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GLOBAL SOLUTIONS FOR THE ONE DIMENSIONAL WATER-BAG

MODEL∗

MIHAI BOSTAN† AND JOSÉ ANTONIO CARRILLO‡

Abstract. In this paper we study a special type of solution for the one dimensional Vlasov-
Maxwell equations. We assume that initially the particle density is constant on its support in the
phase space and we are looking for solutions where the particle density has the same property at any
time t>0. More precisely, for each x the support of the density is assumed to be an interval [p−,p+]
with end-points varying in space and time. Here we analyze the case of weak and strong solutions
for the effective equations satisfied by the end-points and the electric field (water-bag model) in the
relativistic setting.
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1. Introduction

The Vlasov-Maxwell system governs the evolution of an ensemble of charged par-
ticles subject to electromagnetic fields created by themselves and possibly external
sources in which collisions are typically neglected. Given f , the density number of
charged particles at time t∈R+, position x∈R

3 and momentum p∈R
3, the dynamics

of the particles is described by the Vlasov equation

∂tf +v(p) ·∇xf +q(E(t,x)+v(p)∧B(t,x)) ·∇pf =0, (t,x,p)∈R+×R
3×R

3, (1.1)

where the electromagnetic field (E,B) is defined in a self-consistent way by the
Maxwell equations

∂tE−c2
0curlxB =−

j(t,x)

ε0
, j(t,x)= q

∫

R3

v(p)f(t,x,p)dp, (t,x)∈R+×R
3, (1.2)

∂tB+curlxE =0, (t,x)∈R+×R
3, (1.3)

divxE =
ρ(t,x)

ε0
, ρ(t,x)= q

∫

R3

f(t,x,p)dp, divxB =0, (t,x)∈R+×R
3, (1.4)

where q,m are the charge and the mass of the particles, ε0 is the electric permittivity
of the vacuum, and v(p) is the relativistic velocity associated to the momentum p

v(p)=
p

m

(

1+
|p|2

m2c2
0

)− 1
2

,

where c0 is the speed of light in a vacuum. Suitable initial conditions for the par-
ticle density and the electromagnetic field have to be prescribed satisfying certain
compatibility conditions. The existence of global weak solutions was obtained in [10]
and the existence of strong solutions has been investigated by different approaches in
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130 ONE DIMENSIONAL WATER-BAG MODEL

[12, 5, 16]. Despite these advances in existence theory for the Vlasov-Maxwell system,
many questions concerning qualitative behavior, special solutions, and regularity is-
sues, to name a few, are completely open. Recently global existence and uniqueness
results have been proved for reduced models for laser-plasma interaction [8, 4], leading
to particular global solutions of the Vlasov-Maxwell system.

Neglecting the magnetic field and the relativistic corrections in the Vlasov equa-
tion leads to the Vlasov-Poisson model

∂tf +
p

m
·∇xf +qE(t,x) ·∇pf =0, (t,x,p)∈R+×R

3×R
3,

curlxE =0, divxE =
ρ(t,x)

ε0
, (t,x)∈R+×R

3,

which is much better understood, see [1, 20, 17] for instance. The Vlasov-Poisson
model can be justified as the limit of the relativistic Vlasov-Maxwell model when the
characteristic speed of the particles remains small compared to the light speed [9, 3].

In this work, we elaborate on some particular type of solutions of the one-
dimensional version of the Vlasov-Maxwell(Poisson) system which has received the
attention in the plasma physics community [2]. Let us assume that the initial den-
sity is proportional to the characteristic function of some region of the phase space
between the graphs of two functions p±0 :R→R

f0(x,p)=α1{p
−

0 (x)<p<p
+
0 (x)}, (x,p)∈R

2. (1.5)

We assume that p−0 ≤p+
0 . We are looking for a density function of the form

f(t,x,p)=α1{p−(t,x)<p<p+(t,x)}, (1.6)

where p± :R+×R→R are unknown functions to be determined such that the above
density f satisfies the Vlasov equation. We have the following immediate result:

Proposition 1.1. (Smooth water-bag solutions) Let E : [0,T [×R→R be a given
electric field which belongs to L1

loc([0,T [×R), with 0<T ≤+∞. Assume that p± :

[0,T [×R→R are smooth functions p±∈W
1,∞
loc ([0,T [×R) satisfying

∂tp
±+v(p±)∂xp± = qE(t,x), (t,x)∈]0,T [×R,

and p−≤p+. Then the density f given by (1.6) is a weak solution (that is, a solution
in the sense of distributions) of the Vlasov equation associated with the electric field
E.

Observe that the charge and current densities of the distribution in (1.6) are
given by ρ(t,x)= qα (p+(t,x)−p−(t,x)), j(t,x)= qα(E(p+(t,x))−E(p−(t,x))), where
the kinetic energy function is given by

E(p)=mc2
0

(

(

1+
p2

m2c2
0

)

1
2

−1

)

.

Note that we have E ′(p)=v(p). Thus for the initial condition in (1.5) the one dimen-
sional Vlasov-Maxwell equations reduce to the system
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∂tp
±+∂xE(p±)= qE(t,x), (t,x)∈]0,T [×R, (1.7)

∂tE =−α
q

ε0
(E(p+(t,x))−E(p−(t,x))), (1.8)

∂xE =α
q

ε0
(p+(t,x)−p−(t,x)), (t,x)∈]0,T [×R, (1.9)

with the initial conditions

p±(0,x)=p±0 (x), E(0,x)=E0(x), x∈R, (1.10)

satisfying

E ′
0(x)=α

q

ε0
(p+

0 (x)−p−0 (x)), p−0 (x)≤p+
0 (x), x∈R. (1.11)

Let us remark that (1.9) is a consequence of (1.7), (1.8) and the equality in (1.11).
The problem (1.7), (1.8), (1.9), (1.10) is called the water-bag model and has been
introduced in [2]. The idea is to reduce the Vlasov equation to a set of hydrodynamic
equations while keeping its kinetic character. Aside from the transport of charged
particles, such models arise in various domains. In [7] the inviscid Burgers equation
is reduced to a closed system of moment equations, using a suitable concept of an
entropy multivalued solution. Similar techniques for the reconstruction of a function
from a finite number of moments apply in geometric optics computations [14, 15]. The
main goal of this paper is to establish existence and uniqueness results for the water-
bag model. In section 2 we analyze the weak solutions: we study entropy solutions
of the scalar conservation laws (1.7) coupled to equations (1.8), (1.9) for the electric
field. Smooth solutions are constructed as well for certain class of initial conditions
in section 3.

2. Weak solutions

For simplicity we assume that all the physical constants q,m,ε0,c0,α are equal to
unity. We remind the reader the standard existence and uniqueness results concerning
the entropy solution for scalar conservation laws. We refer to [13, 11] for details on
this topic. Here, we consider conservation laws with right hand side terms of the form

∂tu+∂xF (u)=G(t,x), (t,x)∈R+×R, (2.1)

u(0,x)=u0(x), x∈R. (2.2)

Theorem 2.1. (Entropy solutions for scalar conservation laws) Let us assume that
F :R→R is a smooth function and G belongs to L1

loc(R+;L∞(R)). Then for any
initial condition u0∈L∞(R) there is a unique entropy solution u∈C(R+;L1

loc(R))∩
L∞

loc(R+;L∞(R)) for (2.1), (2.2) satisfying

‖u(t)‖L∞(R)≤‖u0‖L∞(R) +

∫ t

0

‖G(s)‖L∞(R) ds, t∈R+. (2.3)

Moreover if v is the entropy solution associated to the initial condition v0∈L∞(R),
the source term H ∈L1

loc(R+;L∞(R)), and the same smooth function F , then we have
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the inequality
∫

R

|u(t,x)−v(t,x)|1{|x|<R} dx≤

∫

R

|u0(x)−v0(x)|1{|x|<R+tM(t)} dx

+

∫ t

0

∫

R

|G(s,x)−H(s,x)|1{|x|<R+(t−s)M(t)} dxds,

(2.4)

where M(t)=max{Mu(t),Mv(t)},

Mu(t)=sup{|F ′(ξ)| : |ξ|≤‖u0‖L∞(R) +

∫ t

0

‖G(s)‖L∞(R) ds},

and

Mv(t)=sup{|F ′(ξ)| : |ξ|≤‖v0‖L∞(R) +

∫ t

0

‖H(s)‖L∞(R) ds}.

If u0∈BV (R) and G∈L1
loc(R+;BV (R)) then the entropy solution has bounded vari-

ation and its total variation satisfies

TV (u(t))≤TV (u0)+

∫ t

0

TV (G(s))ds, t∈R+. (2.5)

Furthermore, for any t,R>0 we have

∫

R

|u(t,x)−u0(x)|1{|x|<R} dx≤ tMu(t)

{

TV (u0)+

∫ t

0

TV (G(s))ds

}

+2R

∫ t

0

‖G(s)‖L∞(R) ds. (2.6)

It is well known that for conservation laws without a source term (G=0), the solution
operator S(t)u0 =u(t,·) is order preserving on L1(R)∩L∞(R) that is, for any u0,v0∈
L1(R)∩L∞(R) such that u0≤v0 a.e. we have S(t)u0≤S(t)v0 a.e. for any t∈R+.
This is a direct consequence of the Crandall-Tartar lem. [13, page 81]. The same
result holds for conservation laws with source terms G∈L1

loc(R+;L∞(R)) and for
initial conditions u0∈L∞(R).

Lemma 2.1. (Comparison principle with sources) Assume that the source G∈
L1

loc(R+;L∞(R)) and denote by SG(t) :L∞(R)→L∞(R) the solution operator given
by SG(t)u0 =u(t,·) for any u0∈L∞(R), t∈R+, where u is the entropy solution of
(2.1), (2.2). For any t∈R+ the operator SG(t) is order preserving.

Proof. Since the solutions of (2.1) with bounded initial conditions propagate
with finite speed (cf. (2.3), (2.4)), it is sufficient to prove the result for G∈
L1

loc(R+;L1(R))∩L1
loc(R+;L∞(R)) and initial conditions in L∞(R)∩L1(R). There-

fore, consider u0,v0∈L∞(R)∩L1(R) such that u0≤v0. We claim that

∫

R

{SG(t)u0−SG(t)v0}dx=

∫

R

{u0−v0}dx, t∈R+. (2.7)

Indeed, by (2.4) it is sufficient to prove it for compactly supported functions u0,v0

and this comes easily by interpreting SG(t)u0,SG(t)v0 as the limit of smooth solutions
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for approximating viscous problems, as the viscosity vanishes. We denote by (·)+ the
positive part function. Combining (2.4), (2.7) yields

2

∫

R

(SG(t)u0−SG(t)v0)+ dx=

∫

R

(SG(t)u0−SG(t)v0)dx+

∫

R

|SG(t)u0−SG(t)v0|dx

≤

∫

R

(u0−v0)dx+

∫

R

|u0−v0|dx

=2

∫

R

(u0−v0)+ dx=0,

implying that SG(t)u0≤SG(t)v0 a.e. x∈R, ∀ t∈R+.

Consider p±0 ∈L∞(R),E0∈L∞(R) satisfying p−0 ≤p+
0 and E ′

0 =p+
0 −p−0 . We define

the application F on L1
loc(R+;L∞(R)) given by FE = Ẽ where

Ẽ(t,x)=E0(x)−

∫ t

0

{E(p+(s,x))−E(p−(s,x))}ds,

and p± are the entropy solutions of

∂tp
±+∂xE(p±)=E(t,x), (t,x)∈R+×R,

with the initial conditions p±0 . It is easily seen by (2.3) that

‖Ẽ(t)‖L∞(R)≤‖E0‖L∞(R) +

∫ t

0

{‖p+(s)‖L∞(R) +‖p−(s)‖L∞(R)}ds

≤‖E0‖L∞(R) + t(‖p+
0 ‖L∞(R) +‖p−0 ‖L∞(R))+2t

∫ t

0

‖E(s)‖L∞(R) ds. (2.8)

For any t∈R+ we denote by eT : [0,T ]→R the function given by

eT (t)=
(

‖E0‖L∞(R) +T (‖p+
0 ‖L∞(R) +‖p−0 ‖L∞(R))

)

e2Tt.

We immediately check that the set DT ={E∈L1(]0,T [;L∞(R)) : ‖E(t)‖L∞(R)≤
eT (t), ∀ t∈ [0,T ]} is left invariant by the application of FT defined by FT E =
FE|[0,T ]×R for any E∈L1

loc(R+;L∞(R)).
A straightforward computation based on the contraction inequality (2.4) shows

that FT is continuous on C([0,T ];L1
loc(R)). We denote by MT the constant given by

MT =sup{|E ′(ξ)| : |ξ|≤max{‖p−0 ‖L∞(R),‖p
+
0 ‖L∞(R)}+

∫ T

0

eT (t)dt}<1.

Proposition 2.2. (Continuity of the map) Assume that p±0 ,E0∈L∞(R). For any
T ∈R+ we have the inequality

∫

R

|FT E1−FT E2|(t,x)1{|x|<R} dx≤2T

∫ t

0

∫

R

|E1−E2|(s,x)1{|x|<R+(t−s)MT } dxds

for any E1,E2∈DT , ∀ t∈ [0,T ], R>0.

Proof. Consider E1,E2∈DT and let us denote the entropy solutions corresponding
to the fields E1,E2 and the initial conditions p±0 by p±1 , p±2 . By the definitions of FT E1,
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FT E2 and (2.4) we easily deduce that

∫ R

−R

|(FT E1−FT E2)|(t,x)dx≤

∫ t

0

∫ R

−R

{|p+
1 −p+

2 |(s,x)+ |p−1 −p−2 |(s,x)}ds

≤2

∫ t

0

∫ s

0

∫

R

|E1−E2|(τ,x)1{|x|<R+(s−τ)MT } dxdτds

≤2T

∫ t

0

∫

R

|E1−E2|(s,x)1{|x|<R+(t−s)MT } dxds.

Theorem 2.3. (Global entropy solutions for the water-bag model) Assume that
p±0 ,E0∈L∞(R) satisfying E ′

0 =p+
0 −p−0 . Then there is a unique global weak solu-

tion (p+,p−,E)∈L∞(]0,T [×R)2×W 1,∞(]0,T [×R), ∀T ∈R+ for the water-bag model
(1.7), (1.8), (1.9), (1.10). Moreover if p−0 ≤p+

0 then p−≤p+.

Proof. It is sufficient to prove the existence of a unique solution (p+,p−,E)
on [0,T ]×R for any T ∈R+. We define the sequence (En)n≥0 given by
E0(t,x)=E0(x),∀ (t,x)∈ [0,T ]×R and En+1 =FT En, ∀n∈N. Observe that (En)n ⊂
DT . For any R>0 we consider the sequence of functions zn

R(t)=
∫

R
|En+1−

En|(t,x)1{|x|<R+(T−t)MT } dx, t∈ [0,T ], n∈N. By Proposition 2.2 it is easily seen
that

zn
R(t)≤2T

∫ t

0

∫

R

|En−En−1|(s,x)1{|x|<R+(T−s)MT } dxds

=2T

∫ t

0

zn−1
R (s)ds, t∈ [0,T ], n≥1,

implying that

zn
R(t)≤

(2Tt)n

n!
‖z0

R‖L∞(]0,T [), ∀n∈N.

We deduce that (En)n is a Cauchy sequence in C([0,T ];L1
loc(R)) since

∫

R

|En+p−En|(t,x)1{|x|<R} dx≤zn(t)+zn+1(t)+ ...+zn+p−1(t).

It follows that (En)n converges in C([0,T ];L1
loc(R)) towards a fixed point E of FT .

Moreover we easily check that E∈DT . Now take p+,p− to be the unique entropy
solutions of (1.7) corresponding to the limit field E and the initial conditions p+

0 ,p−0 .
By construction (p+,p−,E) is a solution for the water-bag model (1.7), (1.8), (1.10).
Equation (1.9) is a consequence of (1.7), (1.8) and the constraint E ′

0 =p+
0 −p−0 . The

bounds for the derivatives of E come from the bounds of p± (see (2.3)) and (1.8), (1.9).
For the inequality p−≤p+, use Lemma 2.1. The uniqueness of the weak solution is
obtained by a straightforward computation involving the Gronwall lemma.

Remark 2.1. (Vlasov-Maxwell solutions with defect measures) A natural
question related to the previous existence result is the following: given (p+,p−,E), a
weak solution for the water-bag model, is it true that f(t,x,p)=1{p−(t,x)<p<p+(t,x)}

solves the Vlasov equation

∂tf +v(p)∂xf +E(t,x)∂pf =0, (t,x,p)∈R+×R×R ?
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Generally the answer to this question is negative, but we can prove that f solves a
Vlasov equation with a entropy defect measure. Of course, here we appeal to the
kinetic formulation of conservation laws [18, 19]. Indeed, observe that the function f

can be represented as f(t,x,p)=χ(p,p+(t,x))−χ(p,p−(t,x)) where the function χ is
given by

χ(ξ,u)=











+1, 0<ξ <u,

−1, u<ξ <0,

0, otherwise.

Since p± are entropy solutions we know that there the nonnegative kinetic entropy
defect measures m± such that

{

∂tχ(p,p±)+v(p)∂xχ(p,p±)−E(t,x)δ0(p−p±)=∂pm
±, (t,x,p)∈R+×R

2,

χ(p,p±(0,x))=χ(p,p±0 (x)), (x,p)∈R
2,

where the notation δ0 stands for the Dirac mass concentrated at the origin. Therefore
we obtain

(∂t +v(p)∂x){χ(p,p+)−χ(p,p−)}−E(t,x){δ0(p−p+)−δ0(p−p−)}=∂p{m
+−m−},

and by taking into account that ∂p{χ(p,p+)−χ(p,p−)}=−{δ0(p−p+)−δ0(p−p−)}
we can finally write

{

∂tf +v(p)∂xf +E(t,x)∂pf =∂p{m
+−m−}, (t,x,p)∈R+×R

2,

f(0,x,p)=χ(p,p+
0 (x))−χ(p,p−0 (x))=1{p

−

0 (x)<p<p
+
0 (x)}, (x,p)∈R

2.

Remark 2.2. (Total energy balance) Another interesting question concerns the be-
havior of the total energy given by

W (t)=

∫

R2

E(p)f dxdp+
1

2

∫

R

E(t,x)2 dx, t∈R+.

For example if p−(t,x)≤0≤p+(t,x), (t,x)∈ [0,T ]×R, and the initial energy is finite,
we can prove that the total energy is not increasing on [0,T ]. Multiplying the above
Vlasov equation by E(p) one obtains after integration

d

dt

∫

R2

E(p)f dxdp−

∫

R

E{E(p+(t,x))−E(p−(t,x))}dx=

∫

R2

v(p)m−(t,x,p)dxdp

−

∫

R2

v(p)m+(t,x,p)dxdp.

Using (1.8) we also deduce that

1

2

d

dt

∫

R

E(t,x)2 dx+

∫

R

E(t,x){E(p+(t,x))−E(p−(t,x))}dx=0,

implying that

d

dt

{
∫

R2

E(p)f dxdp+
1

2

∫

R

E(t,x)2 dx

}

=

∫

R2

v(p)m−(t,x,p)dxdp

−

∫

R2

v(p)m+(t,x,p)dxdp.
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Therefore we are finished if we check that m± =0 on [0,T ]×R×R
∓. Take p0 <0 and

let us multiply the kinetic formulation of χ(p,p+) by the derivative of the convex
function Sp0

(p)=(p−p0)−. After standard computations involving the usual formula
∫

R
χ(ξ,u)S ′(ξ)dξ =S(u)−S(0), ∀S(·), ∀u∈R, we obtain

d

dt

∫

R

Sp0
(p+(t,x))dx=−

∫

R

m+(t,x,p0)dx.

Therefore one obtains for any t∈ [0,T ],

∫

R

Sp0
(p+(T,x))dx+

∫ T

0

∫

R

m+(t,x,p0)dxdt=

∫

R

Sp0
(p+

0 (x))dx=0,

implying that m+ =0 on [0,T ]×R×R
−. In a similar way we check that m− =0 on

[0,T ]×R×R
+.

Remark 2.3. (Non-relativistic setting) This case is a little bit more difficult since

the non relativistic energy function E(p)= p2

2 is only locally Lipschitz. This time the
analog of estimate (2.8) becomes quadratic:

‖Ẽ(t)‖L∞≤‖E0‖L∞ +
1

2

∫ t

0

max{‖p+(s)‖2
L∞ ,‖p−(s)‖2

L∞}ds

≤‖E0‖L∞ +

∫ t

0

{

max{‖p+
0 ‖

2
L∞ ,‖p−0 ‖

2
L∞}+s

∫ s

0

‖E(τ)‖2
L∞ dτ

}

ds

≤‖E0‖L∞ + tmax{‖p+
0 ‖

2
L∞ ,‖p−0 ‖

2
L∞}+ t2

∫ t

0

‖E(s)‖2
L∞ ds.

In this case for T >0 small enough we denote by eT (·) the unique solution of

d

dt
eT =T 2(eT (t))2, 0<t<T,

with the initial condition eT (0)=‖E0‖L∞ +T max{‖p+
0 ‖

2
L∞ ,‖p−0 ‖

2
L∞}. It is easily seen

that the set DT ={E∈L1(]0,T [;L∞(R)) : ‖E(t)‖L∞ ≤eT (t), ∀ t∈ [0,T ]} is left invari-
ant by the application FT and by following the same arguments as in the relativis-
tic setting we construct a local unique weak solution (p+,p−,E)∈L∞(]0,T [×R)2×
W 1,∞(]0,T [×R) for the non relativistic water-bag model. For results on the multi-
water-bag model in this setting see [6].

3. Strong solutions

This section is devoted to the analysis of smooth solutions for the relativistic
water-bag model. We show that smooth nondecreasing initial conditions generate
global smooth solutions.

Proposition 3.1. (Non-decreasing initial data for scalar conservation laws) Assume
that F ∈W 2,∞(R), G∈L∞

loc(R+;W 1,∞(R)) such that F ′′≥0, ∂xG≥0. Then for any
nondecreasing initial condition u0∈W 1,∞(R), problem (2.1), (2.2) has a unique strong
solution u∈W 1,∞(]0,T [×R), ∀T ∈R+, which is nondecreasing with respect to x.

Proof. We define the sequence of functions (un)n≥0 where u0(t,x)=u0(x) ∀ (t,x)∈
R+×R and for any n∈N, un+1 solves the problem
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∂tu
n+1 +F ′(un(t,x))∂xun+1 =G(t,x), (t,x)∈R+×R, (3.1)

un+1(0,x)=u0(x), x∈R. (3.2)

In fact we will prove that (un)n are smooth and therefore the above problem is under-
stood in the classical sense. Assume that un belongs to L∞

loc(R+;W 1,∞(R)), ∂xun ≥0,
which is true for n=0, and let us show that the same holds for un+1. We denote by
Xn(s;t,x) the characteristics associated to F ′(un)

d

ds
Xn(s;t,x)=F ′(un(s,Xn(s;t,x))), Xn(t;t,x)=x.

Therefore we have

un+1(t,x)=u0(X
n(0;t,x))+

∫ t

0

G(s,Xn(s;t,x))ds, (t,x)∈R+×R. (3.3)

We easily check that un+1∈L∞
loc(R+;W 1,∞(R)) and since x→Xn(s;t,x), u0 and

G(s,·) are nondecreasing and we deduce that ∂xun+1≥0. Moreover we can find
bounds for the time and space derivatives uniformly with respect to n. For any
h>0 we have

∂t{u
n+1(t,x+h)−un+1(t,x)}+{F ′(un(t,x+h))−F ′(un(t,x))}∂xun+1(t,x+h)

+F ′(un(t,x))∂x{u
n+1(t,x+h)−un+1(t,x)}

=G(t,x+h)−G(t,x).

Since ∂xun ≥0, ∂xun+1≥0, and F ′′≥0, we have

{F ′(un(t,x+h))−F ′(un(t,x))}∂xun+1(t,x+h)≥0,

and therefore

∂tDhun+1 +F ′(un(t,x))∂xDhun+1≤DhG(t,x),

where the notation Dhz(x) stands for z(x+h)−z(x) for any function z. Integrating
along the characteristics one obtains

Dhun+1(t,x)≤ (Dhu0)(X
n(0;t,x))+

∫ t

0

DhG(s,Xn(s;t,x))ds,

implying that

Dhun+1(t,x)

h
≤‖u′

0‖L∞(R) +

∫ t

0

‖∂xG(s)‖L∞(R) ds.

Since we know that ∂xun+1≥0 we finally obtain

‖∂xun+1(t)‖L∞(R)≤‖u′
0‖L∞(R) +

∫ t

0

‖∂xG(s)‖L∞(R) ds

and

‖∂tu
n+1(t)‖L∞(R)≤‖G(t)‖L∞(R) +‖F ′‖L∞(R)

(

‖u′
0‖L∞(R) +

∫ t

0

‖∂xG(s)‖L∞(R) ds

)

.
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We claim that the sequence (un)n converges in C([0,T ]×R), ∀T ∈R+. Indeed, since
(∂xun)n is bounded in L∞(]0,T [×R), there is a constant CT depending on ‖u′

0‖L∞(R),
∫ T

0
‖∂xG(s)‖L∞(R)ds, and ‖F ′′‖L∞ such that

|Xn+1(s;t,x)−Xn(s;t,x)|≤CT

∫ t

s

‖un+1(τ)−un(τ)‖L∞ dτ (3.4)

for any (s,t,x)∈ [0,T ]2×R. Combining (3.3), (3.4) yields

‖un+2(t)−un+1(t)‖L∞(R)≤ C̃T

∫ t

0

‖un+1(s)−un(s)‖L∞(R) ds, n∈N,

implying that the sequence (un)n converges in C([0,T ]×R) towards some function u.
Since (∂tu

n)n, (∂xun)n are bounded we deduce that u∈W 1,∞(]0,T [×R). It remains
to prove that u solves (3.1), (3.2). There is a subsequence (nk)k, limk→+∞nk =+∞
such that

lim
k→+∞

(∂tu
nk ,∂xunk)=(∂tu,∂xu), weakly ⋆ inL∞(]0,T [×R)2.

Obviously we also have the convergence limk→+∞unk−1 =u in C([0,T ]×R). Multi-
plying (3.1) by a test function ϕ∈C0

c ([0,T ]×R) one obtains

∫ T

0

∫

R

∂tu
nkϕdxdt+

∫ T

0

∫

R

F ′(unk−1(t,x))∂xunkϕdxdt=

∫ T

0

∫

R

G(t,x)ϕ(t,x)dxdt.

We can easily pass to the limit for k→+∞ and obtain

∫ T

0

∫

R

∂tuϕdxdt+

∫ T

0

∫

R

F ′(u(t,x))∂xuϕdxdt=

∫ T

0

∫

R

G(t,x)ϕ(t,x)dxdt,

showing that u is a strong solution of (3.1). Moreover u verifies the initial condition
(3.2), since

u(0,x)= lim
n→+∞

un(0,x)=u0(x), x∈R.

Since any strong solution coincides with the entropy solution, we have also the unique-
ness of the strong solution.

Theorem 3.2. (Global smooth solutions) Assume that p±0 ,E0∈W 1,∞(R) sat-
isfy d

dx
p±0 ≥0, d

dx
E0 =p+

0 −p−0 ≥0. Then there is a global unique strong solution
(p+,p−,E)∈W 1,∞(]0,T [×R)2×W 2,∞(]0,T [×R), ∀T ∈R+ for the water-bag model.

Proof. By Theorem 2.3 we know that there is a global weak solution(p+,p−,E)∈
L∞(]0,T [×R)2×W 1,∞(]0,T [×R), ∀T ∈R+, for the water-bag model satisfying p−≤
p+. By (1.9) we have ∂xE≥0 and by the definition the energy function E is con-
vex. Thus applying Proposition 3.1 implies that the entropy solutions p± belong to
W 1,∞(]0,T [×R) and are strong solutions for (1.7). The bounds for the second order
derivatives of the electric fields follow immediately from the bounds of the first order
derivatives for p± and (1.8), (1.9). The uniqueness of the strong solution (p+,p−,E) for
the water-bag model is a direct consequence of the uniqueness of the weak solution.
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The previous theorem states the existence of smooth solutions (p±,E) for the
water-bag model, when the initial conditions (p±0 ,E0) are nondecreasing Lipschitz
continuous functions. In this case we know by Proposition 1.1 that the density
f(t,x,p)=1{p−(t,x)<p<p+(t,x)} is a weak solution of the Vlasov equation and there-
fore (f,E) solves the Vlasov-Maxwell problem corresponding to the initial conditions
f0(x,p)=1{p

−

0 (x)<p<p
+
0 (x)} and E0. An interesting question is what happens when

the initial conditions p±0 are not smooth. Is it true that the solutions of the Vlasov-
Maxwell system and water-bag model satisfy f(t,x,p)=1{p−(t,x)<p<p+(t,x)}? The next
theorem gives a partial affirmative answer to this question at least for nondecreasing
initial conditions.

Theorem 3.3. (Weak water-bag solutions) Assume that p±0 ,E0∈L∞(R) are non-
decreasing and satisfy E ′

0 =p+
0 −p−0 ∈L∞(R). We denote by f0 :R2→R the func-

tion f0(x,p)=1{p
−

0 (x)<p<p
+
0 (x)}, (x,p)∈R

2. Then there is a global unique weak

solution (f,E)∈L∞(]0,T [×Rx;L1(Rp))×W 1,∞(]0,T [×R), ∀T ∈R+ for the Vlasov-
Maxwell system corresponding to the initial conditions (f0,E0). Moreover we have
f(t,x,p)=1{p−(t,x)<p<p+(t,x)} where p± are weak solutions for the water-bag model
(1.7), (1.8), (1.9), (1.10).

Proof. We have f0∈L∞(Rx;L1(Rp)) and E0∈W 1,∞(R) and thus there is a
unique weak solution (f,E)∈L∞(]0,T [×Rx;L1(Rp))×W 1,∞(]0,T [×R), ∀T ∈R+ for
the Vlasov-Maxwell system. The difficulty lies in checking that the density f remains
of the form 1{p−(t,x)<p<p+(t,x)}, where p± weakly solve the conservation laws (1.7).
Since this is true for smooth initial conditions, let us proceed by regularization. For
any ε>0 consider p+

0,ε,p
−
0,ε,E0,ε ∈W 1,∞(R), which are nondecreasing and satisfy

E ′
0,ε =p+

0,ε−p−0,ε, ‖p
+
0,ε‖L∞ ≤‖p+

0 ‖L∞ , ‖p−0,ε‖L∞ ≤‖p−0 ‖L∞ , ‖E0,ε‖W 1,∞ ≤‖E0‖W 1,∞ .

lim
εց0

(p+
0,ε,p

−
0,ε)=(p+

0 ,p−0 ) in L1
loc(R)2, lim

εց0
E0,ε =E0 in C0(R).

As before we know that there is a global unique weak solution for the Vlasov-
Maxwell system (fε,Eε)∈L∞(]0,T [×Rx;L1(Rp))×W 1,∞(]0,T [×R), ∀T ∈R+ associ-
ated to the initial conditions f0,ε(x,p)=1{p

−

0,ε(x)<p<p
+
0,ε(x)} and E0,ε. By Theorem

3.2 a global unique strong solution (p+
ε ,p−ε ,Ẽε)∈W 1,∞(]0,T [×R)2×W 2,∞(]0,T [×R),

∀T ∈R+ also exists, for the water-bag model corresponding to the initial conditions
(p+

0,ε,p
−
0,ε,E0,ε). Proposition 1.1 implies that 1{p

−

ε (t,x)<p<p
+
ε (t,x)} weakly solves the

Vlasov equation associated to the electric field Ẽε. Combining this with the unique-
ness of the weak solution for the Vlasov-Maxwell system yields the equalities

fε(t,x,p)=1{p
−

ε (t,x)<p<p
+
ε (t,x)}, Eε(t,x)= Ẽε(t,x).

We claim that (p−ε )ε>0,(p
+
ε )ε>0 are relatively compact in L1

loc(]0,T [×R) and (fε)ε>0

is relatively compact in L1
loc(]0,T [×Rx;L1(Rp)). As p−ε ,p+

ε are smooth, the consid-
erations for entropy solutions apply and thus we deduce the uniform estimates with
respect to ε>0

‖Eε(t)‖L∞ ≤
(

‖E0,ε‖L∞ +T (‖p+
0,ε‖L∞ +‖p−0,ε‖L∞)

)

e2T t

≤
(

‖E0‖L∞ +T (‖p+
0 ‖L∞ +‖p−0 ‖L∞)

)

e2T t =eT (t)

‖p±ε (t)‖L∞ ≤‖p±0,ε‖L∞ +

∫ t

0

‖Eε(s)‖L∞ ds≤‖p±0 ‖L∞ +

∫ t

0

eT (s)ds
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max{‖∂tEε(t)‖L∞ ,‖∂xEε(t)‖L∞}≤‖p−ε (t)‖L∞ +‖p+
ε (t)‖L∞

≤‖p−0 ‖L∞ +‖p+
0 ‖L∞ +2

∫ T

0

eT (s)ds.

By the contraction property (2.4) we have for any h,R>0
∫

R

|p±ε (t,x+h)−p±ε (t,x)|1{|x|<R} dx≤

∫

R

|p±0,ε(x+h)−p±0,ε(x)|1{|x|<R+t} dx

+

∫ t

0

∫

R

|Eε(s,x+h)−Eε(s,x)|1{|x|<R+t−s} dxds. (3.5)

Since p±0,ε are nondecreasing and bounded, they have bounded variation

TV (p±0,ε)≤2‖p±0,ε‖L∞ ≤2‖p±0 ‖L∞ .

Similarly, since Eε(t,·) is nondecreasing and bounded we deduce that

TV (Eε(t,·))≤2‖Eε(t)‖L∞ ≤2eT (t), t∈ [0,T ], ε>0

and therefore by (2.5), (2.6) one obtains

sup
ε>0

TV (p±ε (t))≤ sup
ε>0

{TV (p±0,ε)+

∫ t

0

TV (Eε(s))ds}<+∞

and

∫

R

|p±ε (h,x)−p±0,ε(x)|1{|x|<R} dx≤h

{

TV (p±0,ε)+

∫ h

0

TV (Eε(s))ds

}

+2R

∫ h

0

‖Eε(s)‖L∞ ds. (3.6)

Applying the contraction property (2.4) once more, we obtain
∫

R

|p±ε (t+h,x)−p±ε (t,x)|1{|x|<R} dx≤

∫

R

|p±ε (h,x)−p±0,ε(x)|1{|x|<R+t} dx

+

∫ t

0

∫

R

|Eε(s+h,x)−Eε(s,x)|1{|x|<R+t−s} dxds.

(3.7)

Combining (3.5), (3.6), (3.7) and taking into account that supε>0‖Eε‖W 1,∞(]0,T [×R) <

+∞, it is easily seen that (p±ε )ε>0 are relatively compact in L1
loc(]0,T [×R). There-

fore, up to a sequence extraction, we have limεց0p±ε =p± in L1
loc(]0,T [×R) for

some bounded nondecreasing functions p±. We denote the density f(t,x,p)=
1{p−(t,x)<p<p+(t,x)} by f . Obviously we have

∫

R

|fε−f |dp=

∫

R

|1{p
−

ε <p}1{p<p
+
ε }−1{p−<p}1{p<p+}|dp

≤

∫

R

{|1{p
−

ε <p}−1{p−<p}|+ |1{p<p
+
ε }−1{p<p+}|}dp

= |p−ε (t,x)−p−(t,x)|+ |p+
ε (t,x)−p+(t,x)|,
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implying that limεց0fε =f in L1
loc(]0,T [×Rx;L1(Rp)) (up to the same sequence ex-

traction). Moreover, eventually performing a new extraction, we deduce by the Arzela-
Ascoli theorem that (Eε)ε>0 converges uniformly on compact sets towards some elec-
tric field E∈W 1,∞(]0,T [×R). Combining all these convergences it is easily seen that
the limit functions (p±,f =1{p−<p<p+}),E) weakly solve both the water-bag model
and the Vlasov-Maxwell system. Therefore we have proved that the unique weak so-
lution of the Vlasov-Maxwell system is (f =1{p−<p<p+},E), where (p±,E) is a weak
solution for the water-bag model.
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