λ, β) =
∑

c∈Nr,c≺λ,β

(1− q)2r s2r(β)
s2r(λ)

q
∑r
i=1 λi+βi−2ciR(λr+1, βr+1)

= (1− q)2r s2r(β)
s2r(λ)

R(λr+1, βr+1)

×
∑

s1>s2>...>sr≥max(λr+1,βr+1)

det[fsi,1(λj − j + r)]r1 det[fsi,1(βj − j + r)]r1

= (1− q)2rR(λr+1, βr+1)
s2r(β)

s2r(λ)
det

 ∞∑
s=max(λr+1,βr+1)

fs,1(λi − i+ r)fs,1(βj − j + r)

r
1

.

A straightforward calculation shows that if max(λr+1, βr+1) ≤ min(x, y), then

∞∑
s=max(λr+1,βr+1)

fk,1(x)fk,1(y) =
qx+y−2max(λr+1,βr+1)+2 − q|x−y|

q2 − 1
.

Thus it remains to show that

det [R(λi − i+ r + 1, βj − j + r + 1)]
r+1
i,j=1

= (1− q)2rR(λr+1, βr+1) det

[
qxi+yj−2max(λr+1,βr+1)+2 − q|xi−yj |

q2 − 1

]r
1

where xi = λi − i+ r and yj = βj − j + r. Recall that

R(x, y) =
1− q
1 + q

(q|x−y| + qx+y+1).

To show that this is true, perform a sequence of operations to the smaller matrix.
These operations are slightly different for λr+1 > βr+1 and λr+1 ≤ βr+1. Consider
λr > βr for now.

First, add a row and a column to the matrix of size r. The (r + 1)th column is
[0, 0, 0, . . . , 0, R(λr+1, βr+1)] and the (r + 1)th row is [R(λr+1, β1 + r), R(λr+1, β2 − 1 +

r), . . . , R(λr+1, βr + 1), R(λr+1, βr+1)]. This multiplies the determinant by R(λr+1, βr+1).
Second, for 1 ≤ i ≤ r, perform row operations by replacing the ith row with

ith row +
1

(q − 1)2
R(λi − i+ r + 1, βr+1)

R(λr+1, βr+1)
((r + 1)th row).

For 1 ≤ j ≤ r and letting (x, y) = (λi − i+ r + 1, βj − j + r + 1), the (i, j) entry is (recall
(2.1))

qx+y−2max(λr+1,βr+1) − q|x−y|

q2 − 1
+

1

(q − 1)2
R(x, βr+1)

R(λr+1, βr+1)
R(λr+1, y)

=
qx+y−2max(λr+1,βr+1) − q|x−y|

q2 − 1
− qx−λr+1

q2 − 1
(qλr+1+y+1 + q|λr+1−y|)

=
−qx+y+1 − q|x−y|

q2 − 1
= (1− q)−2R(x, y).
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Particles with a partially reflecting boundary

Here, we used the fact that y ≥ βr ≥ min(λr, βr) ≥ λr+1 and y ≥ λr+1 > βr+1 ≥ 0. For
j = r + 1, λr+1 > y = βr+1, so the (i, j) entry is

0 +
1

(q − 1)2
R(λi − i+ r + 1, βr+1)

R(λr+1, βr+1)
R(λr+1, y) = (1− q)−2R(x, y).

Thus, the larger determinant is (1− q)2rR(λr, βr) times the larger determinant.
Now consider λr+1 ≤ βr+1. First, add the (r + 1)th row, which is equal to [0, 0, . . . , 0,

R(λr+1, βr+1)], and add the (r + 1)th column which is [R(λ1 − 1 + r, βr+1), R(λ2 − 2 +

r, βr+1), . . . , R(λr+1, βr+1)]. This multiplies the determinant by R(λr+1, βr+1).
Second, for 1 ≤ j ≤ r, perform column operations by replacing the jth column with

jth column +
1

(q − 1)2
R(λr+1, βj − j + r + 1)

R(λr+1, βr+1)
((r + 1)th column).

Once again, this yields a matrix whose entries are (1− q)−2R(λi− i+ r+1, βj − j+ r+1),
except for the last column, which is R(λi − i+ r + 1, βr+1).

Note that while the projections to each level are the same, the multi–level dynamics
are different. For the dynamics in this paper, there is zero probability of a jump from
(0) ≺ (1) ≺ (1, 0) to (0) ≺ (0) ≺ (0, 0) on the bottom three levels, because X2

1 prevents X3
1

from jumping to 0. However, in the dynamics of [2], this probability is nonzero because
all of the terms in (60) are nonzero.

4 Projections to levels

This section will provide a proof that the projection to each level is Markov with an
explicit expression for the Markov operator. Note that the method of the proof is very
similar to that of [4, 5]. The primary difference is that due to the different expression for
R and for the branching rule, the identities (4.7) and (4.10) below are changed.

We consider the subsetW(2)
k ofWk ×Wk defined by

W(2)
k = {(z, y) : z ≺ y} ⊆ Wk ×Wk,

and define a Markov kernel Sk onW(2)
k by

Sk((z, y), (z
′, y′)) = (1− q)k sk(y

′)

sk(y)
q
∑r
i=1(yi+y

′
i−2z

′
i)1z′≺y,y′ (4.1)

when k = 2r, and

Sk((z, y), (z
′, y′)) = (1− q)k−1 sk(y

′)

sk(y)
R(yr, y

′
r)q

∑r−1
i=1 (yi+y

′
i−2z

′
i)1z′r=yr1z′≺y,y′ (4.2)

when k = 2r − 1. Since the expression for Sk does not depend on z, also write it as
Sk(y, (z

′, y′)). Note that ∑
z′∈W(2)

k

Sk((z, y), (z
′, y′)) = Pk(y, y

′) (4.3)

Thus Proposition 3.1 implies that Sk is a Markov operator.

Theorem 4.1. For each k ≥ 1, the random process (Xk(n− 1
2 ), X

k(n))n∈N is a Markov
process with transition kernel given by Sk. Furthermore, (Xk(n))n∈N is a Markov process
with transition kernel given by Pk.
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Particles with a partially reflecting boundary

Proof. It suffices to prove the first statement, because by (4.3) the second follows from
the first.

The proof will follow from induction on k. For k = 1, Theorem 4.1 is clearly true. If the
random process (Xk−1(n− 1

2 ), X
k−1(n))n∈N is Markov with transition kernel Sk−1, then

the random process (Xk−1(n), Xk(n− 1
2 ), X

k(n))n∈N is also Markov with some transition
kernel Qk, since the evolution of the kth level only depends on the evolution of the
(k − 1)th level. Let Lk be a Markov projection from the (k − 1)th and kth level onto just
the kth level. If we show that

LkQk = SkLk (4.4)

then the intertwining property of [9], Theorem 2, will imply that the projection to the
kth level is Markov with kernel Sk.

The explicit expression for Lk is not hard to write. Define Lk fromW(2)
k toWk−1×W(2)

k

by

Lk((z0, y0), (x, y, z)) = 1(z0,y0)=(z,y)
sk−1(x)

sk(y)
1x≺y

By (3.1), the Lk are Markov.
In order to prove (4.4), there also need to be explicit formulas for Qk. In order to

write these formulas, first introduce some notation. Let ξ1 and ξ2 be two independent

geometric random variables with parameter q. For x ≥ a ≥ 0, let
a←
P (x, .) denote the law

of the random variable
max(a, x− ξ1).

For b ≥ x ≥ 0, let
→b
P (x, .) and

→b
R (x, .) respectively denote the laws of the random

variables
min(b, x+ ξ1) and min(b, |x+ ξ1 − ξ2|),

For x, y ∈ R2 such that x ≤ y we let

P (x, y) = (1− q)qy−x.

With this notation in place, the description of the model implies the following explicit
expression for Qk. For (u, z, y), (x, z′, y′) ∈ Wk−1 ×W(2)

k such that u ≺ y and x ≺ y′

Qk((u, z, y), (x, z
′, y′)) =

∑
v∈Nr−1

Sk−1(u, (v, x))
→vr−1

R (yr ∧ vr−1, y′r)

×
r−1∏
i=1

ui←
P (yi ∧ vi−1, z′i)

r−1∏
i=1

→vi−1

P (z′i ∨ xi, y′i), (4.5)

when k = 2r − 1 and

Qk((u, z, y), (x, z
′, y′)) =

∑
v∈Nr

Sk−1(u, (v, x))

×
r∏
i=1

ui←
P (yi ∧ vi−1, z′i)

r∏
i=1

→vi−1

P (z′i ∨ xi, y′i), (4.6)

when k = 2r. In both cases v0 =∞ and the sum runs over v = (v1, . . . , vr−1) ∈ Nr−1 (or
Nr) such that vi ∈ {y′i+1, . . . , xi ∧ z′i}, for all i. The notation can be depicted visually as

time n time n+ 1/2 time n+ 1

level k y z′ y′

level k − 1 u v x
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Here is a description in words. For both k = 2r and k = 2r − 1, the kth level has r
particles, so after the (k − 1)th level evolves as Sk−1 (without dependence on what
happens on the kth level), there is a (r − 1)–fold double product corresponding to the
left and right jumps of the r − 1 particles away from the wall. For the particle closest to
the wall, the evolution is as R when k is odd, and when k is even the evolution fits into
the previous (r − 1)–fold double product.

In order to show (4.4), there need to be explicit expressions and identities for these
laws. The next lemma provides this.

Lemma 4.2. For (x, y, z) ∈ N3 such that 0 < z ≤ y
z∑

u=0

R(u, x)
u←
P (y, z) = (1− q)qx∨z+y−2z. (4.7)

For (x, y, a) ∈ N3 such that a ≤ y and y ≤ x
y∑

u=a

qu
u←
P (x, y) = qx−yqa. (4.8)

For (x, y, a) ∈ N3 such that y ≤ a and x ≤ y
a∑
v=y

q−v
→v
P (x, y) = qy−xq−a. (4.9)

For y ∈ N, y′ ∈ N∗ such that y′ ≤ a
a∑

v=y′

qv∨y−2v
→v
R (y ∧ v, y′) = 1

1− q
q−aR(y, y′). (4.10)

Proof. Note that (4.8) and (4.9) are precisely statements from Lemma 8.3 of [5]. Before
showing the remaining identities are true, it is necessary to have formulas for these laws.
The following two statements are from Lemma 8.2 of [4]:

For a, x, y ∈ N such that a ≤ y ≤ x
a←
P (x, y) =

{
(1− q)qx−y if a+ 1 ≤ y
qx−a if y = a.

For b, x, y ∈ N such that b ≥ y ≥ x
→b
P (x, y) =

{
(1− q)qy−x if y ≤ b− 1

qb−x if y = b.

This next formula follows from direct computation. For b, x, y ∈ N such that b ≥ y, x

→b
R (x, y) =


1−q
1+q (q

|y−x| + qx+y+1) if y ≤ b− 1,

1
1+q q

b(q−x + qx+1) if y = b,

So that
z∑

u=0

R(u, x)
u←
P (y, z)

=
1− q
1 + q

qy−z

(
z−1∑
u=0

(qu+x+1 + q|u−x|)(1− q) + (qz+x+1 + q|z−x|)

)

=

{
1−q
1+q q

y−z(qx+1(1− qz) + qx−z+1 − qx+1 + qz+x+1 + qx−z), x ≥ z
1−q
1+q q

y−z(qx+1(1− qz)− qx−1 + q + 1− qz−x + qz+x+1 + qz−x), x < z
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which simplifies to (1− q)qx∨z+y−2z.
Furthermore,

a∑
v=y′

qv∨y−2v
→v
R (y ∧ v, y′) = qy

′∨y−2y′
→y′

R (y ∧ y′, y′) +
a∑

v=y′+1

qv∨y−2v
→v
R (y ∧ v, y′)

= qy
′∨y−2y′ 1

1 + q
qy
′
(q−y∧y

′
+ qy∧y

′+1) +

a∑
v=y′+1

qv∨y−2v
1− q
1 + q

(
q|y
′−y∧v| + qy∧v+y

′+1
)

=



1
1+q (q

−y + qy+1) +

a∑
v=y′+1

q−v
1− q
1 + q

(
qy
′−y + qy+y

′+1
)
, y ≤ y′ ≤ a

qy−2y
′ 1
1+q (1 + q2y

′+1) +

a∑
v=y′+1

qy−2v
1− q
1 + q

(
qv−y

′
+ qv+y

′+1
)
, y′ ≤ a ≤ y

qy−2y
′ 1
1+q (1 + q2y

′+1) +

y∑
v=y′+1

qy−2v
1− q
1 + q

(
qv−y

′
+ qv+y

′+1
)

+

a∑
v=y+1

q−v
1− q
1 + q

(
qy−y

′
+ qy+y

′+1
)
, y′ ≤ y ≤ a

Note that in each case, the summation over v is of the form
∑
v q
−v, and in all cases

simplifies to 1
1−q q

−aR(y, y′).

Now show that (4.4) is true. For (z, y) ∈ W(2)
k , (x, z′, y′) ∈ Wk−1 × W(2)

k such that
x ≺ y′,

LkQk((z, y), (x, z
′, y′)) =

∑
u∈Wk−1

Lk((z, y), (u, z, y))Qk((u, z, y), (x, z
′, y′)).

Assume for now that k = 2r. Then LkQk is equal to∑
(u,v)∈Nr×Nr−1

sk−1(x)

sk(y)
(1− q)2r−2R(ur, xr)q

∑r−1
i=1 (xi+ui−2vi)

× P (z′1 ∨ x1, y′1)
r∏
i=1

ui←
P (yi ∧ vi−1, z′i)

r∏
i=2

→vi−1

P (z′i ∨ xi, y′i).

where the sum runs over (u, v) ∈ Nr×Nr−1 such that ur ∈ {0, . . . , z′r}, vi ∈ {y′i+1, . . . , xi∧
z′i}, ui ∈ {vi ∨ yi+1, . . . , z

′
i}, for i ∈ {1, . . . , r − 1}. Thus LkQk equals

∑
v∈Nr−1

sk−1(x)

sk(y)
(1− q)2r−2q

∑r−1
i=1 xiP (z′1 ∨ x1, y′1)

r∏
i=2

q−2vi−1

→vi−1

P (z′i ∨ xi, y′i)

×
∑
u∈Nr

((1− q)2r−2R(ur, xr)
r∏
i=1

qui
ui←
P (yi ∧ vi−1, z′i).

Now evaluate the sum over u and v. For each fixed v the sum over u is equal to

z′r∑
ur=0

R(ur, xr)
ur←
P (yr ∧ vr−1, z′r)

r−1∏
i=1

z′i∑
ui=vi∨yi+1

qui
ui←
P (yi ∧ vi−1, z′i).

Now, identities (4.7) and (4.8) of Lemma 4.2 imply that the sum over u equals

qxr∨z
′
r+yr∧vr−1−2z′r (1− q)

r−1∏
i=1

qyi∧vi−1−z′i+vi∨yi+1 ,
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i.e.
qxr∨z

′
r+yr−2z

′
r+
∑r−1
i=1 yi+vi−z

′
i(1− q).

Thus

L2rQ2r((z, y), (x, z
′, y′)) =

sk−1(x)

sk(y)
(1− q)2r−1qxr∨z

′
r+yr−2z

′
r+
∑r−1
i=1 yi−z

′
iq
∑r−1
i=1 xi

× P (z′1 ∨ x1, y′1)
r∏
i=2

xi−1∨z′i−1∑
vi−1=yi

q−vi−1

→vi−1

P (z′i ∨ xi, y′i).

Identity (4.9) of Lemma 4.2 gives that

r∏
i=2

xi−1∨z′i−1∑
vi−1=yi

q−vi−1

→vi−1

P (z′i ∨ xi, y′i) =
r∏
i=2

qy
′
i−z
′
i∨xi−xi−1∧z′i−1

= qy
′
r−z

′
r∨xr−x1∧z′1q

∑r−1
i=2 y

′
i−xi−z

′
i ,

which implies

L2rQ2r((z, y), (x, z
′, y′)) =

sk−1(x)

sk(y)
(1− q)2rq

∑r
i=1 yi+y

′
i−2z

′
i ,

which is quickly seen to be equal to S2rL2r. This finishes the proof when k = 2r.
Similarly when k = 2r − 1,

L2rQ2r((z, y), (x, z
′, y′)) =

∑
u,v∈Nr−1

sk−1(x)

sk(y)
q
∑r−1
i=1 xi−2vi

→vr−1

R (yr ∧ vr−1, y′r)

×
r−1∏
i=1

qui
ui←
P (yi ∧ vi−1, z′i)

r−1∏
i=1

→vi−1

P (z′i ∨ xi, y′i),

where the sum runs over (u, v) ∈ Nr−1 × Nr−1 such that vi ∈ {y′i+1, . . . , xi ∧ z′i}, ui ∈
{vi ∨ yi+1, . . . , z

′
i}, for i ∈ {1, . . . , r − 1}. The rest of the calculations are similar, using

identities (4.8), (4.9) and (4.10) of Lemma 4.2. Therefore (4.4) is true and the proof of
Theorem 4.1 is done.

5 Asymptotics

The interacting particle system from [2] is a determinantal point process. In general,
a determinantal point processes on a discrete space S is uniquely characterized by an
object called a correlation kernel, which is a function on S × S. In [2], the asymptotics
were calculated for Plancherel representations of Sp(∞). Here, we find the asymptotics
for the pure alpha representations.

By Theorem 1.2 of [2], the correlation kernel at integer times T is given by

KT ((s, k), (t,m))

=
2ak+1/2

π

1

2πi

∫ 1

−1

∮
φ(x)T

φ(u)T
Js,ak(x)Jt,am(u)

(1− x)rk
(1− u)rm

(1− x)ak(1 + x)1/2

(x− u)
dudx

+ 1k≥m
2ak+1/2

π

∫ 1

−1
Js,ak(x)Jt,am(x)(1− x)rk−rm+ak(1 + x)1/2dx

where (s, k), (t,m) ∈ N × Z+ and recall that φ(x) is the function from Proposition 3.1.
If φ(x) is replaced with e(x−1) and T is allowed to take any nonnegative value, then K

becomes the correlation kernel corresponding to the Plancherel characters.
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5.1 Symmetric Pearcey

Define the kernel K on R+ ×R as follows. Let

K((ν1, η1), (ν2, η2)) =
√
2

2π2i

∫ i∞

−i∞

∫ ∞
0

exp

(
u2 − x2

8
+
η2u− η1x

2

)
sin(ν1

√
2x) sin(ν2

√
2u)

dxdu√
u(u− x)

+
1η2<η1√
π(η1 − η2)

(
exp

(
(ν1 + ν2)

2

η2 − η1

)
+ exp

(
(ν1 − ν2)2

η2 − η1

))
.

By substituting x 7→ cx and u 7→ cu,

K((ν1, η1), (ν2, η2)) =
√
2

2π2i

∫ i∞

−i∞

∫ ∞
0

exp

(
c2u2 − c2x2

8
+
cη2u− cη1x

2

)
sin(ν1

√
2cx) sin(ν2

√
2cu)

√
cdxdu√
u(u− x)

+
1η2<η1√
π(η1 − η2)

(
exp

(
(ν1 + ν2)

2

η2 − η1

)
+ exp

(
(ν1 − ν2)2

η2 − η1

))
.

This kernel had previously appeared in Theorem 1.5 of [2], where it is called the
Symmetric Pearcey kernel, and is also the α = 1/2 case of a more general kernel Kα
called the hard–edge Pearcey kernel (see [6] and [3]).

Theorem 5.1. Let cα be the constant (1+α)−2(α(2+α))1/2, where α = 2q/(1− q). Let s1
and s2 depend on N in such a way that si/N1/4 → νic

1/2
α > 0 as N →∞. Let T and r1, r2

also depend on N in such a way that T/N → 1 and (rj − (1− (1 + α)−2)N)/
√
N → cαηj .

Then setting kj = 2rj + aj − 1/2,

(−2)r2−r1(−1)s1−s22an2
−an1N1/4c−1/2α K((s1, k1), (s2, k2))→ K((ν1, η1), (ν2, η2)).

Proof. Since the proof is a standard steepest descent argument (see e.g. [8] ) and
is almost identical to the proofs of Theorem 5.8 from [1], Theorem 1.5 from [2], and
Theorem 4.2 from [7], some of the details will be omitted. The only difference in the
proofs comes from the different analysis of φ(x). In particular, it is immediate that the
asymptotics of the single integral term is the same.

Define
A(z) = log φα(z) + (1− (1 + α)−2) log(z − 1),

which has Taylor series

A(z)−A(−1) = − α(2 + α)

8(1 + α)4
(z + 1)2 +O((z + 1)3).

The integrand is asymptotically∣∣∣∣eN(A(x)−A(−1))

eN(A(u)−A(−1))

∣∣∣∣ = eNRe(A(x)−A(−1))

eNRe(A(u)−A(−1))

Now deform the contours as shown in Figure 2. With these deformations, the contribu-
tions come from a region around −1. Therefore, make the substitutions x′ = N1/2(x+ 1)

and u′ = N1/2(u+ 1). Then by an (unnumbered) equation on page 41 of [2],

(1− x)ak(1 + x)1/2

x− u
dudx ∼ N−3/4 2

ak
√
x′

x′ − u′
· du′dx′.

and if s ∼ N1/4ν then

N1/4(−1)sJs,a(x) ∼
sin[ν

√
2x′]

2a
√
x′

.
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Figure 2: The shaded region represents the area where Re (A(z)−A(−1)) > 0. The
integral over x is the line from −1 to 1 in the white region, and the integral over u is
deformed to the circle in the shaded region.

The exponential expression in x becomes

exp
(
N(A(x)−A(−1)) + cαη

√
N(log(1− x)− log 2)

)
≈ exp

(
−c

2
α

8
(x′)2 + cαη

√
N(log(2−N−1/2x′)− log 2)

)
≈ exp

(
−c

2
α

8
(x′)2 − 1

2
cαη · x′

)
,

with a similar expression for u. Observe that if we had considered a larger region around
−1, with the substitutions x′ = N1/2−ε(x+ 1), u′ = N1/2−ε(u+ 1), then the exponential

term would converge to zero at rate O
(
e−N

2ε
)

. Combining all of these asymptotic

expressions yields the result.

Note that after taking the determinant, the conjugating factors
(−2)r2−r1(−1)s1−s22an2

−an1 have no effect.

5.2 Discrete Jacobi

For −1 < u < 1 and a1, a2 = ± 1
2 , define the discrete Jacobi kernel L(r1, a1, s1, r2, a2,

s2, b;u) as follows. If 2r1 + a1 ≥ 2r2 + a2, then

L(r1, a1, s1, r2, a2, s2, b;u) =
2a1+1/2

π

∫ 1

u

Js1,a1(x)Js2,a2(x)(x− 1)r1−r2(1− x)a1(1 + x)bdx.

If 2r1 + a1 < 2r2 + a2, then

L(r1, a1, s1, r2, a2, s2, b;u) = −
2a1+1/2

π

∫ u

−1
Js1,a1(x)Js2,a2(x)(x−1)r1−r2(1−x)a1(1+x)bdx.

Note that L only depends on r1, r2 through their difference r1 − r2.

Theorem 5.2. Let T depend on N in such a way that T/N → t. Let r1, . . . , rl depend on
N in such a way that ri/N → l and their differences ri − rj are fixed finite constants.
Here, t, l > 0. Fix s1, s2, . . . , sl to be finite constants. Let

θ = 1 +
2l

(l − t)(2α+ α2)
, α =

2q

1− q
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Then setting kj = 2rj + aj − 1/2,

lim
N→∞

det[KT ((si, ki), (sj , kj))]
l
i,j=1

=

{
1, l ≥ (1− (1 + α)−2)t

det[L(ri, ai, si, rj , aj , sj , 1/2; θ)]
l
i,j=1, l < (1− (1 + α)−2)t

Proof. The proof of Theorem 4.1 of [7] carries over here. The only difference is the
parameters in the Jacobi polynomials, but these have no effect in the asymptotics.
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