Electron. Commun. Probab. **21** (2016), no. 65, 1–4. DOI: 10.1214/16-ECP14 ISSN: 1083-589X

ELECTRONIC COMMUNICATIONS in PROBABILITY

Borel liftings of graph limits

Peter Orbanz*

Balazs Szegedy[†]

Abstract

The cut pseudo-metric on the space of graph limits induces an equivalence relation. The quotient space obtained by collapsing each equivalence class to a point is a metric space with appealing analytic properties. We show the equivalence relation admits a Borel lifting: There exists a Borel-measurable mapping that maps each equivalence class to one of its elements. The result yields a general framework for proving measurability properties on the space of graph limits. We give several examples, including Borel-measurability of the set of isomorphism classes of randomfree graphons.

Keywords: graph limits; random graphs. AMS MSC 2010: 05C80. Submitted to ECP on July 15, 2016, final version accepted on August 5, 2016.

The present note resolves a measurability question arising in the theory of graph limits. Graph limits have recently found applications in several fields, including extremal combinatorics and property testing [11], probability theory [6], statistics [1], and statistical physics [4]. The theory of these limits revolves around two types of objects: Certain measurable functions, which can be thought of as representations of limits of graph sequences, and isomorphism classes of such functions. It is well known that one can pass in a measurable way from functions to isomorphism classes. It has been conjectured that the converse is also true: There is a measurable mapping that takes each isomorphism class to a representative function. We show that this is indeed the case.

1 Result

Let $(\Omega, \mathcal{B}(\Omega), P)$ be an atomless Borel probability space and $L_1(\Omega^2)$ the Banach space of integrable functions on $\Omega \times \Omega$, equipped with the L_1 -metric d_1 . Let $\mathbf{W} \subset L_1(\Omega^2)$ be the subspace of symmetric integrable functions $\Omega^2 \to [0, 1]$. Define a pseudo-norm on \mathbf{W} by

$$\|w\|_{\square} := \sup_{S,T \in \mathcal{B}(\Omega)} \int_{S \times T} w(s,t) dP(s) dP(t) .$$
(1.1)

Following [3], we use $\|\,.\,\|_\square$ to define a pseudo-metric on ${\bf W}$ as

$$\delta_{\Box}(w, w') := \inf_{\psi} \|w^{\psi} - w'\|_{\Box} \quad \text{where} \quad w^{\psi}(x, y) := w(\psi(x), \psi(y)) \;. \tag{1.2}$$

The infimum is taken over all invertible measure-preserving transformations of Ω , i.e. all invertible measurable mappings $\psi : \Omega \to \Omega$ satisfying $\psi P = P$. The pseudo-metric induces an equivalence relation on \mathbf{W} , given by $w \equiv w' :\Leftrightarrow \delta_{\Box}(w, w') = 0$. The relation

^{*}Columbia University, New York, USA. E-mail: porbanz@stat.columbia.edu

[†]Alfréd Rényi Institute of Mathematics, Budapest, Hungary. E-mail: szegedyb@gmail.com

Borel liftings of graph limits

 $w \equiv w'$ is also known as *weak isomorphism* of w and w' [11]. Denote the equivalence class of $w \in \mathbf{W}$ by $[w]_{\Box}$, and the quotient space of all equivalence classes by $\widehat{\mathbf{W}}$. On the quotient space, δ_{\Box} is a metric, and the metric space $(\mathbf{W}, \delta_{\Box})$ is compact [13]. For each $\widehat{w} \in \widehat{\mathbf{W}}$, we write $[\widehat{w}]_{\Box} \subset \mathbf{W}$ for the corresponding equivalence class of elements of \mathbf{W} .

Theorem 1.1 below shows that weak isomorphism admits a Borel lifting, i.e. there exists a Borel-measurable mapping $\xi : (\widehat{\mathbf{W}}, \delta_{\Box}) \to (\mathbf{W}, d_1)$ such that

$$\xi(\widehat{w}) \in [\widehat{w}]_{\square}$$
 for all $\widehat{w} \in \mathbf{W}$. (1.3)

The lifting is not unique. More precisely:

Theorem 1.1. There is a sequence (ξ_n) of measurable mappings $\xi_n : (\widehat{\mathbf{W}}, \delta_{\Box}) \to (\mathbf{W}, d_1)$ such that, for every $\widehat{w} \in \widehat{\mathbf{W}}$, the set $\{\xi_n(\widehat{w}) \mid n \in \mathbb{N}\}$ is a dense subset of $[\widehat{w}]_{\Box}$.

2 Applications

Every graphon w defines a probability distribution P_w on infinite random graphs [11]. The parametrization of these measures by graphons is not unique, since $P_w = P_{w'}$ whenever w and w' are weakly isomorphic. Clearly, a unique parametrization can be obtained by substituting graphons by equivalence classes. One implication of Theorem 1.1 is that this parametrization, i.e. the mapping $\hat{w} \mapsto P_{\hat{w}}$, is measurable.

Another consequence is that, for any function $f : \mathbf{W} \to \mathbb{R}$ that is Borel with respect to the L_1 topology on \mathbf{W} , the composite map $\xi \circ f$ is Borel on $\widehat{\mathbf{W}}$. This property has a number of applications. For example, a graphon w is called *random-free* if its range is $\{0, 1\}$. The set of all such graphons is not closed with respect to the metric δ_{\Box} , and their equivalence classes are hence not closed in $\widehat{\mathbf{W}}$ [11]. However:

Corollary 2.1. The set of equivalence classes of random-free graphons is Borel in $\widehat{\mathbf{W}}$.

Measurability of composite maps also implies that densities of weighted subgraphs are Borel measurable: Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix with non-negative entries and vanishing diagonal, i.e. an edge-weighted, complete graph of size n. Define the density of M in w as

$$t(M,w) := \int_{i < j \le n} w(x_i, x_j)^{M_{ij}} dP^n .$$
(2.1)

The mapping $w \mapsto t(M, w)$ on \mathbf{W} depends only on the equivalence class of w, and induces a mapping $\widehat{w} \mapsto t(M, \widehat{w})$ on the quotient space $\widehat{\mathbf{W}}$. The mapping $\widehat{w} \mapsto t(M, \widehat{w})$ is continuous if M is binary, but the same is not true in general.

Corollary 2.2. For every M, the map $\widehat{w} \mapsto t(M, \widehat{w})$ is Borel on \mathbf{W} .

In particular, for n = 2 and any $k \in \mathbb{N}$, the moment $\int_{\Omega^2} w^k(x, y) P(dx) P(dy)$ depends in a measurable way on the equivalence class. These moments completely determine the value distribution of the graphon, i.e. the image probability measure $w(P \otimes P)$ on [0, 1]. Hence, the mapping $w \mapsto w(P \otimes P)$ that takes a graphon to its value distribution is Borel with respect to the weak topology of probability measures on [0, 1].

3 Proof

Theorem 1.1 can be stated equivalently by defining a set-valued mapping

$$\phi_{\Box} : \widehat{\mathbf{W}} \to 2^{\mathbf{W}} \quad \text{with} \quad \phi_{\Box}(\widehat{w}) := [\widehat{w}]_{\Box} .$$
 (3.1)

We then have to show that there are measurable mappings $\xi_n : (\widehat{\mathbf{W}}, \delta_{\Box}) \to (\mathbf{W}, d_1)$ with

$$\overline{\{\xi_n(\widehat{w}) \mid n \in \mathbb{N}\}} = \phi_{\square}(\widehat{w}) \qquad \text{for all } \widehat{w} \in \widehat{\mathbf{W}} , \qquad (3.2)$$

where \overline{A} denotes the closure of a set A.

ECP 21 (2016), paper 65.

Borel liftings of graph limits

Liftings of set-valued maps are a well-studied topic in analysis, and we use a result of Kuratowski and Ryll-Nardzewski [10] on the existence of liftings, and a generalization by Castaing [5] (see e.g. [8], Theorem 12.16, and [9], Theorem 14.4.1, for textbook statements). For our purposes, these results can be summarized as follows:

Theorem 3.1. Let X be a measurable space, Y a Polish space, and $\phi : \mathbf{X} \to 2^{\mathbf{Y}}$ a setvalued mapping. Require $\phi(x)$ to be non-empty and closed for all $x \in \mathbf{X}$, and that

$$\phi^{-1}(A) := \{ x \in \mathbf{X} \,|\, \phi(x) \cap A \neq \emptyset \}$$
(3.3)

is a measurable set in **X** for each open set A in **Y**. Then there exists a sequence of measurable mappings $\xi_n : \mathbf{X} \to \mathbf{Y}$ such that $\overline{\{\xi_n(x) \mid n \in \mathbb{N}\}} = \phi(x)$ for all $x \in \mathbf{X}$.

For ϕ_{\Box} as defined in (3.1) and any subset $A \subset \mathbf{W}$, the set $\phi_{\Box}^{-1}(A)$ in (3.3) simply consists of all $\widehat{w} \in \widehat{\mathbf{W}}$ for which A contains at least one element of the equivalence class $[\widehat{w}]_{\Box}$. If A is in particular an open d_1 -ball in \mathbf{W} , this set has the following property:

Lemma 3.2. Denote by $U_{\varepsilon}(v)$ the open d_1 -ball of radius ε centered at $v \in \mathbf{W}$. If $\varepsilon < \delta$,

$$\overline{\phi_{\Box}^{-1}(U_{\varepsilon}(v))} \subseteq \phi_{\Box}^{-1}(U_{\delta}(v))$$
(3.4)

for all $v \in \mathbf{W}$.

Proof of Lemma 3.2. Let $(\widehat{w}_1, \widehat{w}_2, \ldots)$ be a sequence in $\phi_{\Box}^{-1}(U_{\varepsilon}(v))$ with $\widehat{w}_i \xrightarrow{\delta_{\Box}} \widehat{w}$. We have to show that $\widehat{w} \in \phi_{\Box}^{-1}(U_{\delta}(v))$. By definition of ϕ_{\Box}^{-1} , the sets $\phi_{\Box}(\widehat{w}_i) \cap U_{\varepsilon}(v)$ are non-empty. Suppose (w_i) is a sequence with $w_i \in \phi_{\Box}(\widehat{w}_i) \cap U_{\varepsilon}(v)$ for each $i \in \mathbb{N}$. By Lemma 2.11 of [14], convergence of (\widehat{w}_i) to \widehat{w} then implies

$$\varepsilon \ge \liminf \delta_1(w_i, v) \ge \delta_1(w, v) = \inf d_1(w^{\psi}, v) \tag{3.5}$$

for any $w \in \phi_{\Box}(\widehat{w})$. Since $\varepsilon < \delta$, there is hence a measure-preserving transformation ψ such that $d_1(w^{\psi}, v) < \delta$, that is, $w^{\psi} \in U_{\delta}(v)$. Because w^{ψ} and w are weakly isomorphic, we also have $w^{\psi} \in \phi_{\Box}(\widehat{w})$, and therefore

$$\widehat{w} \in \phi_{\Box}^{-1}(\phi_{\Box}(\widehat{w}) \cap U_{\delta}(v)) \subset \phi_{\Box}^{-1}(U_{\delta}(v)) .$$

$$(3.6)$$

Proof of Theorem 1.1. The space (W, d_1) is a closed subspace of the separable Banach space $L_1(\Omega^2)$, and hence Polish. The sets $\phi_{\Box}(\widehat{w})$ are non-empty, by definition of the space \widehat{W} as a quotient. We will show that, additionally:

- i. The sets $\phi_{\sqcap}(\widehat{w})$ are closed.
- ii. For all open sets A in W, the set $\phi_{\Box}^{-1}(A)$ is Borel in $\widehat{\mathbf{W}}$.

The mapping ϕ_{\Box} therefore satisfies the hypothesis of Theorem 3.1, and Theorem 1.1 follows.

(i) Denote by $t_F \colon \mathbf{W} \to [0,1]$ the homomorphism density indexed by a finite graph F [12]. Two elements of \mathbf{W} are weakly isomorphic if and only if their homomorphism densities coincide for all finite graphs F [2, 7]. Let $\widehat{w} \in \widehat{\mathbf{W}}$, and let (w_1, w_2, \ldots) be a sequence in the set $\phi(\widehat{w})$ with limit w in (\mathbf{W}, d_1) . The homomorphism densities are δ_{\Box} -continuous and hence d_1 -continuous. Therefore,

$$\lim t_F(w_i) = t_F(w) \qquad \text{for all } F , \qquad (3.7)$$

and since the w_i are weakly isomorphic, $t_F(w_i) = t_F(w)$ for all i and all F. Thus, $w \in \phi(\hat{w})$, and the set is closed.

ECP 21 (2016), paper 65.

Borel liftings of graph limits

(ii) Let $U_{\delta}(v)$ denote the open ball of radius δ centered at $v \in \mathbf{W}$. Since W is Polish, the open balls form a base of the topology, and it is sufficient to consider sets of the form $A = U_{\delta}(v)$. Let $\delta_i \in \mathbb{R}_+$ be an increasing sequence $\delta_i \to \delta$. Then, by Lemma 3.2,

$$\phi_{\square}^{-1}(U_{\delta}(v)) = \bigcup_{i} \phi_{\square}^{-1}(U_{\delta_{i}}(v)) \subseteq \bigcup_{i} \overline{\phi_{\square}^{-1}(U_{\delta_{i}}(v))} \stackrel{(3.4)}{\subseteq} \bigcup_{i} \phi_{\square}^{-1}(U_{\delta}(v)) = \phi_{\square}^{-1}(U_{\delta}(v)).$$

In particular, $\phi_{\Box}^{-1}(U_{\delta}(v))$ is a countable union of the closed sets $\overline{\phi_{\Box}^{-1}(U_{\delta_i}(v))}$, and hence Borel.

References

- P. J. Bickel, A. Chen, and E. Levina. The method of moments and degree distributions for network models. Ann. Statist., 39(5):2280–2301, 2011. MR-2906868
- [2] C. Borgs, J. T. Chayes, and L. Lovász. Moments of Two-Variable Functions and the Uniqueness of Graph Limits. *Geom. Funct. Anal.*, 19(6): 1597–1619, 2010. MR-2594615
- [3] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi. Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing. *Adv. Math.*, 219(6): 1801–1851, 2008. MR-2455626
- [4] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi. Convergent sequences of dense graphs II. Multiway cuts and statistical physics. Ann. of Math. (2), 176(1):151–219, 2012. MR-2925382
- [5] Castaing, C. (1967). Sur les multi-applications mesurables. Revue Francaise d'Information et de Recherche Opèrationnaelle, 1, 91–126. MR-0223527
- [6] S. Chatterjee and S. R. S. Varadhan. The large deviation principle for the Erdős-Rényi random graph. European J. Combin., 32(7):1000–1017, 2011. MR-2825532
- [7] P. Diaconis and S. Janson. Graph limits and exchangeable random graphs. Rendiconti di Matematica, Serie VII, 28:33–61, 2008. MR-2463439
- [8] A. S. Kechris. Classical Descriptive Set Theory. Springer, 1995. MR-1321597
- [9] E. Klein and A. C. Thompson. Theory of correspondences. J. Wiley & Sons, 1984. MR-0752692
- [10] Kuratowski, K. and Ryll-Nardzewski, C. (1965). A general theorem on selectors. Bulletin de l'Académie Polonaise des Sciences; Serie des Sciences Mathèmatiques, Astronomiques et Physiques, 13, 397–403. MR-0188994
- [11] L. Lovász. Large Networks and Graph Limits. American Mathematical Society, 2013. MR-3012035
- [12] L. Lovász and B. Szegedy. Limits of dense graph sequences. J. Combin. Theory Ser. B, 96: 933–957, 2006. MR-2274085
- [13] L. Lovász and B. Szegedy. Szemerédi's lemma for the analyst. Geom. Funct. Anal., 17(1): 252–270, 2007. MR-2306658
- [14] Lovász, L. and Szegedy, B. (2010). Testing properties of graphs and functions. Israel J. Math., 178(1), 113–156. MR-2733066

Acknowledgments. PO was supported by grant FA9550-15-1-0074 of AFOSR.