Asymptotic expansion of the expected spectral measure of Wigner matrices

Nathanaël Enriquez ${ }^{*+}$

Laurent Ménard ${ }^{* \neq}$

Abstract

We compute an asymptotic expansion with precision $1 / n$ of the moments of the expected empirical spectral measure of Wigner matrices of size n with independent centered entries. We interpret this expansion as the moments of the addition of the semi-circle law and $1 / n$ times an explicit signed measured with null total mass. This signed measure depends only on the second and fourth moments of the entries.

Keywords: random matrices; moments method.
AMS MSC 2010: 60B20.
Submitted to ECP on June 9, 2015, final version accepted on February 2, 2016.

1 Introduction and main result

Let $n \geq 1$ be an integer. In this note, we will be interested in the so called Wigner ensemble of $n \times n$ matrices of the form

$$
\begin{equation*}
X^{(n)}=\left(X_{i, j}^{(n)}\right)_{1 \leq i, j \leq n}, \quad X_{i, j}^{(n)}=\frac{1}{\sqrt{n} \sigma^{2}} W_{i, j} \tag{1.1}
\end{equation*}
$$

where $\left(W_{i, j}\right)_{i \geq j \geq 1}$ are independent random variables with mean 0 and moments of all order. We will consider two cases depending on whether the random variables are real or complex:

- Real case: we set $r=1$ and the random variables are such that $W_{j, i}=W_{i, j}$ and

$$
E\left[W_{i, j}\right]=0, \quad E\left[W_{i, j}^{2}\right]=\left\{\begin{array}{ll}
\sigma^{2} & \text { if } i \neq j \tag{1.2}\\
s^{2} & \text { if } i=j
\end{array}, \quad E\left[W_{i, j}^{4}\right]=\alpha \text { if } i \neq j\right.
$$

- Complex case: we set $r=0$ and the random variables are such that $W_{j, i}=\overline{W_{i, j}}$ and

$$
E\left[W_{i, j}\right]=E\left[W_{i, j}^{2}\right]=0, \quad E\left[\left|W_{i, j}\right|^{2}\right]=\left\{\begin{array}{cc}
\sigma^{2} & \text { if } i \neq j \tag{1.3}\\
s^{2} & \text { if } i=j
\end{array}, \quad E\left[\left|W_{i, j}\right|^{4}\right]=\alpha \text { if } i \neq j\right.
$$

[^0]
Asymptotic expansion of Wigner matrices

Among the real and complex cases, one can find the Gaussian Orthogonal Ensemble (GOE, corresponding to $r=1, s^{2}=2, \sigma^{2}=1$ and $\alpha=3$) and the Gaussian Unitary Ensemble (GUE, corresponding to $r=0, s^{2}=1, \sigma^{2}=1$ and $\alpha=2$).

Our main purpose is to study the spectral measure

$$
\begin{equation*}
\mu_{n}=\frac{1}{n} \sum_{\lambda \in \operatorname{Sp}\left(X^{(n)}\right)} \delta_{\lambda} \tag{1.4}
\end{equation*}
$$

of the matrices $X^{(n)}$. More precisely, we compute an asymptotic expansion in $1 / n$ of the expected moments

$$
\begin{equation*}
m_{k}(n)=E\left[\int x^{k} d \mu_{n}(x)\right] \tag{1.5}
\end{equation*}
$$

of the spectral measure μ_{n}. The term of order zero is given by the moments of the semi-circle law discovered by Wigner [10]. In this note, we compute the term of order 1:
Theorem 1.1. For every $k \geq 0$, as $n \rightarrow \infty$, one has

$$
\begin{equation*}
m_{k}(n)=\int x^{k} d \operatorname{sc}(x)+\frac{1}{n} \int x^{k} d \nu(x)+o\left(\frac{1}{n}\right) \tag{1.6}
\end{equation*}
$$

where sc denotes the semi-circle measure having density

$$
\frac{1}{2 \pi} \sqrt{4-x^{2}} \mathbf{1}_{\{x \in[-2,2]\}}
$$

and ν is the signed measure with 0 total mass given by:

$$
\begin{aligned}
& \frac{r}{2}\left(\frac{1}{2}\left(\delta_{\{x=2\}}+\delta_{\{x=-2\}}\right)-\frac{\mathbf{1}_{\{x \in[-2,2]\}} d x}{\pi \sqrt{4-x^{2}}}\right) \\
& +\frac{1}{2}\left(\left(\frac{\alpha}{\sigma^{4}}-(2+r)\right) x^{4}+\left(\frac{s^{2}}{\sigma^{2}}-4 \frac{\alpha}{\sigma^{4}}+7+3 r\right) x^{2}+2\left(\frac{\alpha}{\sigma^{4}}-\frac{s^{2}}{\sigma^{2}}-1\right)\right) \frac{\mathbf{1}_{\{x \in[-2,2]\}} d x}{\pi \sqrt{4-x^{2}}}
\end{aligned}
$$

Remark 1.2. For the GUE, the measure ν is null, and for the GOE it is simply

$$
\frac{1}{2}\left(\frac{1}{2}\left(\delta_{\{x=2\}}+\delta_{\{x=-2\}}\right)-\frac{\mathbf{1}_{\{x \in[-2,2]\}} d x}{\pi \sqrt{4-x^{2}}}\right)
$$

Before going through the proof of the theorem, let us make some comments. Asymptotic expansions of the expected spectral measure are of crucial interest for central limit theorems. Indeed, they are usually stated as follows for Wigner matrices: if f is smooth enough, the random quantity

$$
n\left(\int f(x) d \mu_{n}(x)-\mathbb{E} \int f(x) d \mu_{n}(x)\right)
$$

converges to a Gaussian random variable as $n \rightarrow \infty$ as proved by Lytova and Pastur in [9]. Hence it is important to know the centering term with a precision of order $o(1 / n)$.

For the special case of the GUE, the measure ν is null. This agrees with the full genus expansion of $m_{k}(n)$ computed by Brezin Itzykson Parisi and Zuber [4] and Harer and Zagier [5]. For the GOE, Ledoux [8] computed an analog of this full expansion which is also in agreement with our result. Johansson [6] computed the term of order $1 / n$ for invariant matrix ensembles with a potential while proving a central limit theorem. Later, the full expansion of $m_{k}(n)$ was established (and can be computed recursively) in all invariant ensembles, using Schwinger-Dyson equations: for unitary ensembles in [1], for all beta ensembles in [3]. However, a full expansion of $m_{k}(n)$ is not known for non
invariant ensembles. Notice that the framework of invariant ensembles coincides with our case of matrices with independent entries only for the GUE and GOE.

The first order in the asymptotic expansion of the expected Stieltjes transform of μ_{n} is computed by Khorunzhy Khoruzhenko and Pastur [7] for general matrices with independent entries by radically different methods from our combinatorical computations. We show in the appendix how it is possible to derive our result from this expansion.

As a final remark, let us conclude that it would be interesting know more precisely on which mode the convergence of the measures $n\left(\mu_{n}-\mathrm{sc}\right)$ occurs. Our results only gives the convergence of expected moments, and a first natural extension is the convergence of the variances of these moments to 0 . Note however that none of this implies weak or vague convergence, as the limiting measure is not positive. Another interesting question is thus the actual strength of this convergence: Is it vague, weak, in the sense of distributions? We do not attempt to answer this here, as it would take us too far beyond the intented scope of this note.

Next section is devoted to the proof which enumerates some classes of closed paths which are fancy variants of the contour functions of trees. They are reminiscent of the combinatorics of trees and maps involved in the Harer Zagier expansion of $m_{k}(n)$ for the GUE.

2 Proof of the theorem

We start by writing the moments

$$
\begin{aligned}
m_{k}(n) & =\mathbb{E}\left[\int x^{k} d \mu_{n}(x)\right] \\
& =\frac{1}{n^{1+\frac{k}{2}} \sigma^{k}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} \mathbb{E}\left[W_{i_{1}, i_{2}} W_{i_{2}, i_{3}} \ldots W_{i_{k}, i_{1}}\right]
\end{aligned}
$$

As it is done classically, we regroup words $i_{1} i_{2} \ldots i_{k} i_{1}$ in equivalence classes (we say that two words are in the same class if they coincide up to a permutation of the letters of the alphabet $\{1, \ldots, n\}$). The main reason to do so is that two equivalent words $i_{1} i_{2} \ldots i_{k} i_{1}$ and $i_{1}^{\prime} i_{2}^{\prime} \ldots i_{k}^{\prime} i_{1}^{\prime}$ have the same contribution in $m_{k}(n)$:

$$
\mathbb{E}\left[W_{i_{1}, i_{2}} W_{i_{2}, i_{3}} \ldots W_{i_{k}, i_{1}}\right]=\mathbb{E}\left[W_{i_{1}^{\prime}, i_{2}^{\prime}} W_{i_{2}^{\prime}, i_{3}^{\prime}} \ldots W_{i_{k}^{\prime}, i_{1}^{\prime}}\right]
$$

If c is an equivalence class of words, we denote by $\mathbb{E}\left[W_{c}\right]$ the common contribution of its elements (i.e. the quantity $\mathbb{E}\left[W_{i_{1}, i_{2}} W_{i_{2}, i_{3}} \ldots W_{i_{k}, i_{1}}\right]$ for one of its elements $i_{1} i_{2} \ldots i_{k} i_{1}$). We will often see a word $i_{1} i_{2} \ldots i_{k} i_{1}$ as a closed spanning walk with k steps on a connected graph with vertex set $\left\{i_{1}, \ldots, i_{k}\right\}$ and edge set $\left\{\left\{i_{1}, i_{2}\right\},\left\{i_{2}, i_{3}\right\}, \ldots,\left\{i_{k}, i_{1}\right\}\right\}$ (these graphs have no multiple edges but can have self-loops). Notice that the graphs and walks associated to two equivalent words are isomorphic.

Fix k, v and e some integers, we denote by $\mathscr{C}(k, v, e)$ the set of all equivalence classes of words $i_{1} i_{2} \ldots i_{k} i_{1}$ on the alphabet $\{1, \ldots, n\}$ such that

$$
\sharp\left\{i_{1}, \ldots, i_{k}\right\}=v \quad \text { and } \sharp\left\{\left\{i_{1}, i_{2}\right\},\left\{i_{2}, i_{3}\right\}, \ldots,\left\{i_{k}, i_{1}\right\}\right\}=e .
$$

If $\mathscr{C}(k, v, e) \neq \emptyset$ satisfies $\mathbb{E}\left[W_{c}\right] \neq 0$ for some $c \in \mathscr{C}(k, v, e)$, one always has

$$
v \leq e+1 \quad \text { and } \quad e \leq\lfloor k / 2\rfloor
$$

The first inequality is due to the fact that any connected graph with v vertices has at least $v-1$ edges. The second inequality comes from the fact that the random variables

Asymptotic expansion of Wigner matrices

$W_{i, j}$ are centered and therefore every edge of the graph defined by c has to appear at least twice in a word belonging to c.

Now notice that every $c \in \mathscr{C}(k, v, e)$ is the equivalence class of exactly $n(n-1) \cdots(n-$ $v+1$) different words. This gives the expression

$$
\begin{equation*}
m_{k}(n)=\frac{1}{n^{1+\frac{k}{2}} \sigma^{k}} \sum_{e=1}^{\lfloor k / 2\rfloor} \sum_{v=1}^{e+1} n(n-1) \cdots(n-v+1) \sum_{c \in \mathscr{C}(k, v, e)} \mathbb{E}\left[W_{c}\right] . \tag{2.1}
\end{equation*}
$$

We are now ready to compute the asymptotic expansion of $m_{k}(n)$ announced in the theorem. First, we prove that the moments to the moments of the semi-circle law, next we prove that the magnitude of the next term in the expansion is $1 / n$ and finally we compute the term of order $1 / n$ in the expansion. We identify these terms as the moments of the measure ν given in the theorem by computing their Stieltjes transform.

2.1 Limits of the moments

Terms that don't vanish when $n \rightarrow \infty$ in (2.1) are such that $v=k / 2+1$, and therefore $e=k / 2$ and k must be even. In that case every $c \in \mathscr{C}(k, k / 2+1, k / 2)$ is such that $\mathbb{E}\left[W_{c}\right]=\left(\sigma^{2}\right)^{k / 2}$ and

$$
\sharp \mathscr{C}(k, k / 2+1, k / 2)=\operatorname{Cat}(k / 2)
$$

yielding the moments of the semi-circle law for $\lim _{n \rightarrow \infty} m_{k}(n)$. This is basically Wigner's original proof of convergence to the semi-circle law.

2.2 The leading vanishing term is of order $1 / n$

Fix $a>0$. In order for (2.1) to have a term of order $1 / n^{a}$, there must be $1 \leq v \leq\left\lfloor\frac{k}{2}\right\rfloor+1$ such that one has:

$$
\frac{n^{v}}{n^{\frac{k}{2}+1}}=\frac{1}{n^{a}}
$$

and therefore

$$
a=1+\frac{k}{2}-v \geq \frac{k}{2}-\lfloor k / 2\rfloor \geq \begin{cases}0 & \text { if } k \text { even } \\ 1 / 2 & \text { if } k \text { odd }\end{cases}
$$

Now suppose $k=2 l+1$. There is a term of order $1 / \sqrt{n}$ in (2.1) if and only if $v=l+1$ and $e=l$. This means that the graph spanned by the word $i_{1} i_{2} \ldots i_{k} i_{1}$ is a tree with l edges. In addition, the word is a closed walk of length $2 l+1$ on this tree, which is impossible. Therefore, the leading vanishing term in (2.1) is at least of order $1 / n$.

Notice that this also means that if k is odd, the leading term in (2.1) is of order smaller than or equal to $n^{-3 / 2}$.

2.3 The term of order $1 / n$

We suppose now that $k=2 l$ is even and compute the contributions of order $1 / n$ in

$$
\begin{equation*}
m_{2 l}(n)=\frac{1}{n^{1+l} \sigma^{l}} \sum_{v, e} n(n-1) \cdots(n-v+1) \sum_{c \in \mathscr{C}(2 l, v, e)} \mathbb{E}\left[W_{c}\right] \tag{2.2}
\end{equation*}
$$

where the sum on v, e is taken over v and e satisfying

$$
1 \leq v \leq e+1 \quad \text { and } \quad 1 \leq e \leq k
$$

The values of v and e yielding terms of order $1 / n$ in (2.2) are:

1. $v=e+1=l+1$;
2. $v=e+1=l$;
3. $v=e=l$.

Figure 1: Labeled tree with contour \mathcal{S}.

Case 1: $v=e+1=l+1$.
In this case, the contribution of order $1 / n$ is the product of the coefficient of n^{v-1} in the product $n(n-1) \cdots(n-v+1)$ and $C a t(l)$ as computed above for the order 0 . The total contribution of these terms is therefore

$$
m_{2 l}^{(1)}=-\frac{1}{n} \frac{l(l+1)}{2} \operatorname{Cat}(l) .
$$

Case 2: $v=e+1=l$.
In this case, the graph defined by a class $c \in \mathscr{C}(2 l, v, e)$ is a tree with $l-1$ edges. In opposition to the previous case and the computation of order 0 , where each edge of the tree was visited exactly twice, here, exactly one edge is visited four times and all the other edges are visited twice. Note also that because the graph is a tree, if an edge $i j$ is visited in that order, the next visit of this edge must be done in the reverse order $j i$.

Consequently, we have to enumerate sequences of the form

$$
\mathcal{S}=i_{1} \mathbf{S}_{1} i j \mathbf{S}_{2} j i \mathbf{S}_{3} i j \mathbf{S}_{4} j i \mathbf{S}_{5} i_{1}
$$

such that the sequences $i_{1} \mathbf{S}_{1} i \mathbf{S}_{5} i_{1}, j \mathbf{S}_{2} j, i \mathbf{S}_{3} i$ and $j \mathbf{S}_{4} j$ are the contour functions of disjoint trees with respectively p_{1}, p_{2}, p_{3} and p_{4} edges satisfying $p_{1}+p_{2}+p_{3}+p_{4}=k-2$.

The sequence $i_{1} \mathbf{S}_{1} i \mathbf{S}_{5} i_{1}$ corresponds to a rooted tree with p_{1} edges and a marked corner (adjacent to the vertex i) where the trees corresponding to the three other sequences are inserted (see Figure 1 for an illustration). Note that when $p_{1}=0$, the sequence \mathcal{S} boils down to $i j \mathbf{S}_{2} j i \mathbf{S}_{3} i j \mathbf{S}_{4} j i$.

There are $\left(2 p_{1}+1\right) \operatorname{Cat}\left(p_{1}\right)$ such trees with a marked corner. In that case every $c \in \mathscr{C}(2 l, l, l-1)$ is such that $\mathbb{E}\left[W_{c}\right]=\left(\sigma^{2}\right)^{l-2} \alpha$ and

$$
\sharp \mathscr{C}(2 l, l, l-1)=\sum_{p_{1}+\cdots+p_{4}=l-2}\left(2 p_{1}+1\right) \operatorname{Cat}\left(p_{1}\right) \cdots \operatorname{Cat}\left(p_{4}\right) .
$$

The contribution to the term of order $1 / n$ in the asymptotic expansion of the moment $m_{2 l}$ of this case is then:

$$
m_{2 l}^{(2)}=\frac{1}{n} \frac{\alpha}{\sigma^{4}} \sum_{p_{1}+\cdots+p_{4}=l-2}\left(2 p_{1}+1\right) \operatorname{Cat}\left(p_{1}\right) \cdots \operatorname{Cat}\left(p_{4}\right)
$$

Case 3: $v=e=l$.
In contrast with previous cases, there are two kinds of equivalent classes in $\mathscr{C}(2 l, l, l)$ leading to two different contributions $\mathbb{E}\left[W_{c}\right]$. We detail each kind in the following.

First kind: graphs with a self-loop

Suppose that for some $1 \leq j \leq 2 l$ we have $i_{j}=i_{j+1}$. We have to enumerate sequences of the form

$$
i_{1} \mathbf{S}_{1} i i \mathbf{S}_{2} i i \mathbf{S}_{3} i_{1}
$$

and such that the sequences $i_{1} \mathbf{S}_{1} i \mathbf{S}_{3} i_{1}$ and $i \mathbf{S}_{2} i$ are the contour functions of trees with respectively p_{1} and p_{2} edges satisfying $p_{1}+p_{2}=l-1$.

For this kind of equivalence class, $\mathbb{E}\left[W_{c}\right]=\left(\sigma^{2}\right)^{l-1} s^{2}$ and there are

$$
\sum_{p_{1}+p_{2}=l-1}\left(2 p_{1}+1\right) \operatorname{Cat}\left(p_{1}\right) \operatorname{Cat}\left(p_{2}\right)
$$

such equivalent classes. Hence, the contribution to the term of order $1 / n$ in the asymptotic expansion of the moment $m_{2 l}$ of this case is:

$$
m_{2 l}^{(3)}=\frac{1}{n} \frac{s^{2}}{\sigma^{2}} \sum_{p_{1}+p_{2}=l-1}\left(2 p_{1}+1\right) \operatorname{Cat}\left(p_{1}\right) \operatorname{Cat}\left(p_{2}\right)
$$

Second kind: graphs with no self-loop

In that case, the underlying graph spanned by the walk $i_{1} i_{2} \ldots i_{2 l} i_{1}$ is a tree with $l-1$ edges and an additional edge between two of its vertices forming a cycle. The graph thus consists in a cycle of length $p \geq 3$ and trees attached to vertices of the cycle. We denote by c_{1}, \ldots, c_{p} the vertices of the cycle.

First, notice that since $e=l$, each edge is visited exactly twice by the walk. We distinguish two cases:

1. edges of the cycle are visited one way (twice from i to j);
2. edges of the cycle are visited both ways (once from i to j and once from j to i as in the previous cases).
The first case contributes only for real matrices and corresponds to sequences of the form

$$
i_{1} L_{1} c_{1} c_{2} L_{2} c_{2} c_{3} \ldots c_{p} L_{p} c_{p} c_{1} R_{1} c_{1} c_{2} R_{2} c_{2} c_{3} \ldots c_{p} R_{p} c_{p} c_{1} L_{1}^{\prime} i_{1}
$$

such that the sequences $i_{1} L_{1} c_{1} L_{1}^{\prime} i_{1},\left(c_{j} L_{j} c_{j+1}\right)_{2 \leq j \leq p}$ and $\left(c_{j} R_{j} c_{j+1}\right)_{1 \leq j \leq p}$ (with $c_{p+1}=c_{1}$) code disjoint trees, see Figure 2 (left) for an illustration.

For this type of equivalence class, $\mathbb{E}\left[W_{c}\right]=r\left(\sigma^{2}\right)^{l}$ and there are

$$
\sum_{p=3}^{l} \sum_{\substack{l_{1}+\cdots+l_{p} \\+r_{1}+\cdots r_{p}=l-p}}\left(2 l_{1}+1\right) \prod_{i=1}^{p} \operatorname{Cat}\left(l_{i}\right) \operatorname{Cat}\left(r_{i}\right)
$$

such equivalent classes. Hence, the contribution to the term of order $1 / n$ in the asymptotic expansion of the moment $m_{2 l}$ of this subcase is:

$$
\frac{r}{n} \sum_{p=3}^{l} \sum_{\substack{l_{1}+\cdots+l_{p} \\+r_{1}+\cdots r_{p}=l-p}}\left(2 l_{1}+1\right) \prod_{i=1}^{p} \operatorname{Cat}\left(l_{i}\right) \operatorname{Cat}\left(r_{i}\right)
$$

Finally, let us consider the second case, where edges of the cycle are visited both ways. This corresponds to sequences of the form:

$$
\begin{aligned}
& i_{1} L_{1} c_{1} c_{2} L_{2} c_{2} c_{3} \ldots L_{b-1} c_{b-1} c_{b} L_{b} c_{b} c_{b-1} R_{b-1} c_{b-1} \ldots c_{2} c_{1} R_{1} c_{1} \\
& c_{p} L_{p} c_{p} c_{p-1} \ldots L_{b+1} c_{b+1} c_{b} R_{b} c_{b} c_{b+1} R_{b+1} \ldots c_{p} R_{p} c_{p} c_{1} L_{1}^{\prime} i_{1}
\end{aligned}
$$

Figure 2: A graph with one cycle. Left: edges of the cycle are visited one way only. Right: edges of the cycle are visited both ways.
such that the sequences $i_{1} L_{1} c_{1} L_{1}^{\prime} i_{1},\left(c_{j} L_{j} c_{j+1}\right)_{2 \leq j \leq p}$ and $\left(c_{j} R_{j} c_{j+1}\right)_{1 \leq j \leq p}$ (with $\left.c_{p+1}=c_{1}\right)$ code disjoint trees, see Figure 2 (right).

For this type of equivalence class, $\mathbb{E}\left[W_{c}\right]=\left(\sigma^{2}\right)^{l}$ and there are

$$
\sum_{p=3}^{l} \sum_{\substack{l_{1}+\cdots+l_{p} \\+r_{1}+\cdots r_{p}=l-p}} p\left(2 l_{1}+1\right) \prod_{i=1}^{p} \operatorname{Cat}\left(l_{i}\right) \operatorname{Cat}\left(r_{i}\right)
$$

such equivalent classes. Hence, the contribution to the term of order $1 / n$ in the asymptotic expansion of the moment $m_{2 l}$ of this subcase is:

$$
\frac{1}{n} \sum_{p=3}^{l} \sum_{\substack{l_{1}+\cdots+l_{p} \\+r_{1}+\cdots r_{p}=l-p}} p\left(2 l_{1}+1\right) \prod_{i=1}^{p} \operatorname{Cat}\left(l_{i}\right) \operatorname{Cat}\left(r_{i}\right) .
$$

Therefore, the total contribution to the term of order $1 / n$ in the asymptotic expansion of the moment $m_{2 l}$ of this case is:

$$
m_{2 l}^{(4)}=\frac{1}{n} \sum_{p=3}^{l}(p+r) \sum_{\substack{l_{1}+\cdots+l_{p} \\+r_{1}+\cdots r_{p}=l-p}}\left(2 l_{1}+1\right) \prod_{i=1}^{p} \operatorname{Cat}\left(l_{i}\right) \operatorname{Cat}\left(r_{i}\right) .
$$

2.4 Generating series

We are now interested in the computation of the generating series of the terms of order $1 / n$ where the generating series of the Catalan numbers will play a central role. We denote this series by

$$
T(x)=\sum_{k \geq 0} \operatorname{Cat}(k) x^{k}
$$

It has a radius of convergence $1 / 4$ and satisfies the following equalities:

$$
T(x)=1+x(T(x))^{2}=\frac{1}{1-x T(x)}=\frac{1-\sqrt{1-4 x}}{2 x} .
$$

Asymptotic expansion of Wigner matrices

Our computations will also involve the first two derivatives of T, and some basic computations yield the following useful equations:

$$
\begin{aligned}
T^{\prime} & =\frac{T^{3}}{1-x T^{2}} \\
T^{\prime \prime} & =\frac{2 T^{5}}{\left(1-x T^{2}\right)^{2}}+\frac{2 T^{5}}{\left(1-x T^{2}\right)^{3}}
\end{aligned}
$$

We start with the generating series of $m_{2 k}^{(1)}$:

$$
\begin{aligned}
S_{1}(x) & =\sum_{k \geq 0} m_{2 k}^{(1)} x^{k}=-\frac{1}{2} \sum_{k \geq 0} k(k+1) \operatorname{Cat}(k) x^{k} \\
& =-\frac{1}{2} x^{2} T^{\prime \prime}(x)-x T^{\prime}(x) \\
& =-\frac{x T^{3}}{\left(1-x T^{2}\right)^{3}} .
\end{aligned}
$$

Similarly for $m_{2 k}^{(2)}$:

$$
\begin{aligned}
S_{2}(x) & =\sum_{k \geq 0} m_{2 k}^{(2)} x^{k}=\frac{\alpha}{\sigma^{4}} \sum_{k \geq 2} \sum_{p_{1}+\cdots+p_{4}=k-2}\left(2 p_{1}+1\right) \operatorname{Cat}\left(p_{1}\right) \cdots \operatorname{Cat}\left(p_{4}\right) x^{k} \\
& =\frac{\alpha}{\sigma^{4}} x^{2}\left(\sum_{p_{1} \geq 0}\left(2 p_{1}+1\right) \operatorname{Cat}\left(p_{1}\right) x^{p_{1}}\right)\left(\sum_{p_{2} \geq 0} \operatorname{Cat}\left(p_{2}\right) x^{p_{2}}\right)^{3} \\
& =\frac{\alpha}{\sigma^{4}} x^{2}\left(2 x T^{\prime}+T\right) T^{3} \\
& =\frac{\alpha}{\sigma^{4}} \frac{x^{2} T^{5}}{1-x T^{2}} .
\end{aligned}
$$

And for $m_{2 k}^{(3)}$:

$$
\begin{aligned}
S_{3}(x) & =\sum_{k \geq 0} m_{2 k}^{(3)} x^{k}=\frac{s^{2}}{\sigma^{2}} \sum_{k \geq 1} \sum_{p_{1}+p_{2}=k-1}\left(2 p_{1}+1\right) \operatorname{Cat}\left(p_{1}\right) \operatorname{Cat}\left(p_{2}\right) x^{k} \\
& =\frac{s^{2}}{\sigma^{2}} x\left(\sum_{p_{1} \geq 0}\left(2 p_{1}+1\right) \operatorname{Cat}\left(p_{1}\right) x^{p_{1}}\right)\left(\sum_{p_{2} \geq 0} \operatorname{Cat}\left(p_{2}\right) x^{p_{2}}\right) \\
& =\frac{s^{2}}{\sigma^{2}} x\left(2 x T^{\prime}+T\right) T \\
& =\frac{s^{2}}{\sigma^{2}} \frac{x T^{3}}{1-x T^{2}} .
\end{aligned}
$$

And finally for $m_{2 k}^{(4)}$:

$$
\begin{aligned}
S_{4}(x) & =\sum_{k \geq 0} m_{2 k}^{(4)} x^{k}=\sum_{k \geq 3} \sum_{p=3}^{k}(p+r) \sum_{\substack{l_{1}+\cdots+l_{p} \\
+r_{1}+\cdots r_{p}=k-p}}\left(2 l_{1}+1\right) \prod_{i=1}^{p} \operatorname{Cat}\left(l_{i}\right) \operatorname{Cat}\left(r_{i}\right) x^{k} \\
& =\sum_{p \geq 3}(p+r) x^{p} T^{2 p-1}\left(2 x T^{\prime}+T\right)=\frac{T}{1-x T^{2}} \sum_{p \geq 3}(p+r) x^{p} T^{2 p} \\
& =\frac{x^{3} T^{7}}{\left(1-x T^{2}\right)^{3}}+(2+r) \frac{x^{3} T^{7}}{\left(1-x T^{2}\right)^{2}} .
\end{aligned}
$$

Asymptotic expansion of Wigner matrices

The total generating function of terms of order $1 / n$ is thus

$$
\begin{aligned}
S(x)= & S_{1}(x)+S_{2}(x)+S_{3}(x)+S_{4}(x) \\
= & \frac{x T^{3}}{\left(1-x T^{2}\right)^{3}}\left(x^{2} T^{4}-1\right)+(2+r) \frac{x^{3} T^{7}}{\left(1-x T^{2}\right)^{2}}+\frac{x T^{3}}{1-x T^{2}}\left(\frac{\alpha}{\sigma^{4}} x T^{2}+\frac{s^{2}}{\sigma^{2}}\right) \\
= & -\frac{x T^{4}}{\left(1-x T^{2}\right)^{2}}+(2+r) \frac{x^{3} T^{7}}{\left(1-x T^{2}\right)^{2}}+\frac{x T^{3}}{1-x T^{2}}\left(\frac{\alpha}{\sigma^{4}} x T^{2}+\frac{s^{2}}{\sigma^{2}}\right) \\
= & -\frac{x T^{4}}{\left(1-x T^{2}\right)^{2}}+2 \frac{x^{3} T^{7}}{\left(1-x T^{2}\right)^{2}}+2 \frac{x^{2} T^{5}}{1-x T^{2}}+\frac{x T^{3}}{1-x T^{2}} \\
& +r \frac{x^{3} T^{7}}{\left(1-x T^{2}\right)^{2}}+\frac{x T^{3}}{1-x T^{2}}\left(\left(\frac{\alpha}{\sigma^{4}}-2\right) x T^{2}+\frac{s^{2}}{\sigma^{2}}-1\right) .
\end{aligned}
$$

We gathered terms in the last equality so that the last four terms vanish in the GUE setting for which $r=0, \alpha / \sigma^{4}=2$ and $s^{2} / \sigma^{2}=1$. The first four terms therefore correspond to the generating series of the terms of order $1 / n$ for the GUE which we know to be null. It is easy to verify that indeed

$$
-\frac{x T^{4}}{\left(1-x T^{2}\right)^{2}}+2 \frac{x^{3} T^{7}}{\left(1-x T^{2}\right)^{2}}+2 \frac{x^{2} T^{5}}{1-x T^{2}}+\frac{x T^{3}}{1-x T^{2}}=0
$$

and therefore

$$
\begin{align*}
S(x)= & r \frac{x^{3} T^{7}}{\left(1-x T^{2}\right)^{2}}+\frac{x T^{3}}{1-x T^{2}}\left(\left(\frac{\alpha}{\sigma^{4}}-2\right) x T^{2}+\frac{s^{2}}{\sigma^{2}}-1\right) \\
= & r\left(\frac{x^{3} T^{7}}{\left(1-x T^{2}\right)^{2}}+\frac{x T^{3}}{1-x T^{2}}\left(x T^{2}+1\right)\right)+\frac{x T^{3}}{1-x T^{2}}\left(\left(\frac{\alpha}{\sigma^{4}}-2-r\right) x T^{2}+\frac{s^{2}}{\sigma^{2}}-1-r\right) \\
= & r \frac{x T^{3}}{\left(1-x T^{2}\right)^{2}}\left(x^{2} T^{4}+\left(x T^{2}+1\right)\left(1-x T^{2}\right)\right) \\
& +\frac{x T^{3}}{1-x T^{2}}\left(\left(\frac{\alpha}{\sigma^{4}}-2-r\right) x T^{2}+\frac{s^{2}}{\sigma^{2}}-1-r\right) \tag{2.3}
\end{align*}
$$

Let

$$
\mathcal{H}(z)=\frac{1}{z} T\left(\frac{1}{z^{2}}\right)=\frac{1}{2}\left(z-\sqrt{z^{2}-4}\right)
$$

be the Stieltjes transform of the semi-circle law. It satisfies:

$$
1-\mathcal{H}^{2}=\mathcal{H} \sqrt{z^{2}-4}
$$

A simple computation using (2.3) yields

$$
\begin{aligned}
\tilde{\mathcal{H}}(z) & =\frac{1}{z} S\left(\frac{1}{z^{2}}\right) \\
& =r \frac{\mathcal{H}}{z^{2}-4}+\frac{\mathcal{H}^{2}}{\sqrt{z^{2}-4}}\left(\left(\frac{\alpha}{\sigma^{4}}-2-r\right) \mathcal{H}^{2}+\frac{s^{2}}{\sigma^{2}}-1-r\right) \\
& =\frac{r}{2}\left(\frac{z}{z^{2}-4}-\frac{1}{\sqrt{z^{2}-4}}\right)+\frac{\mathcal{H}^{2}}{\sqrt{z^{2}-4}}\left(\left(\frac{\alpha}{\sigma^{4}}-2-r\right) \mathcal{H}^{2}+\frac{s^{2}}{\sigma^{2}}-1-r\right) \\
& =\frac{r}{2}\left(\frac{1}{2}\left(\frac{1}{z-2}+\frac{1}{z+2}\right)-\frac{1}{\sqrt{z^{2}-4}}\right)+\frac{\mathcal{H}^{2}}{\sqrt{z^{2}-4}}\left(\left(\frac{\alpha}{\sigma^{4}}-2-r\right) \mathcal{H}^{2}+\frac{s^{2}}{\sigma^{2}}-1-r\right)
\end{aligned}
$$

which is the Stieltjes transform of the measure ν in the Theorem.

Appendix

In this appendix, we sketch the arguments needed to derive our result from the expansion of the resolvant stated in Theorem 1 of Khorunzhy, Khoruzhenko and Pastur [7].

First, using inequality 2.1.32 (and some of the following ones) in the book by Anderson Guionnet and Zeitouni [2], we can restrict to an ensemble with spectrum contained in a compact $[-K, K]$ with $K>2$:

$$
\mathbb{E}\left[\frac{1}{n} \sum \lambda_{i}^{k} \mathbf{1}_{\mathrm{Sp}\left(X^{(n)}\right) \not \subset[-K, K]}\right] \leq \operatorname{Cst} \int_{K}^{\infty} \frac{x^{k}}{x^{n^{\varepsilon}}}=\mathcal{O}\left(\frac{1}{K^{n^{\varepsilon}}}\right)
$$

for some $\varepsilon>0$. Hence,

$$
m_{k}(n)=\mathbb{E}\left[\left(\int_{-K}^{K} x^{k} d \mu_{n}(x)\right) \mathbf{1}_{\operatorname{Sp}\left(X^{(n)}\right) \subset[-K, K]}\right]+\mathcal{O}\left(\frac{1}{K^{n^{\varepsilon}}}\right)
$$

In a next step, we express the last equality in terms of contour integrals of the Stieltjes transform $G_{n}(z)$: Let γ_{K} be a contour enclosing $[-K, K]$, then

$$
m_{k}(n)=\mathbb{E}\left[\frac{1}{2 i \pi}\left(\oint_{\gamma_{K}} z^{k} G_{n}(z) d z\right) \mathbf{1}_{\operatorname{Sp}\left(X^{(n)}\right) \subset[-K, K]}\right]+\mathcal{O}\left(\frac{1}{K^{n^{\varepsilon}}}\right)
$$

Equality III. 40 of [7] gives the error bounds for the asymptotic expansions of $\mathbb{E}\left[G_{n}(z)\right]$ in terms of the imaginary part of z. However, if one runs the arguments of the proof of Theorem 1 in [7] with matrices with spectrum in $[-K, K]$, the quantity $\operatorname{Im}(z)$ can everywhere be replaced by $d(z,[-K, K])$, as the only reason it appears is III.32. This gives, for any fixed $z \notin[-K, K]$,

$$
\mathbb{E}\left[G_{n}(z) \mathbf{1}_{\mathrm{Sp}\left(X^{(n)}\right) \subset[-K, K]}\right]=r(z)+\frac{1}{n} r_{1}(z)+\mathcal{O}\left(\frac{1}{n^{3 / 2} d(z,[-K, K])^{5}}\right)
$$

where $\mathrm{r}(\mathrm{z})$ is the Stieltjes transform of the semi-circular law and $r_{1}(z)$ is the Stieltjes transform of the order 1 perturbation ν.

Since both the semi-circle law and ν are supported inside $[-K, K]$, we finally get

$$
m_{k}(n)=\int x^{k} d \operatorname{sc}(x)+\frac{1}{n} \int x^{k} d \nu(x)+\mathcal{O}\left(n^{-3 / 2}\right)
$$

References

[1] S. Albeverio, L. Pastur, and M. Shcherbina. On the $1 / n$ expansion for some unitary invariant ensembles of random matrices. Comm. Math. Phys., 224(1):271-305, 2001. Dedicated to Joel L. Lebowitz. MR-1869000
[2] G. W. Anderson, A. Guionnet, and O. Zeitouni. An introduction to random matrices, volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010. MR-2760897
[3] G. Borot and A. Guionnet. Asymptotic expansion of β matrix models in the one-cut regime. Comm. Math. Phys., 317(2):447-483, 2013. MR-3010191
[4] E. Brézin, C. Itzykson, G. Parisi, and J. B. Zuber. Planar diagrams. Comm. Math. Phys., 59(1):35-51, 1978. MR-0471676
[5] J. Harer and D. Zagier. The Euler characteristic of the moduli space of curves. Invent. Math., 85(3):457-485, 1986. MR-0848681
[6] K. Johansson. On fluctuations of eigenvalues of random Hermitian matrices. Duke Mathematical Journal, 91(1):151-204, Jan. 1998. MR-1487983

Asymptotic expansion of Wigner matrices

[7] A. M. Khorunzhy, B. A. Khoruzhenko, and L. A. Pastur. Asymptotic properties of large random matrices with independent entries. Journal of Mathematical Physics, 37(10):5033, Oct. 1996. MR-1411619
[8] M. Ledoux. A recursion formula for the moments of the Gaussian orthogonal ensemble. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 45(3):754-769, Aug. 2009. MR-2548502
[9] A. Lytova and L. Pastur. Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. The Annals of Probability, 37(5):1778-1840, Sept. 2009. MR-2561434
[10] E. P. Wigner. On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2), 67:325-327, 1958. MR-0095527

Acknowledgments. We warmly thank the anonymous referee for giving us the arguments needed to derive our expansion from the results of [7].

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication (LOCKSS ${ }^{1}$)
- Easy interface (EJMS²)

Economical model of EJP-ECP

- Non profit, sponsored by $\mathrm{IMS}^{3}, \mathrm{BS}^{4}$, ProjectEuclid ${ }^{5}$
- Purely electronic

Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^1]
[^0]: *Laboratoire Modal'X, Université Paris Ouest, France.
 ${ }^{\dagger}$ Partially supported by ANR PRESAGE (ANR-11-BS02-003), E-mail: nenriquez@u-paris10.fr
 ${ }^{\ddagger}$ Partially supported by ANR GRAAL (ANR-14-CE25-0014), E-mail: laurent.menard@normalesup.org

[^1]: ${ }^{1}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
 ${ }^{2}$ EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
 ${ }^{3}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
 ${ }^{4}$ BS: Bernoulli Society http://www.bernoulli-society .org/
 ${ }^{5}$ Project Euclid: https://projecteuclid.org/
 ${ }^{6}$ IMS Open Access Fund: http://www.imstat.org/publications/open.htm

