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Abstract

We consider the abelian sandpile model and the uniform spanning unicycle on random
planar maps. We show that the sandpile density converges to 5/2 as the maps get large.
For the spanning unicycle, we show that the length and area of the cycle converges
to the exit location and exit time of a simple random walk in the first quadrant. The
calculations use the “hamburger-cheeseburger” construction of Fortuin–Kasteleyn
random cluster configurations on random planar maps.
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1 Introduction

Random planar maps together with discrete statistical mechanics models (e.g.,
spanning tree, Ising model, FK model) on them is an active research area (see e.g.,
[1, 25, 10, 2, 35, 14, 7, 9, 15, 4, 6, 16, 17]). In the annealed distribution of a discrete
model on a random planar map of a given class, the joint distribution of the pair (M,Σ),
where M is the planar map and Σ is a configuration of the discrete model on M , is just
proportional to the weight of Σ. Equivalently, the random map in the class is sampled
according to the partition function of the discrete model (i.e., the weighted sum of all
the configurations on the given map), and then a configuration is sampled according to
the weighting rule of the discrete model on the map.

We consider two discrete models on random planar maps: the uniform recurrent
sandpile and the uniform spanning unicycle (also known as a cycle-rooted spanning
tree). For the sandpile model we show that the sandpile density converges to 5/2 and
concentrates around this value. For the unicycle model, we compute the weak limit
of the joint distribution of the length of the cycle and the area inside the cycle. The
sandpile model calculations depend on the results for the spanning unicycle.

1.1 Planar maps, spanning trees, and unicycles

Planar graphs are graphs that can be embedded into the sphere. A planar map is a
connected planar graph, with multiple edges and self loops allowed, embedded on the
sphere, considered up to isotopic deformation of the edges, i.e., a planar map contains
only information about the combinatorial structure of the embedding. A rooted planar
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Sandpiles and unicycles on random planar maps

map (M, e) is a planar map M with a distinguished directed edge e. We letMn denote
the set of rooted planar maps with n edges.

Given a finite connected graph G = (V,E), a spanning forest of G is a subgraph whose
vertex set is V and which contains no cycles. A spanning forest that contains k connected
components is called a k-component spanning forest. A 1-component spanning forest is
called a spanning tree. A k-excess subgraph of G is the union of a spanning tree and k
extra edges in E. A 1-excess subgraph is called a spanning unicycle. The planar dual of
a k-excess subgraph is a (k + 1)-component spanning forest. Let T (G) denote

T (G) :=
{

spanning trees of G
}
.

and Uk(G) denote

Uk(G) :=
{
k-excess subgraphs of G

}
.

Given a rooted planar map (M, e), since e is a directed edge, there is a unique face f
to the right of e, which we call the outer face. The outer face allows us to distinguish
between the two sides of a cycle: the outside is the side containing the outer face, and
the inside is the side which does not. The length of a cycle is the number of edges on the
cycle. We define the area of a cycle to be twice the number of edges inside the cycle plus
its length. Planar maps are in natural bijective correspondence with quadrangulations,
and this combinatorial definition of area corresponds to assigning each quadrangle
area 2.

1.2 The abelian sandpile model

The abelian sandpile model is a model for self-organized criticality [5] which is
defined as follows. (See also [18] for further background.) Suppose G = (V,E) is a finite
connected undirected graph with loops and multiple edges allowed. Let c(v, w) be the
number of edges between vertices v and w, where self-loops count twice. For v ∈ V , the
degree of v is denoted by deg(v) =

∑
w∈V c(v, w). A sandpile configuration on the graph

G, with respect to a distinguished vertex s called the sink, assigns a non-negative integer
number of grains of sand to each vertex other than the sink s. If a vertex v 6= s has more
sand than its degree, then v is unstable, and may topple, sending one grain of sand to
each neighbor. The sink s never topples. Since every vertex is connected to the sink,
we may repeatedly topple unstable vertices until every vertex is stable. The resulting
sandpile is called the stabilization of the original sandpile, and is independent of the
order in which vertices are toppled (which is the abelian property).

Some sandpile configurations are recurrent, meaning that from any sandpile con-
figuration, it is possible to add some amount of sand to the vertices and stabilize to
obtain the given configuration. These sandpile configurations are the recurrent states
of the Markov chain which at each step adds a grain of sand to a random vertex and
then stabilizes the configuration. The stationary distribution of this Markov chain is the
uniform distribution on recurrent sandpile configurations.

We let R(G, s) denote the set of the recurrent sandpile configurations on a graph
G with sink s. Majumdar and Dhar gave a bijection between R(G, s) and T (G) [27]. In
particular, |R(G, s)| = |T (G)|.

Given a recurrent sandpile configuration σ ∈ R(G, s), where σ(v) for v 6= s is the
number of grains at v, it is convenient to define σ(s) = deg(s). Then the total amount of
sand (i.e., including the sand at the sink) is

|σ| =
∑
v∈G

σ(v) .
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With this convention, the distribution of |σ| for a random recurrent sandpile σ ∈ R(G, s)
does not depend on the choice of the sink s [28]. This distribution can be understood in
terms of the k-excess subgraphs of G [28], which we will explain in Section 2.

We define the sandpile edge density for G to be

ρe(G) =
1

|E| · |R(G, s)|
∑

σ∈R(G,s)

|σ| (1.1)

and the sandpile vertex density for G to be

ρv(G) =
1

|V | · |R(G, s)|
∑

σ∈R(G,s)

|σ| . (1.2)

These sandpile densities ρe(G) and ρv(G) are independent of the choice of the sink.

1.3 Sandpiles and k-excess subgraphs on random planar maps

We let Pkn denote the annealed distribution on k-excess subgraphs of a rooted planar
map containing n edges, i.e., a random planar map (M, e) with a k-excess subgraph Uk
on it are chosen with probability

Pkn[M, e, Uk] =
1∑

(M ′,e′)∈Mn

|Uk(M ′)|
. (1.3)

We let Ekn and Varkn denote the expectation and variance with respect to Pkn.
For the directed edge e, we let e denote its source vertex, and e denote its destination

vertex. Because of the bijection between recurrent sandpile configurations R(M, e) and
spanning trees T (M) = U0(M), we can interpret P 0

n as being the annealed distribution
of uniform recurrent sandpiles onMn with sink at the source of the root edge.

Theorem 1.1. For the uniform recurrent sandpile on a random planar map with n edges,
the sandpile density satisfies

lim
n→∞

E0
n[ρv] = 2 lim

n→∞
E0
n[ρe] =

5

2
, lim

n→∞
Var0

n[ρv] = lim
n→∞

Var0
n[ρe] = 0. (1.4)

This sandpile density computation can be compared to the uniform recurrent sandpile
density on Z2. In 1994 Grassberger conjectured that the (per vertex) sandpile density
on Z2 is 17/8, based on the numerical integration of singular 4-dimensional integral
expressions given by Priezzhev [33] for the sandpile height distribution at a vertex.
These integral expressions were greatly simplified by Jeng, Piroux, and Ruelle [20], who
verified by numerical integration that the sandpile density for Z2 is 17/8 ± 10−12. An
alternative formulation of the sandpile density, relating it to spanning unicyclic graphs
and loop-erased random walk, was given by Poghosyan and Priezzhev [31] and Levine
and Peres [26], which enabled its rigorous exact evaluation in [32, 23]. The density of
17/8 corresponds to an edge density of 1 + 1

16 , versus 1 + 1
4 for the sandpile on a random

planar map. More recently, a simpler proof of the sandpile density on Z2 was given by
Kassel and Wilson [22], who then computed the sandpile density for numerous other
lattices as well.

Mullin considered the closely related problem of how many edges of a spanning-
tree-decorated planar map with n edges are internally active. Mullin gave an exact
formula involving a double summation for the average number of internally active edges,
showed that the average is between n/8 and n/2, and showed that asymptotically the
average is (c+ on(1))n for some constant c [30]. Our results on the sandpile edge density
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are equivalent to showing c = 1
4 (this is the 1

4 of ρe = 1 + 1
4 ), and that for a random

tree-decorated planar map the number of internally active edges is concentrated about
its expected value.

Our results for unicycles, and more generally k-excess subgraphs, can be expressed
in terms of simple random walk in the first quadrant of Z2. Suppose (Xt, Yt) is a simple
random walk on Z2 started from (1, 1). Denote

tquad = inf{t : XtYt = 0}, squad = Xtquad + Ytquad . (1.5)

In words, tquad is the exit time from the first quadrant, and squad is the distance from the
origin when the walk exits the quadrant. Random walk in the first quadrant has been
studied quite extensively (see e.g., [12, 34, 8, 19]); for an introductory account see [24,
Section 8.1.3]. Here we record that

P[tquad > j] ∼ 4

πj
and P[squad > `] ∼ 4

π`2
(1.6)

asymptotically as j →∞ and `→∞ (see [13, Sec. 3] and [8, Example 3, Sec. 1.3]).

Theorem 1.2. Consider the uniform k-excess subgraph of a random planar map under
the distribution of Pkn. As n → ∞ with k fixed, with probability 1 − on(1) the k-excess
subgraph has k disjoint unnested loops, unnested in the sense that no loop is separated
from the root edge by another loop. Let L1, A1, . . . , Lk, Ak denote the length and area
of the k loops. Then the joint distribution of {(Li, Ai)}1≤i≤k converges weakly to k i.i.d.
samples of the random variables (squad, tquad) described above.

The area distribution can be compared to the area of the cycle of a uniform spanning
unicycle in Z2. The moments of the area were computed for n× n boxes in Z2 [21], and
these moments suggest that P[A > j] � 1/j.

To prove these theorems, we start in Section 2 by explaining how the kth moments of
the amount of sand in a uniform recurrent sandpile are related to k-excess subgraphs.
Then in Section 3 we review the “hamburger-cheeseburger” bijection, which constructs
rooted planar maps with n edges together with a Fortuin–Kasteleyn configuration. (These
FK configurations are more general than k-excess subgraphs.) This bijection is due to
Mullin [29] in the special case where the FK model is a spanning tree, and to Bernardi and
Sheffield [3, 35] in general. We use the formulation in [35] since it is more convenient
for our purposes. In Section 4, we do some asymptotic analysis of the hamburger-
cheeseburger bijection to prove Theorem 1.2. We conclude the proof of Theorem 1.1 in
Section 5.

Acknowledgments: We thank Adrien Kassel for helpful comments. This work was
begun while the first author was an intern in the theory group at Microsoft Research
Redmond, and was completed at the Isaac Newton Institute for Mathematical Sciences
in Cambridge.

2 Sandpiles, spanning trees, and the Tutte polynomial

One approach to computing the sandpile density is via the Tutte polynomial. The
Tutte polynomial of an undirected graph G = (V,E) is a polynomial in two variables
defined by

TG(x, y) =
∑
E′⊂E

(x− 1)κ(E′)−κ(E) (y − 1)κ(E′)+|E′|−|V | (2.1)

where κ(E′) is the number of connected components of the spanning subgraph of G with
edge set E′, i.e., the subgraph (V,E′) of G.

ECP 21 (2016), paper 57.
Page 4/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP4477
http://www.imstat.org/ecp/


Sandpiles and unicycles on random planar maps

The Tutte polynomial of G has another formula:

TG(x, y) =
∑

spanning trees t of G
x# externally active edges of t × y# internally active edges of t . (2.2)

We do not use this formula or the notion of “active edge” except to compare our results
to those of Mullin [30].

For the abelian sandpile model on a finite connected graph G = (V,E) with sink s,
Biggs defined the level of a sandpile configuration to be

level(σ) = |σ| − |E|

and showed that 0 ≤ level(σ) ≤ |E|−|V |+1 and that these bounds are tight. Consequently,
the sandpile edge density satisfies

1 ≤ ρe ≤ 2 .

Biggs conjectured and Merino proved [28] that the generating function of recurrent
sandpiles by level is the Tutte polynomial evaluated at (1, y):∑

σ∈R(G,s)

ylevel(σ) = TG(1, y) . (2.3)

Notice that the generating function is independent of the choice of the sink s.
Since we are assuming that G is connected, from (2.1) we see

TG(1, y) =
∑
E′⊂E

(V,E′) connected

(y − 1)1+|E′|−|V | =
∑
`≥0

|U`(G)| × (y − 1)` .

We equate this to (2.3), write ylevel(σ) = [(y − 1) + 1]level(σ), and extract the coefficient of
(y − 1)` to obtain ∑

sandpiles σ of G

(
level(σ)

`

)
= |U`(G)| , (2.4)

so for a random recurrent sandpile σ ∈ R(G, s),

EG
[(

level(σ)

`

)]
=
|U`(G)|
|T (G)|

. (2.5)

When the graph G is itself random, in particular a random planar map on n edges, we
have

E0
n

[(
level(σ)

`

)]
= E0

n

[
|U`(Mn)|
|T (Mn)|

]
. (2.6)

This equation relates the binomial moments of the sandpile level to quantities that can be
evaluated by the hamburger-cheeseburger bijection which we will describe in Section 3.

For any random variable Z, the moments E[Z`] of Z can be expressed as linear
combinations of the binomial moments E[

(
Z
`

)
], and the cumulants E[(Z − E[Z])`] can be

expressed as linear combinations of products of the form E[Zm]E[Z]`−m. The variance
in particular is Var[Z] = 2E[

(
Z
2

)
] + E[

(
Z
1

)
]− E[

(
Z
1

)
]2. For a random recurrent sandpile σ

on a random map,

E0
n[level(σ(Mn))] = E0

n

[
|U1(Mn)|
|T (Mn)|

]
(2.7)

Var0
n[level(σ(Mn))] = 2E0

n

[
|U2(Mn)|
|T (Mn)|

]
+ E0

n

[
|U1(Mn)|
|T (Mn)|

]
−
(
E0
n

[
|U1(Mn)|
|T (Mn)|

])2

. (2.8)

Next we evaluate the terms on the right-hand side using the hamburger-cheesburger
bijection.
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3 The hamburger-cheeseburger bijection

Sheffield [35, Section 4.1] constructed a bijection called the hamburger-cheeseburger
bijection between “perfect words” over a five-letter alphabet { h , H , c , C , F } and FK
configurations on rooted planar maps. The letters in this alphabet can be interpreted as
events at a burger restaurant. h and c indicate that a new hamburger or cheeseburger
is produced. New burgers are placed on top of a burger stack, which is initially empty.
H and C indicate that a customer has ordered a hamburger or cheeseburger, in which
case the topmost burger of the appropriate type is removed from the stack and given to
the customer. F indicates a fresh order, where the customer orders whichever burger is
on top of the stack, regardless of type. A perfect word is a sequence of these letters for
which every burger order is fulfilled by a burger already on the stack, and for which the
burger stack ends empty. A perfect word of order n is one which contains n burgers and
n orders, i.e., has length 2n.

We recall that when h , H , c , C are identified with the vectors (1, 0), (−1, 0), (0, 1),
(0,−1) respectively, every word W consisting of these four symbols, when read from left
to right, becomes a lattice walk on Z2 started at (0, 0). The two coordinates of the walk
are called the “net hamburger count” and the “net cheeseburger count”. A word W is
perfect if and only if both coordinates of its lattice walk remain nonnegative and the
walk ends at (0, 0).

The hamburger-cheeseburger bijection maps a perfect word of order n to a rooted
planar map (Mn, e) with n edges together with a subset E′ of the edges in the map. (The
edge subset E′ is the FK configuration on the map.) In addition to Sheffield’s description
of the bijection [35, Section 4.1], a nice exposition is given by Chen [6]. We note here a
few basic properties of the bijection:

1. The number of edges in E′ is the number of H ’s plus the number of F ’s matching
c ’s.

2. The number of connected components in the subgraph spanned by E′ is 1 plus the
number of F ’s matching h ’s.

3. Let (E′)∗ denote the dual edges of E \E′ on the dual map M∗n of Mn. The number of
connected components in the dual subgraph spanned by (E′)∗ is 1 plus the number
of F ’s matching c ’s.

4. Suppose that a F matches a c in a perfect word, and that in between there are `
H ’s which are fulfilled by h ’s before the fresh c , and 2m other letters (which may
include other F ’s). Then the F corresponds the “last edge” of a loop of E′ which
has length `+ 1, the portion of the map Mn inside the loop has area (1 + `+ 2m),
and the portion of Mn and E′ inside of the loop are determined by the subword
between the F and its matching c . (If there are other F ’s in this subword, then
these correspond to loops that either share edges with or are surrounded by the
loop in question.)

Proposition 3.1. Let

Θk
n =

{
perfect words of order n with exactly k F ’s, which are all fulfilled by c ’s

}
.

(3.1)
Under the hamburger-cheeseburger bijection, elements in Θk

n correspond to triples
(Mn, e, Uk), where (Mn, e) ∈ Mn and Uk is a k-excess connected subgraph of Mn. Fur-
thermore,

E0
n

[
|Uk(Mn)|
|T (Mn)|

]
=
|Θk
n|

|Θ0
n|

(3.2)
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Proof. Suppose E′ has 1 component and its dual (E′)∗ has k+ 1 components. Then (E′)∗

contains no cycles, so it is a (k+ 1)-component spanning forest, and consequently E′ is a
k-excess subgraph of Mn.

Recall that under the distribution P0
n, each rooted map (Mn, e) occurs with probability

|T (Mn)|/
∑

(M ′n,e
′)∈Mn

|T (M ′n)| = |T (Mn)|/|Θ0
n|. In the expectation in (3.2), the |T (Mn)|

terms cancel, giving the right-hand side of (3.2).

4 Asymptotic enumeration of perfect words

In this section we compute the asymptotic number of perfect words in |Θk
n|, which

together with equations (2.7), (2.8), and (3.2) gives the sandpile edge density. In the
course of characterizing Θk

n, we also characterize the cycles in k-excess graphs.

Theorem 4.1. For any fixed nonnegative integer k,

lim
n→∞

|Θk
n|

nk |Θ0
n|

=
1

k! 4k
. (4.1)

To prove Theorem 4.1, we study the canonical injection from Θk
n to Θ0

n ×
(

[2n]
k

)
: Given

a perfect word W ∈ Θk
n, let {i1, · · · , ik} ∈

(
[2n]
k

)
be the index set of the k F ’s in W . We

replace each of the k F ’s in W with C ’s to obtain a perfect word W ′ ∈ Θ0
n. This map

W 7→ (W ′, {i1, · · · , ik}) is invertible, so it is an injection. A pair (W, {i1, ..ik}) ∈ Θ0
n×
(

[2n]
k

)
is in the image of this injection precisely when Wi1 , . . . ,Wik are all C ’s, and just prior to
each of these orders, the top burger in the stack is a c .

Theorem 4.1 can be interpreted as a statement about the probability that a random
element of Θ0

n ×
(

[2n]
k

)
is in the image of the injection. For a random word W ∈ Θ0

n

and a random position i, P
[
Wi = C

]
= 1

4 , and at a random time, provided the stack
is nonempty, the top burger on the stack is a c with probability 1

2 . For large n, it is
plausible that these events at the same random time are approximately uncorrelated.
As long as k is not too large (k �

√
n), we expect random distinct positions i1, . . . , ik

to be far apart, and that consequently these events at the times i1, . . . , ik are nearly
independent. Provided that this intution is correct, then |Θk

n| ≈ |Θ0
n|
(

2n
k

)
/8k, which when

k �
√
n would give the theorem. In this section, we justify a more precise version of this

intuition to prove the theorem.
To make a more precise statement of this approximate independence, we consider

subwords of W ∈ Θ0
n. Let W [a, b] denote the subword from positions a through b inclusive.

Let wj be the subword
wj := W [max(ij − s+ 1, 1), ij ] (4.2)

for j = 1, . . . , k, i.e., wj is the subword of length s which ends at position ij (unless the
position is too close to the front, in which case the length will be less than s). Since the
perfect word W corresponds to random walks in the quadrant that start and end at the
origin, we expect the subwords w1, . . . , wk to be close in distribution to i.i.d. uniformly
random words of length s, so long as both k and s are small enough for the subwords to
be disjoint and not to contain enough letters to detect that W is not quite an unbiased
random walk.

Theorem 4.2. Assume k3s2 � n, and consider the collection of subwords (w1, . . . , wk)

defined in (4.2) from a random perfect word in Θ0
n and independent random indices

i1 < · · · < ik in
(

[2n]
k

)
. The subwords are nonoverlapping with probability 1 − o(1) and

have total variation distance o(1) from a list of k i.i.d. uniformly random words of length
s which are independent of the indices. (The o(1) terms go to zero as k3s2/n→ 0.)

Proof. Let i1 < · · · < ik be a random k-tuple uniformly drawn from
(

[2n]
k

)
, and let

ŵ1, . . . , ŵk be k i.i.d. uniformly random words in { h , c , H , C }s, which are also in-
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dependent of the i1, . . . , ik. Our goal is to sample a uniformly random perfect word
W ∈ Θ0

n so that the subwords defined by (4.2) using the indices i1, . . . , ik coincide
with ŵ1, . . . , ŵk. Our strategy is to first sample an independent uniformly random
perfect word X ∈ Θ0

n, and then modify it, using i1, . . . , ik and ŵ1, . . . , ŵk and some
auxillary randomness, to obtain W . This modification procedure defines a Markov
chain (which we will run for one step), and we restrict ourselves to modification pro-
cedures for which the Markov chain satisfies detailed balance conditional on i1, . . . , ik,
i.e., P[X → W | i1, . . . , ik] = P[W → X | i1, . . . , ik], so as to ensure that W is uniformly
random, and in fact uniformly random even conditional on i1, . . . , ik. After verifying
detailed balance, we argue that with high probability W has the desired subwords:
w1 = ŵ1, . . . , wk = ŵk.

We use the following modification rule: If i1 < s or ij+1 − ij < s for some j, then no
change is made. Otherwise, all the subwords have length s and are disjoint. We then
start by overwriting the relevant positions in X with the values given by ŵ1, . . . , ŵk to
obtain a new word Y . The walk in Z2 defined by Y is unlikely to return to its start, so
some more changes are required to rebalance it.

To describe this rebalancing of the walk, we follow Sheffield [35] in using a pair of
coordinates that are rotated 45◦ from the edges of Z2. In these coordinates, the letters
correspond to the following steps:

h = (+1,+1) c = (+1,−1) C = (−1,+1) H = (−1,−1) .

The walk associated with a word starts at (0, 0) and is obtained from these steps by
reading the word from left to right. The first coordinate is called the “net burger
count”, and the second coordinate is called the “discrepancy” between hamburgers and
cheeseburgers.

We let u and v respectively denote the net burger count and discrepancy of the word
Y . If u > 0, for instance, then focusing on the first coordinate, we change u/2 of the
+1’s to −1’s, while ignoring the second coordinate. The second coordinate can then be
rebalanced ignoring the first coordinate. When doing this rebalancing, we only change
letters whose position is in the range from 1

2n to 3
2n, and which do not lie within the

subwords. For reasons that will become apparent, out of all possible such ways to
rebalance the walk Y , we pick one uniformly at random, and let Z denote the resulting
walk. (If there are no such ways to rebalance Y , we let W = Z = X.)

We will argue later that Z is likely to remain within the quadrant, but if not, then we
let W = X. Otherwise, Z is a perfect word, and we would like to take W = Z, but to
ensure detailed balance conditional on i1, . . . , ik, we consider Z to be a proposal, and use
the Metropolis rule to reject this proposal with some probability and instead take W = X.
The probabilities that X proposes Z and that Z proposes X (conditional on i1, . . . , ik) are
almost the same, but there is a small difference arising from the (likely) possibility that
there are different numbers of ways to do the rebalancing in the two cases. If there are
r1 ways to do the rebalancing when going from X to Z, and r2 ways when going from Z

to X, then the probability of accepting the proposed move is min(1, r1/r2).
We have specified the process which produces the uniformly random perfect word W ,

and at this point we argue that with high probability all the steps succeed so that in the
end w1 = ŵ1, . . . , wk = ŵk.

Since k2s � n, with probability 1 − o(1) the subwords are all disjoint and have
length s.

After the positions are overwritten to obtain Y , certainly |u|, |v| ≤ 2ks. Since ks� n,
the number m of letters with position between 1

2n and 3
2n outside the subwords is

certainly m = (1 + o(1))n. Let m+,∗ and m−,∗ denote the number of these letters that
are +1 or −1 in the first coordinate respectively, and similarly let m∗,+ and m∗,− denote
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Sandpiles and unicycles on random planar maps

the number of these letters that are +1 or −1 in the second coordinate. Standard large
deviation estimates together with the cycle-lemma construction of random Catalan paths
[11] imply that

1

2
m− α

√
m ≤ m+,∗,m−,∗,m∗,+,m∗,− ≤

1

2
m+ α

√
m

with probability tending to 1 as α→∞. Assuming this event occurs, and |u|/2, |v|/2 <
1
2m− α

√
m, then there is a way to rebalance the walk. Indeed, the number of ways to

rebalance the walk is

r1 =

(
msign(u),∗

|u|/2

)(
m∗,sign(v)

|v|/2

)
.

Provided that the rebalanced walk Z remains in the quadrant, the ratio r1/r2 is given by

r1

r2
=

(msign(u),∗
|u|/2

)
(msign(−u),∗+|u|/2

|u|/2

)
(m∗,sign(v)

|v|/2

)
(m∗,sign(−v)+|v|/2

|v|/2

) .
Since |u|, |v| ≤ 2ks�

√
m, this ratio r1/r2 tends to 1. Thus the proposed move would be

almost always accepted.
We are left to argue that the rebalanced walk Z almost always remains in the quadrant.

Suppose that between times εn and (2− ε)n the walk X remains at distance at least h
from the boundary of the quadrant. If ε� 1/k and s ≤ εn, then with probability 1− o(1)

all of the subword regions are contained within the interval from εn to (2− ε)n. There
are at most 3ks letters that get changed. If h ≥ 6ks, then we would be guaranteed that
the modified walk Z would remain in the quadrant.

For the initial perfect word X, if we eliminate the c and C letters, it will be a
random Catalan path of a random length 2` which is concentrated around n ± O(

√
n).

Consider a uniformly random Catalan path of length 2`. As `→∞, near its endpoints
it behaves as a Bessel(3) process. Since a Bessel(3) process always remains positive,
between positions ε` and (2− ε)` the Catalan path is likely to be at height at least δ

√
ε`,

with probability tending to 1 as δ → 0. Setting ε = o(1/k) and δ = o(1), we find that X
remains distance at least 6ks from the boundary of the quadrant with high probability
provided ks�

√
n/k, i.e., k3s2 � n.

Using this approximate i.i.d. property of the perfect words in Θ0
n, we can characterize

Θk
n to prove both Theorem 4.1 and Theorem 1.2.

Proof of Theorem 4.1 and Theorem 1.2. So long as k3s2 � n, Theorem 4.2 gives a cou-
pling of the subwords w1, . . . , wk of W ∈ Θ0

n at random locations i1 < · · · < ik ∈
(

[2n]
k

)
with i.i.d. uniformly random words ŵ1, . . . , ŵk of length s, so that w.h.p. the subwords
equal the random words. The probability that the last letter of ŵj is C is 1

4 . Let ŵ′j
be the length s − 1 prefix of ŵj , i.e., excluding just its last letter. If any suffix of ŵ′j
contains more c ’s than C ’s or more h ’s than H ’s, then ŵ′j contains a burger that
is unconsumed. The probability of this event is the probability that a random walk of
length s− 1 in Z2 started from (0, 0) remains in the first quadrant, which is 1−O(1/s) as
s→∞. Conditional on ŵ′j containing an unconsumed burger, by symmetry the topmost

such burger left on the stack is a c with probability 1
2 . Assuming the coupling between

W and the i.i.d. words ŵ1, . . . , ŵk holds, with probability 1−O(k/s) the words ŵ1, . . . , ŵk
determine whether or not (W, (i1, . . . , ik)) is in the image of the injection, and conditional
on that, the answer is yes with probability 8−k. For fixed k, we may choose s so that
k/s� 1 and k3s2 � n, in which case (W, (i1, . . . , ik)) is in the image of the injection with
probability 8−k(1 + o(1)), which proves Theorem 4.1.
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Assuming again that k/s� 1, k3s2 � n, and that k is fixed, the above coupling gives
a characterization for a random perfect word W k in Θk

n. Suppose the fresh orders occur
at positions i1 < · · · < ik, and j1, . . . , jk are the positions of the corresponding fresh
cheeseburgers. Then with high probability these indices alternate, j1 < i1 < j2 < i2 <

· · · < jk < ik, so that the loops corresponding to the k F ’s given by the hamburger-
cheesburger bijection (recall Item 4 in Section 3) are disjoint and unnested, and the
subwords W k[j1+1, i1−1], . . . ,W k[jk+1, ik−1] are within o(1) variation distance of k i.i.d.
simple random walks of the following type: when reading backwards, the net hamburger
and cheeseburger counts (i.e., # h −# H and # c −#C ) are always nonpositive, and
the net cheeseburger count ends at 0. These walks are of course equivalent to walks in
the quadrant, and from the discussion in Section 3, the length of the walk corresponds
to the area of the cycle, and the hamburger deficit corresponds to the length of the cycle.
This proves Theorem 1.2.

5 Sandpile density

The sandpile (edge) density is a straightfoward consequence of the above lemmas:

Proof of Theorem 1.1 (edge density). Combining equations (2.7), (2.8), (3.2), and (4.1)
gives E0

n[level(σ(Mn))] = (1 + o(1))n/4 and Var0
n[level(σ(Mn))] = o(n2). The amount of

sand is n more than the level, which gives the sandpile density with respect to the
number of edges.

For the random planar map with n edges, the expected number of vertices is n/2 + 1.
To obtain the sandpile density with respect to the number of vertices, we need to know
that the number of vertices is sharply concentrated about its expected value.

Lemma 5.1. For any fixed k > 0, for a random planar map Mn drawn from (Mn,P
0
n),

lim
n→∞

E0
n

[(
|E(Mn)|
2|V (Mn)|

)k]
= 1.

Proof. Let J denote the number of h ’s contained in a uniformly random perfect word in
Θ0
n. With Catj denoting the jth Catalan number, we have

|Θ0
n| × P[J = j] =

(
2n

2j

)
CatjCatn−j =

(2n)!

j! (j + 1)! (n− j)! (n− j + 1)!

=

(
n+ 1

j

)(
n+ 1

j + 1

)
(2n)!

(n+ 1)!(n+ 1)!
.

As is well known, the binomial coefficients are sharply concentrated, with tails that
are at least as small as Gaussian tails. In particular, there are positive constants C and c
for which

P
[∣∣J − n+1

2

∣∣ > t
]
≤ C e−c t

2/n .

Recalling the properties of the hamburger-cheeseburger bijection from Section 3,
the number of edges in E′ is |J |, and since E′ forms a spanning tree, the map Mn has
|V | = |J | + 1 vertices, while of course the number of edges is |E| = n. Regardless of
how atypical |J | may be, we have 1 ≤ |V | ≤ n+ 1, so n/(n+ 1) ≤ |E|/|V | ≤ n. With, say
t = n2/3, we obtain

E
[
(|E|/|V |)k

]
= E[(|E|/|V |)k1||V |−n/2|>t] + E[(|E|/|V |)k1||V |−n/2|≤t]

= nke−Θ(n1/3) + 2k(1 +O(kn−1/3)).
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Proof of Theorem 1.1 (vertex density). It suffices to prove that limn→∞E
0
n[(ρv−5/2)2] =

0.

ρv −
5

2
= 2ρe

(
|E|
2|V |

− 1

)
+ 2

(
ρe −

5

4

)
(
ρv −

5

2

)2

= 4ρ2
e

(
|E|
2|V |

− 1

)2

+ 8ρe

(
ρe −

5

4

)(
|E|
2|V |

− 1

)
+ 4

(
ρe −

5

4

)2

Recall that 1 ≤ ρe ≤ 2. By Lemma 5.1, limn→∞E
0
n[(|E|/|V |−2)k] = 0 for any fixed integer

k > 0, so the first two terms above converge to 0 in expectation. From the edge density
part of Theorem 1.1, we see that the last term converges to 0 as well.
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