
Electron. Commun. Probab. 21 (2016), no. 58, 1–11.
DOI: 10.1214/16-ECP4351
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Asymptotic expansion of the expected spectral measure of
Wigner matrices

Nathanaël Enriquez*† Laurent Ménard*‡

Abstract

We compute an asymptotic expansion with precision 1/n of the moments of the
expected empirical spectral measure of Wigner matrices of size n with independent
centered entries. We interpret this expansion as the moments of the addition of the
semi-circle law and 1/n times an explicit signed measured with null total mass. This
signed measure depends only on the second and fourth moments of the entries.
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1 Introduction and main result

Let n ≥ 1 be an integer. In this note, we will be interested in the so called Wigner
ensemble of n× n matrices of the form

X(n) =
(
X

(n)
i,j

)
1≤i,j≤n

, X
(n)
i,j =

1√
nσ2

Wi,j (1.1)

where (Wi,j)i≥j≥1 are independent random variables with mean 0 and moments of all
order. We will consider two cases depending on whether the random variables are real
or complex:

• Real case: we set r = 1 and the random variables are such that Wj,i =Wi,j and

E[Wi,j ] = 0, E[W 2
i,j ] =

{
σ2 if i 6= j

s2 if i = j
, E[W 4

i,j ] = α if i 6= j. (1.2)

• Complex case: we set r = 0 and the random variables are such that Wj,i = Wi,j

and

E[Wi,j ] = E[W 2
i,j ] = 0, E[|Wi,j |2] =

{
σ2 if i 6= j

s2 if i = j
, E[|Wi,j |4] = α if i 6= j. (1.3)
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Asymptotic expansion of Wigner matrices

Among the real and complex cases, one can find the Gaussian Orthogonal Ensemble
(GOE, corresponding to r = 1, s2 = 2, σ2 = 1 and α = 3) and the Gaussian Unitary
Ensemble (GUE, corresponding to r = 0, s2 = 1, σ2 = 1 and α = 2).

Our main purpose is to study the spectral measure

µn =
1

n

∑
λ∈Sp(X(n))

δλ. (1.4)

of the matrices X(n). More precisely, we compute an asymptotic expansion in 1/n of the
expected moments

mk(n) = E

[∫
xkdµn(x)

]
(1.5)

of the spectral measure µn. The term of order zero is given by the moments of the
semi-circle law discovered by Wigner [10]. In this note, we compute the term of order 1:

Theorem 1.1. For every k ≥ 0, as n→∞, one has

mk(n) =

∫
xkdsc(x) +

1

n

∫
xkdν(x) + o

(
1

n

)
(1.6)

where sc denotes the semi-circle measure having density

1

2π

√
4− x21{x∈[−2,2]},

and ν is the signed measure with 0 total mass given by:

r

2

(
1

2

(
δ{x=2} + δ{x=−2}

)
− 1{x∈[−2,2]}dx

π
√
4− x2

)
+

1

2

(( α
σ4
− (2 + r)

)
x4 +

(
s2

σ2
− 4

α

σ4
+ 7 + 3r

)
x2 + 2

(
α

σ4
− s2

σ2
− 1

))
1{x∈[−2,2]}dx

π
√
4− x2

.

Remark 1.2. For the GUE, the measure ν is null, and for the GOE it is simply

1

2

(
1

2

(
δ{x=2} + δ{x=−2}

)
− 1{x∈[−2,2]}dx

π
√
4− x2

)
.

Before going through the proof of the theorem, let us make some comments. Asymp-
totic expansions of the expected spectral measure are of crucial interest for central limit
theorems. Indeed, they are usually stated as follows for Wigner matrices: if f is smooth
enough, the random quantity

n

(∫
f(x)dµn(x)− E

∫
f(x)dµn(x)

)
converges to a Gaussian random variable as n→∞ as proved by Lytova and Pastur in
[9]. Hence it is important to know the centering term with a precision of order o(1/n).

For the special case of the GUE, the measure ν is null. This agrees with the full genus
expansion of mk(n) computed by Brezin Itzykson Parisi and Zuber [4] and Harer and
Zagier [5]. For the GOE, Ledoux [8] computed an analog of this full expansion which
is also in agreement with our result. Johansson [6] computed the term of order 1/n for
invariant matrix ensembles with a potential while proving a central limit theorem. Later,
the full expansion of mk(n) was established (and can be computed recursively) in all
invariant ensembles, using Schwinger-Dyson equations: for unitary ensembles in [1],
for all beta ensembles in [3]. However, a full expansion of mk(n) is not known for non
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Asymptotic expansion of Wigner matrices

invariant ensembles. Notice that the framework of invariant ensembles coincides with
our case of matrices with independent entries only for the GUE and GOE.

The first order in the asymptotic expansion of the expected Stieltjes transform of
µn is computed by Khorunzhy Khoruzhenko and Pastur [7] for general matrices with
independent entries by radically different methods from our combinatorical computations.
We show in the appendix how it is possible to derive our result from this expansion.

As a final remark, let us conclude that it would be interesting know more precisely on
which mode the convergence of the measures n(µn − sc) occurs. Our results only gives
the convergence of expected moments, and a first natural extension is the convergence
of the variances of these moments to 0. Note however that none of this implies weak
or vague convergence, as the limiting measure is not positive. Another interesting
question is thus the actual strength of this convergence: Is it vague, weak, in the sense
of distributions? We do not attempt to answer this here, as it would take us too far
beyond the intented scope of this note.

Next section is devoted to the proof which enumerates some classes of closed paths
which are fancy variants of the contour functions of trees. They are reminiscent of the
combinatorics of trees and maps involved in the Harer Zagier expansion of mk(n) for the
GUE.

2 Proof of the theorem

We start by writing the moments

mk(n) = E

[∫
xkdµn(x)

]
=

1

n1+
k
2 σk

n∑
i1,...,ik=1

E [Wi1,i2Wi2,i3 . . .Wik,i1 ] .

As it is done classically, we regroup words i1i2 . . . iki1 in equivalence classes (we say that
two words are in the same class if they coincide up to a permutation of the letters of the
alphabet {1, . . . , n}). The main reason to do so is that two equivalent words i1i2 . . . iki1
and i′1i

′
2 . . . i

′
ki
′
1 have the same contribution in mk(n):

E [Wi1,i2Wi2,i3 . . .Wik,i1 ] = E
[
Wi′1,i

′
2
Wi′2,i

′
3
. . .Wi′k,i

′
1

]
.

If c is an equivalence class of words, we denote by E [Wc] the common contribution of its
elements (i.e. the quantity E [Wi1,i2Wi2,i3 . . .Wik,i1 ] for one of its elements i1i2 . . . iki1).
We will often see a word i1i2 . . . iki1 as a closed spanning walk with k steps on a connected
graph with vertex set {i1, . . . , ik} and edge set {{i1, i2}, {i2, i3}, . . . , {ik, i1}} (these graphs
have no multiple edges but can have self-loops). Notice that the graphs and walks
associated to two equivalent words are isomorphic.

Fix k, v and e some integers, we denote by C (k, v, e) the set of all equivalence classes
of words i1i2 . . . iki1 on the alphabet {1, . . . , n} such that

]{i1, . . . , ik} = v and ]{{i1, i2}, {i2, i3}, . . . , {ik, i1}} = e.

If C (k, v, e) 6= ∅ satisfies E[Wc] 6= 0 for some c ∈ C (k, v, e), one always has

v ≤ e+ 1 and e ≤ bk/2c.

The first inequality is due to the fact that any connected graph with v vertices has at
least v − 1 edges. The second inequality comes from the fact that the random variables
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Asymptotic expansion of Wigner matrices

Wi,j are centered and therefore every edge of the graph defined by c has to appear at
least twice in a word belonging to c.

Now notice that every c ∈ C (k, v, e) is the equivalence class of exactly n(n−1) · · · (n−
v + 1) different words. This gives the expression

mk(n) =
1

n1+
k
2 σk

bk/2c∑
e=1

e+1∑
v=1

n(n− 1) · · · (n− v + 1)
∑

c∈C (k,v,e)

E [Wc] . (2.1)

We are now ready to compute the asymptotic expansion of mk(n) announced in the
theorem. First, we prove that the moments to the moments of the semi-circle law, next
we prove that the magnitude of the next term in the expansion is 1/n and finally we
compute the term of order 1/n in the expansion. We identify these terms as the moments
of the measure ν given in the theorem by computing their Stieltjes transform.

2.1 Limits of the moments

Terms that don’t vanish when n→∞ in (2.1) are such that v = k/2+ 1, and therefore
e = k/2 and k must be even. In that case every c ∈ C (k, k/2 + 1, k/2) is such that
E[Wc] = (σ2)k/2 and

]C (k, k/2 + 1, k/2) = Cat(k/2)

yielding the moments of the semi-circle law for limn→∞mk(n). This is basically Wigner’s
original proof of convergence to the semi-circle law.

2.2 The leading vanishing term is of order 1/n

Fix a > 0. In order for (2.1) to have a term of order 1/na, there must be 1 ≤ v ≤ bk2 c+1

such that one has:
nv

n
k
2+1

=
1

na

and therefore

a = 1 +
k

2
− v ≥ k

2
− bk/2c ≥

{
0 if k even;

1/2 if k odd.

Now suppose k = 2l+1. There is a term of order 1/
√
n in (2.1) if and only if v = l+1 and

e = l. This means that the graph spanned by the word i1i2 . . . iki1 is a tree with l edges.
In addition, the word is a closed walk of length 2l + 1 on this tree, which is impossible.
Therefore, the leading vanishing term in (2.1) is at least of order 1/n.

Notice that this also means that if k is odd, the leading term in (2.1) is of order
smaller than or equal to n−3/2.

2.3 The term of order 1/n

We suppose now that k = 2l is even and compute the contributions of order 1/n in

m2l(n) =
1

n1+lσl

∑
v,e

n(n− 1) · · · (n− v + 1)
∑

c∈C (2l,v,e)

E[Wc] (2.2)

where the sum on v, e is taken over v and e satisfying

1 ≤ v ≤ e+ 1 and 1 ≤ e ≤ k.

The values of v and e yielding terms of order 1/n in (2.2) are:

1. v = e+ 1 = l + 1;

2. v = e+ 1 = l;

3. v = e = l.
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i

j j

i1

S2 S4

S3

S1

S5

Figure 1: Labeled tree with contour S.

Case 1: v = e+ 1 = l + 1.

In this case, the contribution of order 1/n is the product of the coefficient of nv−1 in the
product n(n− 1) · · · (n− v + 1) and Cat(l) as computed above for the order 0. The total
contribution of these terms is therefore

m
(1)
2l = − 1

n

l(l + 1)

2
Cat(l).

Case 2: v = e+ 1 = l.

In this case, the graph defined by a class c ∈ C (2l, v, e) is a tree with l − 1 edges. In
opposition to the previous case and the computation of order 0, where each edge of the
tree was visited exactly twice, here, exactly one edge is visited four times and all the
other edges are visited twice. Note also that because the graph is a tree, if an edge ij is
visited in that order, the next visit of this edge must be done in the reverse order ji.

Consequently, we have to enumerate sequences of the form

S = i1S1i jS2j iS3i jS4j iS5i1

such that the sequences i1S1iS5i1, jS2j, iS3i and jS4j are the contour functions of
disjoint trees with respectively p1, p2, p3 and p4 edges satisfying p1 + p2 + p3 + p4 = k− 2.

The sequence i1S1iS5i1 corresponds to a rooted tree with p1 edges and a marked
corner (adjacent to the vertex i) where the trees corresponding to the three other
sequences are inserted (see Figure 1 for an illustration). Note that when p1 = 0, the
sequence S boils down to i jS2j iS3i jS4j i.

There are (2p1 + 1)Cat(p1) such trees with a marked corner. In that case every
c ∈ C (2l, l, l − 1) is such that E[Wc] = (σ2)l−2α and

]C (2l, l, l − 1) =
∑

p1+···+p4=l−2
(2p1 + 1)Cat(p1) · · ·Cat(p4).

The contribution to the term of order 1/n in the asymptotic expansion of the moment
m2l of this case is then:

m
(2)
2l =

1

n

α

σ4

∑
p1+···+p4=l−2

(2p1 + 1)Cat(p1) · · ·Cat(p4).

Case 3: v = e = l.

In contrast with previous cases, there are two kinds of equivalent classes in C (2l, l, l)

leading to two different contributions E[Wc]. We detail each kind in the following.
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Asymptotic expansion of Wigner matrices

First kind: graphs with a self-loop

Suppose that for some 1 ≤ j ≤ 2l we have ij = ij+1. We have to enumerate sequences of
the form

i1S1i iS2i iS3i1

and such that the sequences i1S1iS3i1 and iS2i are the contour functions of trees with
respectively p1 and p2 edges satisfying p1 + p2 = l − 1.

For this kind of equivalence class, E[Wc] = (σ2)l−1s2 and there are∑
p1+p2=l−1

(2p1 + 1)Cat(p1)Cat(p2)

such equivalent classes. Hence, the contribution to the term of order 1/n in the asymp-
totic expansion of the moment m2l of this case is:

m
(3)
2l =

1

n

s2

σ2

∑
p1+p2=l−1

(2p1 + 1)Cat(p1)Cat(p2).

Second kind: graphs with no self-loop

In that case, the underlying graph spanned by the walk i1i2 . . . i2li1 is a tree with l − 1

edges and an additional edge between two of its vertices forming a cycle. The graph
thus consists in a cycle of length p ≥ 3 and trees attached to vertices of the cycle. We
denote by c1, . . . , cp the vertices of the cycle.

First, notice that since e = l, each edge is visited exactly twice by the walk. We
distinguish two cases:

1. edges of the cycle are visited one way (twice from i to j);

2. edges of the cycle are visited both ways (once from i to j and once from j to i as in
the previous cases).

The first case contributes only for real matrices and corresponds to sequences of the
form

i1L1c1c2L2c2c3 . . . cpLpcpc1R1c1c2R2c2c3 . . . cpRpcpc1L
′
1i1

such that the sequences i1L1c1L
′
1i1, (cjLjcj+1)2≤j≤p and (cjRjcj+1)1≤j≤p (with cp+1 = c1)

code disjoint trees, see Figure 2 (left) for an illustration.
For this type of equivalence class, E[Wc] = r(σ2)l and there are

l∑
p=3

∑
l1+···+lp

+r1+···rp=l−p

(2l1 + 1)

p∏
i=1

Cat(li)Cat(ri)

such equivalent classes. Hence, the contribution to the term of order 1/n in the asymp-
totic expansion of the moment m2l of this subcase is:

r

n

l∑
p=3

∑
l1+···+lp

+r1+···rp=l−p

(2l1 + 1)

p∏
i=1

Cat(li)Cat(ri).

Finally, let us consider the second case, where edges of the cycle are visited both
ways. This corresponds to sequences of the form:

i1L1c1c2L2c2c3 . . . Lb−1cb−1cbLbcbcb−1Rb−1cb−1 . . . c2c1R1c1

cpLpcpcp−1 . . . Lb+1cb+1cbRbcbcb+1Rb+1 . . . cpRpcpc1L
′
1i1
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c1

c2
cp

L1 L′
1

cb
Lb

L2
Lp

R1

Rb

R2 Rp

c1

c2
cp

L1 L′
1

L2
Lp

R1

R2 Rp

Figure 2: A graph with one cycle. Left: edges of the cycle are visited one way only.
Right: edges of the cycle are visited both ways.

such that the sequences i1L1c1L
′
1i1, (cjLjcj+1)2≤j≤p and (cjRjcj+1)1≤j≤p (with cp+1 = c1)

code disjoint trees, see Figure 2 (right).
For this type of equivalence class, E[Wc] = (σ2)l and there are

l∑
p=3

∑
l1+···+lp

+r1+···rp=l−p

p(2l1 + 1)

p∏
i=1

Cat(li)Cat(ri)

such equivalent classes. Hence, the contribution to the term of order 1/n in the asymp-
totic expansion of the moment m2l of this subcase is:

1

n

l∑
p=3

∑
l1+···+lp

+r1+···rp=l−p

p(2l1 + 1)

p∏
i=1

Cat(li)Cat(ri).

Therefore, the total contribution to the term of order 1/n in the asymptotic expansion
of the moment m2l of this case is:

m
(4)
2l =

1

n

l∑
p=3

(p+ r)
∑

l1+···+lp
+r1+···rp=l−p

(2l1 + 1)

p∏
i=1

Cat(li)Cat(ri).

2.4 Generating series

We are now interested in the computation of the generating series of the terms of
order 1/n where the generating series of the Catalan numbers will play a central role.
We denote this series by

T (x) =
∑
k≥0

Cat(k)xk.

It has a radius of convergence 1/4 and satisfies the following equalities:

T (x) = 1 + x(T (x))2 =
1

1− xT (x) =
1−
√
1− 4x

2x
.
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Asymptotic expansion of Wigner matrices

Our computations will also involve the first two derivatives of T , and some basic compu-
tations yield the following useful equations:

T ′ =
T 3

1− xT 2
;

T ′′ =
2T 5

(1− xT 2)2
+

2T 5

(1− xT 2)3
.

We start with the generating series of m(1)
2k :

S1(x) =
∑
k≥0

m
(1)
2k x

k = −1

2

∑
k≥0

k(k + 1)Cat(k)xk

= −1

2
x2T ′′(x)− xT ′(x)

= − xT 3

(1− xT 2)3
.

Similarly for m(2)
2k :

S2(x) =
∑
k≥0

m
(2)
2k x

k =
α

σ4

∑
k≥2

∑
p1+···+p4=k−2

(2p1 + 1)Cat(p1) · · ·Cat(p4)xk

=
α

σ4
x2

∑
p1≥0

(2p1 + 1)Cat(p1)x
p1

∑
p2≥0

Cat(p2)x
p2

3

=
α

σ4
x2(2xT ′ + T )T 3

=
α

σ4

x2T 5

1− xT 2
.

And for m(3)
2k :

S3(x) =
∑
k≥0

m
(3)
2k x

k =
s2

σ2

∑
k≥1

∑
p1+p2=k−1

(2p1 + 1)Cat(p1)Cat(p2)x
k

=
s2

σ2
x

∑
p1≥0

(2p1 + 1)Cat(p1)x
p1

∑
p2≥0

Cat(p2)x
p2


=
s2

σ2
x(2xT ′ + T )T

=
s2

σ2

xT 3

1− xT 2
.

And finally for m(4)
2k :

S4(x) =
∑
k≥0

m
(4)
2k x

k =
∑
k≥3

k∑
p=3

(p+ r)
∑

l1+···+lp
+r1+···rp=k−p

(2l1 + 1)

p∏
i=1

Cat(li)Cat(ri)x
k

=
∑
p≥3

(p+ r)xpT 2p−1(2xT ′ + T ) =
T

1− xT 2

∑
p≥3

(p+ r)xpT 2p

=
x3T 7

(1− xT 2)3
+ (2 + r)

x3T 7

(1− xT 2)2
.
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The total generating function of terms of order 1/n is thus

S(x) = S1(x) + S2(x) + S3(x) + S4(x)

=
xT 3

(1− xT 2)3
(x2T 4 − 1) + (2 + r)

x3T 7

(1− xT 2)2
+

xT 3

1− xT 2

(
α

σ4
xT 2 +

s2

σ2

)
= − xT 4

(1− xT 2)2
+ (2 + r)

x3T 7

(1− xT 2)2
+

xT 3

1− xT 2

(
α

σ4
xT 2 +

s2

σ2

)
= − xT 4

(1− xT 2)2
+ 2

x3T 7

(1− xT 2)2
+ 2

x2T 5

1− xT 2
+

xT 3

1− xT 2

+ r
x3T 7

(1− xT 2)2
+

xT 3

1− xT 2

(( α
σ4
− 2
)
xT 2 +

s2

σ2
− 1

)
.

We gathered terms in the last equality so that the last four terms vanish in the GUE
setting for which r = 0, α/σ4 = 2 and s2/σ2 = 1. The first four terms therefore
correspond to the generating series of the terms of order 1/n for the GUE which we
know to be null. It is easy to verify that indeed

− xT 4

(1− xT 2)2
+ 2

x3T 7

(1− xT 2)2
+ 2

x2T 5

1− xT 2
+

xT 3

1− xT 2
= 0

and therefore

S(x) = r
x3T 7

(1− xT 2)2
+

xT 3

1− xT 2

(( α
σ4
− 2
)
xT 2 +

s2

σ2
− 1

)
= r

(
x3T 7

(1− xT 2)2
+

xT 3

1− xT 2
(xT 2 + 1)

)
+

xT 3

1− xT 2

(( α
σ4
− 2− r

)
xT 2 +

s2

σ2
− 1− r

)
= r

xT 3

(1− xT 2)2
(
x2T 4 + (xT 2 + 1)(1− xT 2)

)
+

xT 3

1− xT 2

(( α
σ4
− 2− r

)
xT 2 +

s2

σ2
− 1− r

)
. (2.3)

Let

H(z) = 1

z
T

(
1

z2

)
=

1

2

(
z −

√
z2 − 4

)
be the Stieltjes transform of the semi-circle law. It satisfies:

1−H2 = H
√
z2 − 4.

A simple computation using (2.3) yields

H̃(z) = 1

z
S

(
1

z2

)
= r

H
z2 − 4

+
H2

√
z2 − 4

(( α
σ4
− 2− r

)
H2 +

s2

σ2
− 1− r

)
=
r

2

(
z

z2 − 4
− 1√

z2 − 4

)
+

H2

√
z2 − 4

(( α
σ4
− 2− r

)
H2 +

s2

σ2
− 1− r

)
=
r

2

(
1

2

(
1

z − 2
+

1

z + 2

)
− 1√

z2 − 4

)
+

H2

√
z2 − 4

(( α
σ4
− 2− r

)
H2 +

s2

σ2
− 1− r

)
which is the Stieltjes transform of the measure ν in the Theorem.
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Appendix

In this appendix, we sketch the arguments needed to derive our result from the
expansion of the resolvant stated in Theorem 1 of Khorunzhy, Khoruzhenko and Pastur
[7].

First, using inequality 2.1.32 (and some of the following ones) in the book by Anderson
Guionnet and Zeitouni [2], we can restrict to an ensemble with spectrum contained in a
compact [−K,K] with K > 2:

E

[
1

n

∑
λki 1Sp(X(n))6⊂[−K,K]

]
≤ Cst

∫ ∞
K

xk

xnε = O
(

1

Knε

)
for some ε > 0. Hence,

mk(n) = E

[(∫ K

−K
xkdµn(x)

)
1Sp(X(n))⊂[−K,K]

]
+O

(
1

Knε

)
.

In a next step, we express the last equality in terms of contour integrals of the
Stieltjes transform Gn(z): Let γK be a contour enclosing [−K,K], then

mk(n) = E

[
1

2iπ

(∮
γK

zkGn(z)dz

)
1Sp(X(n))⊂[−K,K]

]
+O

(
1

Knε

)
.

Equality III.40 of [7] gives the error bounds for the asymptotic expansions of E[Gn(z)]
in terms of the imaginary part of z. However, if one runs the arguments of the proof
of Theorem 1 in [7] with matrices with spectrum in [−K,K], the quantity Im(z) can
everywhere be replaced by d(z, [−K,K]), as the only reason it appears is III.32. This
gives, for any fixed z /∈ [−K,K],

E
[
Gn(z)1Sp(X(n))⊂[−K,K]

]
= r(z) +

1

n
r1(z) +O

(
1

n3/2d(z, [−K,K])5

)
where r(z) is the Stieltjes transform of the semi-circular law and r1(z) is the Stieltjes
transform of the order 1 perturbation ν.

Since both the semi-circle law and ν are supported inside [−K,K], we finally get

mk(n) =

∫
xkdsc(x) +

1

n

∫
xkdν(x) +O

(
n−3/2

)
.
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