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Borel liftings of graph limits
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Abstract

The cut pseudo-metric on the space of graph limits induces an equivalence relation.
The quotient space obtained by collapsing each equivalence class to a point is a
metric space with appealing analytic properties. We show the equivalence relation
admits a Borel lifting: There exists a Borel-measurable mapping that maps each
equivalence class to one of its elements. The result yields a general framework
for proving measurability properties on the space of graph limits. We give several
examples, including Borel-measurability of the set of isomorphism classes of random-
free graphons.

Keywords: graph limits; random graphs.
AMS MSC 2010: 05C80.
Submitted to ECP on July 15, 2016, final version accepted on August 5, 2016.

The present note resolves a measurability question arising in the theory of graph
limits. Graph limits have recently found applications in several fields, including extremal
combinatorics and property testing [11], probability theory [6], statistics [1], and statisti-
cal physics [4]. The theory of these limits revolves around two types of objects: Certain
measurable functions, which can be thought of as representations of limits of graph
sequences, and isomorphism classes of such functions. It is well known that one can pass
in a measurable way from functions to isomorphism classes. It has been conjectured that
the converse is also true: There is a measurable mapping that takes each isomorphism
class to a representative function. We show that this is indeed the case.

1 Result

Let (Ω,B(Ω), P ) be an atomless Borel probability space and L1(Ω2) the Banach space
of integrable functions on Ω×Ω, equipped with the L1-metric d1. Let W ⊂ L1(Ω2) be the
subspace of symmetric integrable functions Ω2 → [0, 1]. Define a pseudo-norm on W by

‖w‖
�

:= sup
S,T∈B(Ω)

∫
S×T

w(s, t)dP (s)dP (t) . (1.1)

Following [3], we use ‖ . ‖
�

to define a pseudo-metric on W as

δ
�

(w,w′) := inf
ψ
‖wψ − w′‖

�
where wψ(x, y) := w(ψ(x), ψ(y)) . (1.2)

The infimum is taken over all invertible measure-preserving transformations of Ω, i.e.
all invertible measurable mappings ψ : Ω→ Ω satisfying ψP = P . The pseudo-metric
induces an equivalence relation on W, given by w ≡ w′ :⇔ δ

�
(w,w′) = 0. The relation
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w ≡ w′ is also known as weak isomorphism of w and w′ [11]. Denote the equivalence
class of w ∈W by [w]

�
, and the quotient space of all equivalence classes by Ŵ. On the

quotient space, δ
�

is a metric, and the metric space (W, δ
�

) is compact [13]. For each

ŵ ∈ Ŵ, we write [ŵ]
�
⊂W for the corresponding equivalence class of elements of W.

Theorem 1.1 below shows that weak isomorphism admits a Borel lifting, i.e. there
exists a Borel-measurable mapping ξ : (Ŵ, δ

�
)→ (W, d1) such that

ξ(ŵ) ∈ [ŵ]
�

for all ŵ ∈ Ŵ . (1.3)

The lifting is not unique. More precisely:

Theorem 1.1. There is a sequence (ξn) of measurable mappings ξn : (Ŵ, δ
�

)→ (W, d1)

such that, for every ŵ ∈ Ŵ, the set {ξn(ŵ) |n ∈ N} is a dense subset of [ŵ]
�
.

2 Applications

Every graphon w defines a probability distribution Pw on infinite random graphs
[11]. The parametrization of these measures by graphons is not unique, since Pw = Pw′

whenever w and w′ are weakly isomorphic. Clearly, a unique parametrization can be
obtained by substituting graphons by equivalence classes. One implication of Theorem
1.1 is that this parametrization, i.e. the mapping ŵ 7→ Pŵ, is measurable.

Another consequence is that, for any function f : W→ R that is Borel with respect
to the L1 topology on W, the composite map ξ ◦ f is Borel on Ŵ. This property has a
number of applications. For example, a graphon w is called random-free if its range is
{0, 1}. The set of all such graphons is not closed with respect to the metric δ

�
, and their

equivalence classes are hence not closed in Ŵ [11]. However:

Corollary 2.1. The set of equivalence classes of random-free graphons is Borel in Ŵ.

Measurability of composite maps also implies that densities of weighted subgraphs
are Borel measurable: Let M ∈ Rn×n be a symmetric matrix with non-negative entries
and vanishing diagonal, i.e. an edge-weighted, complete graph of size n. Define the
density of M in w as

t(M,w) :=

∫ ∏
i<j≤n

w(xi, xj)
MijdPn . (2.1)

The mapping w 7→ t(M,w) on W depends only on the equivalence class of w, and in-
duces a mapping ŵ 7→ t(M, ŵ) on the quotient space Ŵ. The mapping ŵ 7→ t(M, ŵ) is
continuous if M is binary, but the same is not true in general.

Corollary 2.2. For everyM , the map ŵ 7→ t(M, ŵ) is Borel on Ŵ.

In particular, for n = 2 and any k ∈ N, the moment
∫

Ω2 w
k(x, y)P (dx)P (dy) depends

in a measurable way on the equivalence class. These moments completely determine the
value distribution of the graphon, i.e. the image probability measure w(P⊗P ) on [0, 1].
Hence, the mapping w 7→ w(P⊗P ) that takes a graphon to its value distribution is Borel
with respect to the weak topology of probability measures on [0, 1].

3 Proof

Theorem 1.1 can be stated equivalently by defining a set-valued mapping

φ
�

: Ŵ→ 2W with φ
�

(ŵ) := [ŵ]
�
. (3.1)

We then have to show that there are measurable mappings ξn : (Ŵ, δ
�

)→ (W, d1) with

{ξn(ŵ) |n ∈ N} = φ
�

(ŵ) for all ŵ ∈ Ŵ , (3.2)

where A denotes the closure of a set A.
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Liftings of set-valued maps are a well-studied topic in analysis, and we use a result of
Kuratowski and Ryll-Nardzewski [10] on the existence of liftings, and a generalization
by Castaing [5] (see e.g. [8], Theorem 12.16, and [9], Theorem 14.4.1, for textbook
statements). For our purposes, these results can be summarized as follows:

Theorem 3.1. Let X be a measurable space, Y a Polish space, and φ : X→ 2Y a set-
valued mapping. Require φ(x) to be non-empty and closed for all x ∈ X, and that

φ−1(A) := {x ∈ X |φ(x) ∩A 6= ∅} (3.3)

is a measurable set in X for each open set A in Y. Then there exists a sequence of
measurable mappings ξn : X→ Y such that {ξn(x) |n ∈ N} = φ(x) for all x ∈ X.

For φ
�

as defined in (3.1) and any subset A ⊂W, the set φ−1
�

(A) in (3.3) simply

consists of all ŵ ∈ Ŵ for which A contains at least one element of the equivalence class
[ŵ]

�
. If A is in particular an open d1-ball in W, this set has the following property:

Lemma 3.2. Denote by Uε(v) the open d1-ball of radius ε centered at v ∈W. If ε < δ,

φ−1
�

(Uε(v)) ⊆ φ−1
�

(Uδ(v)) (3.4)

for all v ∈W.

Proof of Lemma 3.2. Let (ŵ1, ŵ2, . . .) be a sequence in φ−1
�

(Uε(v)) with ŵi
δ
�−−→ ŵ. We

have to show that ŵ ∈ φ−1
�

(Uδ(v)). By definition of φ−1
�

, the sets φ
�

(ŵi) ∩ Uε(v) are
non-empty. Suppose (wi) is a sequence with wi ∈ φ�

(ŵi) ∩ Uε(v) for each i ∈ N. By
Lemma 2.11 of [14], convergence of (ŵi) to ŵ then implies

ε ≥ lim inf δ1(wi, v) ≥ δ1(w, v) = inf
ψ
d1(wψ, v) (3.5)

for any w ∈ φ
�

(ŵ). Since ε < δ, there is hence a measure-preserving transformation ψ
such that d1(wψ, v) < δ, that is, wψ ∈ Uδ(v). Because wψ and w are weakly isomorphic,
we also have wψ ∈ φ

�
(ŵ), and therefore

ŵ ∈ φ−1
�

(φ
�

(ŵ) ∩ Uδ(v)) ⊂ φ−1
�

(Uδ(v)) . (3.6)

Proof of Theorem 1.1. The space (W,d1) is a closed subspace of the separable Banach
space L1(Ω2), and hence Polish. The sets φ

�
(ŵ) are non-empty, by definition of the space

Ŵ as a quotient. We will show that, additionally:

i. The sets φ
�

(ŵ) are closed.

ii. For all open sets A in W, the set φ−1
�

(A) is Borel in Ŵ.

The mapping φ
�

therefore satisfies the hypothesis of Theorem 3.1, and Theorem 1.1
follows.

(i) Denote by tF : W→ [0, 1] the homomorphism density indexed by a finite graph F [12].
Two elements of W are weakly isomorphic if and only if their homomorphism densities
coincide for all finite graphs F [2, 7]. Let ŵ ∈ Ŵ, and let (w1, w2, . . .) be a sequence in
the set φ(ŵ) with limit w in (W, d1). The homomorphism densities are δ

�
-continuous and

hence d1-continuous. Therefore,

lim tF (wi) = tF (w) for all F , (3.7)

and since the wi are weakly isomorphic, tF (wi) = tF (w) for all i and all F . Thus, w ∈ φ(ŵ),
and the set is closed.
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(ii) Let Uδ(v) denote the open ball of radius δ centered at v ∈W. Since W is Polish, the
open balls form a base of the topology, and it is sufficient to consider sets of the form
A = Uδ(v). Let δi ∈ R+ be an increasing sequence δi → δ. Then, by Lemma 3.2,

φ−1
�

(Uδ(v)) =
⋃
i

φ−1
�

(Uδi(v)) ⊆
⋃
i

φ−1
�

(Uδi(v))
(3.4)
⊆

⋃
i

φ−1
�

(Uδ(v)) = φ−1
�

(Uδ(v)) .

In particular, φ−1
�

(Uδ(v)) is a countable union of the closed sets φ−1
�

(Uδi(v)), and hence
Borel.
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