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THE INITIAL LAYER PROBLEM AND INFINITE PRANDTL
NUMBER LIMIT OF RAYLEIGH-BENARD CONVECTION*

JIANGUO SHIT, KE WANG!, AND SHU WANG#

Abstract. In this paper the Initial layer problem and infinite Prandtl number limit of Rayleigh-
Bénard convection are studied. For the case of ill-prepared initial data infinite Prandtl number limit
of the Boussinesq approximation for Rayleigh-Bénard convection is proven by using the asymptotic
expansion methods of singular perturbation theory and the classical energy methods. An exact
approximating solution with the zero order term and the 1st order term expansion is given and the

convergence rates O(e%) and O(e2) are respectively obtained. This improves the result of X. M.
Wang [Commun. Pure Appli. Math., LVII(2004), 1265-1282)].
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1. Introduction

Rayleigh-Bénard convection of fluid involving heat transfer, and confined by two
parallel planes a distance h apart and heated at the bottom plane at the temperature
T, and cooled at the top plane at the temperature T; (1> >T7), can be approximated
by the following so-called Boussinesq system in a rotating frame

Ou+ (u-V)u+Vp+2Qes x u=vAu+ gaesT,
V-u=0

T+ (u- V)T =rAT,

ulz=0,n =0,

T|omo=T2,T|.=n =11,

where u is the velocity field of the fluid, p is the pressure, €2 is the rotation rate, es is the
unit upward vector, v is the kinematic viscosity, g is the gravity acceleration constant,
« is the thermal expansion coefficient, 7' is the temperature field of the fluid,  is the
thermal diffusion coefficient. Here we also impose the periodic boundary conditions
in the horizontal directions for simplicity.

This set of equations is much more complex because this dynamic system consists
of heat advection-diffusion of the temperature coupled with the incompressible Navier-
Stokes equations via a buoyancy force proportional to the temperature see [1, 3, 17,
19, 20]. Thanks to the physics, one can use the much simplified system to study the
problem and hence the simplification of Boussinesq system is highly desirable. To
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this end, we will use the nondimensional version. Introducing the suitable scalings,
the nondimensinal form of Boussinesq system can be taken as

1
€[0su 4 (u®- V)u|+ Vp© 4+ ——ez x u* = Au® + Raes T,

o (1.1)
V-u =0, (1.2)
T+ (u- V)T =AT*, (1.3)
u|2=01=0, (1.4)
T)z= 1,721 =0, (15)
u (t=0)=ugy(z,y,2), T (t=0)=T5(z,y,2) (1.6)

for (z,y,2) €G=T2x(0,1),t>0, where ’T:(%)2 is the torus in R?, e= 2, Pr=1Y

Pr> K
is the Prandtl number, Ek = 555~ is the Ekman number and Ra= W is the
Rayleigh number.

In this paper we are interested in the infinite Prandtl number limit Pr — oo, i.e.,
the limit € — 0, of Rayleigh-Bénard convection (1.1)-(1.6). Formally, setting e=0 in

the system (1.1)-(1.5), we arrive at the following infinite Prandtl number system

1
V' + —e3 x u’ = Au’ + RaesT?,

1.

Ek (1.7)
V-u’=0, (1.8)
T+ (u°- V)T = AT, (1.9)
’LLO|Z:071 ZO, (110)
T°.20=1,T%.21=0 (1.11)

for (z,y,z) € G,t >0, which can be completed by the initial data
T(t=0) =T (z,y,2),(x,y,2) € G, (1.12)

where T (x,y,2) is the limit of T¢(z,y,2z) as e—0. But, due to the singularity of
perturbation, generally speaking, the limit of u§(z,y,z) as e —0 can not be satisfied
by the velocity u°(t=0) in the limit system. In fact, restricting the equations (1.7),
(1.8) and (1.10) to t=0, one gets

1

VPP (t=0)+ ks u’(t=0) = Au’(t=0)+ RaezT°(t=0), (1.13)
V-u?(t=0)=0, (1.14)
u®],—0.1 =0. (1.15)

This is a stationary Stokes equation with rotation, which implies that the value u°(t=
0) is determined by the initial data T3 of the temperature T°(x,y,2,t) by solving the
system (1.13)-(1.15). But, the limit lim._ou§(#u’(t=0)) can be given arbitrarily
and independently of T¢. Thus, an initial layer occurs. Hence the infinite Prandtl
number limit is a singular limit problem involving an initial layer.

Recently X. M. Wang [19] considered this limit and obtained an effective approx-
imating system; then, by using this effective system and hence avoiding the exact
structure of the approximating solution, proved the convergence of Rayleigh-Bénard
convection to the infinite Prandtl number limit system in the sense of L?-norm with
a convergence rate O(e). The main purpose of this paper is to improve the result
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of X. M. Wang [19] by the asymptotic expansion methods of the singular perturba-
tion theory [9, 10, 18, 21]. More precisely, we first obtain the exact structure of the
approximating solution with an expansion of the zero order term and the 1st order
term, which is very interesting in the application of physics. Then the convergence of
this approximating solution is proven and the convergence rate 0(6%) and the opti-
mal convergence rate O(€?) are respectively obtained. Our analysis also shows that
there appears the mixed two-fast-scaled time and space boundary layer, caused by
the initial layer, for the asymptotic expansion with the 2nd order corrector.

It should be pointed out that there have been many results on the global existences
and regularities of the suitable weak solution, see [19, 20], on the global existence
of smooth solutions, the upper bound problem for infinite Prandtl number system
and the related models, see [1, 2, 4, 6, 11, 8, 14, 15, 17], and on the interesting
Nusselt number problem in turbulent flow, see [5] and the references therein. A
related rotating Boussinesq model problem in geophysical fluid dynamics has widely
been discussed, see [12].

This paper is organized as follows: In section 2, the precise convergence results are
stated. In section 3, the approximating solutions are constructed and the properties
of approximating solutions are given. Sections 4 is devoted to the proofs of main
convergence results.

2. Main results
In this section we state the main results of this paper.
Assume that the initial data have an expansion up to the 1st order as follows

(u, T) (1= 0) = (u§ e+ uf ., TS +¢Tg + T ) (.9,2). (2.1)

where ud,ud, T and T} are all C*°(G) functions, and u§z(z,y,2),T5g(2,y,2) € C(G)
satisfy [|(u§g, Tor)(2,y,2)|L2(q) < Cé? for some positive constant C' independent of .
Take the ansatz as the approximating solution

€

(udpp7pzpp7T;pp)(xa 'Y Z;t)

1
= €(u'(z,y,2,t) + 0 (2,,2,7),
=0

P (z,y,2,t) + P (2,9,2,7), T (z,y,2,t) + T*(2,y,2,7)), (2.2)

where 7= 1 is the fast time variable, the outer functions (u',p",T")(z,y,2,t),i=0,1, is
independent of € while (a*,p*,7")(x,y,2,7), i=0,1, are the initial layer functions near
t=0. We will discuss in detail the construction of the outer and initial layer functions
in the next section, however, we summarize the results here.

First, the outer function (u",p°, T7%)(x,y,z,t) is determined as the solution of the
infinite Prandt] number system (1.7)-(1.12), and (u!,p!,T")(x,y,z,t) is the solution
of the following linear Pandtl type problem

1
Vp' + TR u'=Au' + RaesT" — 9u® — (u®- V)",

V-ul=0,

KT + (u® V)T + (u' - V)T = AT,
u'|,=01 =0,

.01 =0,

T (t=0)=Ty(z,y,2) T (t=0),

/N N /N /N /S /N
0 J O Ot = W
NN S N NN
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where T (t=0) will be determined later(see below (3.22)).
Then, the initial layer functions (a%,p,T7%)(x,y,2,7), i=0,1, are determined as
the solution of the following problems respectively

T(x,y,2,7)=0, (2.9)
1
8Ta0+E—ke3 x 1 +Vp’ = Aa°, (2.10)
V-a’=0, (2.11)
0. Tt +a°VT§ =0, (2.12)
°].—0,1 =0, (2.13)
@’ (1=0)=ud —u’(t=0),(@°,T") (1 —00) =0 (2.14)
and

1 1 1 1

0-u +E—kes X +Vp
=Au' + RaesT* — (@° - V)uh — (u- V)’ — (@’ - V)a°, (2.15)
V-a' =0, (2.16)
2201 =0, (2.17)
’Ul(T:O):u(l)—ul(t:())’qjl(r—)oo):()_ (2.18)

The existence of the smooth solution to the above outer function and initial layer
function problems will be discussed in the section §3.

Now we state the main results as follows.

First, we have the convergence rate O(e?).

THEOREM 2.1. Assume that (2.1) holds. Also, assume that ud,ul,T9, T} € C*(G)
satisfy the suitable compatibility conditions like uQ|.—01=0,V-ud=0,T|.—0=
LT{|2=1=0, u}|s=01=0,V-uy=0,T}|.—0,1 =0, etc. Then, as e—0, for any 0<S <
00, we have the following convergence:

3
2

H(ue—ue T¢—-T¢ )”LOO(OVS;LZ(G))SCﬁ (2.19)

app’ app
for some positive constant C independent of €.

REMARK 2.1. Noting that, in the above theorem 2.1, we only formulate the zero order
compatibility conditions while any m** m=0,1,2,---, order compatibility conditions
can be obtained by the standard method, see, [7, 13, 16]. For example, taking Oy of
the boundary condition (1.11), using the equation (1.9) and the boundary condition
(1.10), and then setting z=0,1, we get ATY|,—0.1=0. In this way, we can obtain the
1% order compatibility conditions.

Noting that, due to the assumption ||(u§gz,T5z)(2,y,2)|L2(c) < Cé?, the conver-

gence rate O(e?) is not optimal even though (2.19) has shown the convergence of the
expansion up to the 1st order approximation. To get the optimal convergence rate,
further assume that

To(x,y,2)=1 mnear z=0, and TQ(x,y,2)=0 near z=1. (2.20)

Then we have the optimal convergence rate O(€?).
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THEOREM 2.2. Let the assumptions of Theorem 2.1 hold. Furthermore, assume that
(2.20) hold. Then, as e —0, for any 0<.S < oo, we have the following convergence:

(0 =gy T =Ty — €T | Lo 0,8522 () < C€ (2.21)

for some positive constant C independent of €, where T? =T?(x,y,2,7),7= f, is the
solution of the following linear problem

0, T? + (uy V)T + (V) Ty + (@° V)T 4 (@' V)T + (a° V)9, T° (t = 0) 7
=ATY (z,y,2)€G,7>0, (2.22)
T%(x,y,2,7—00)=0,(z,y,2) €G. (2.23)

REMARK 2.2. The convergence result (2.21) implies that
1 =g T =Tyl e 0,5:22(G) < O

because |T?| < C for some positive constant C, see §3.

REMARK 2.3. The assumption (2.20) is only a technical one, which guarantees that
TQ(x,y,z,f)p:OJ =0 holds. Otherwise, the boundary layer occurs, and an extra cor-
rection term of boundary layer with two fast variables is needed to impose in the con-
struction of approximating solution. Of course, this is interesting but very complicated
and will be discussed in the future.

REMARK 2.4. The similar higher-order correction result in powers of € can be obtained
in the same way provided the initial data have such a higher order correction in powers
of € under the assumption of T§ similar to (2.20).

3. Approximating solution and method of asymptotic analysis

In this section we construct the approximating solution including the initial layer
expansion near t =0 and the outer one away from t=0. Some useful properties of this
approximating solution are given. We start with the regular outer expansion.

3.1. Outer expansions. Away from the initial time ¢ =0, the solution to the
system (1.1)-(1.5) is expected to be well-approximated by the following expansion

1
(U Dons T Ze’ 8T (,y,2,t) (3.1)
=0

with (u®,p?,T%)(z,y,2,t) to be determined later.

Inserting (3.1) into the system (1.1)-(1.5), and then comparing the coefficient of
leading order €® and the first order €! in the resulting system, one can obtain:

(i) The leading order outer functions (u®,p®,7°)(x,y, 2,t) satisfies so-called infinite
Prandtl number system (1.7)-(1.11), namely,

1
A\ +E—k63><u =Au’+ RaesT?,

V-u’=0,
T+ (u® - V)T = AT®,
u|,—0,1 =0,

TO|2:O: 17T0|z:1 =0.



58 INFINITE PRANDTL NUMBER LIMIT OF RB CONVECTION

We impose the initial data as follws:
T°(t=0)=T¢(z,y,2)-

(ii) The first order outer function (u',p!,T%)(x,y,z,t) satisfies the linearized infi-
nite Prandtl number type system (2.3)-(2.7), namely,

1
Vp'+ FE u' =Au'+ RaesT" — 9,u® — (u®- V)u,

V-ul=0,

T+ (u® - V)T + (u' - V)T = AT,
u'l,=0,1 =0,

T!.=0.1=0.

We also impose the initial data as follows:
T'(t=0)=T; (2.y,2),

where T} (,y,2) will be determined later (see below (3.23)) .

Noting that the infinite Prandtl number system (1.7)-(1.12) is one system of sta-
tionary Stokes equations with rotation and regarding time ¢ as a parameter coupled
with heat advection-diffusion equations via a buoyancy force while the linearized infi-
nite Prandtl number type system (2.3)-(2.8) is one linear system of Stokes equations
coupled with a linearized heat advection-diffusion equations. Therefore the existence
of the smooth solutions is the same as for the incompressible Stokes equations. We
have:

PROPOSITION 3.1. Assume that T(?LTOl € C™(Q) satisfy the suitable compatibility con-
ditions like T|,—0=1,T3|,=1 =0, Tj}|.=0,1 =0, etc. Then there there exists a unique
and global C*(G x [0,00)) smooth solution to the system (1.7)-(1.12) and (2.3)-(2.8)

respectively.

Proof. The proof of Proposition 3.1 is elementary and we omit it.
After the determinations of these outer functions away from ¢t =0, direct calcula-
tion shows that the outer solution (uS,,pS,,Ts,) satisfies

1
e[atuze)u + (’U’Zu ! V)U’Zu] + vpgu + ﬂe?) X ’u‘(e)u = Aufm + Ra‘e3T5u + RZU,'UJ (3 2)
V-ug, =0, (3.3)
atToEu + (uf)u ' V)Tgu = AToeu + RZu,T? (34)
U’(E)u|220,1 :07 (3 5)
T5u|220:17T5u|Z:1:O> (3 6)
where the remainders Ry, and RZU,T satisfy the estimates
(RS s R, 1)l Low 0,5: 115 () < C€” (3.7)

only if the outer functions (u’,p’,T%)(z,y,2,t),i=0,1, are given.
Now we turn to the construction of the initial layer functions. ]
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3.2. Initial layer expansion. Near t=0, we will approximate the solution
uniformly up to t=0 by the following two-scale expansion

(uflpp’ppr’T;pp) = (umupowT6 )(x’yvzvt)+(u§vp§vTI€)(xvyvsz)vT: E’ (38)

where (ul,,,pS,,T5,) is given by (3.2)-(3.6) and

1

ulaplvTI ZEZ 7p TZ ( ,p TZ)(T_)OO):O (39)
=0

We can derive by the direct calculations that

€[0rug,, + (Ugpy - VUG, + Ve, + Ek —e3 X ug,, — Aug,, — RaesT,,,
1 _
=Ro, .t (aﬂ_to + E7k63 x 1’ +Vp' —Aw’ — RaegTO)
1 _
+6(8~,—’l—tl + Eikeg X 7._L1 +V]51 — Al_l,l — Raeng
(@ V)ud+ (uf - V)@’ + (@°-V)a®) + 5, (3.10)
1
V-u;pp:Vﬂ?:ZeiVﬂi, (3.11)
i=0
8tT‘app + ( app : v) app Ajjcipp
=R, r+ EGTTO + (0, T" +a°-VTI{ + (u" +1°) - VT) + RS ., (3.12)
1 . .
Ugpp|2=0,1 =UT|z=01= Zﬁlﬁl\z:o,l, (3.13)
i=0
1 « —
T;pp|z:O:1+T[E|z:0:1+Z€sz|z:07 (314)
i=0
1 — .
Tge,pp|z:1 :T[€|z:1 = Zﬁsz‘z:h (315)
i=0
1 . . .
U (t=0) = "¢ (u'(t=0)+u' (1 =0)), (3.16)
i=0
1 . . —.
Trpt=0)=» € (T"(t=0)+T"(r=0)), (3.17)
i=0

where the remainders R, and Rj 7, caused by the initial layer, is given exactly by

Tu=¢ 2(ug - Var +a° V(7o (z,s1) +u (z,t)) +a' - Vuy
+u’-va'+at- va® + (1o’ (z,s2) +u' (2,1)) - V)
+€* (o’ (z,s3) +u' (z,t)) - V!
+a" - V(rowu® (z,s4) +u' (z,t)) +u' - V'),
O<s;<ti=1,2,34 (3.18)
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and
R} r=Rj r1+RY 1o (3.19)
with
Ry =e(((w! +a)- V)T + (uf9) T + (@ V)T + (V)T
H@' V)T + (ﬂOV)ﬁtTO(t:O)TfATI) (3.20)
and

— 1
Ry o= e ((Tatuo($735) +up)- VI +720° - V(iﬁttTo(%Sﬁ) +0,T" (z,57))

+a! V(o T (t=0)+ T (t=0) +T1)),
0<s;<t,i=5,6,7. (3.21)
Now we can obtain the systems being satisfied by the initial layer functions by setting
the coefficients of order O(€*) in the system (3.10)-(3.12) as zero and requiring that

the approximating solution satisfies the boundary and initial conditions.
First taking the coefficient of order ¢! in (3.12) as zero, one has

9, T°=0,
which, together with T°(7 — o00) =0 in (3.9), yields to (2.9), i.e.,
T%x,y,2,7)=0.

This does also show that the temperature has no zero order initial layer.

Then, setting the coefficients of order €’ in the system (3.10)-(3.12) as zero, using
(2.9) and requiring that the approximating solution satisfies the boundary and initial
conditions, it follows from (3.10)-(3.17) that the initial layer functions (a°,p°T*)
satisfy the system (2.10)-(2.14).

It follows from the equation (2.12) of T and the decay condition T (7 —c0) =0
in (3.9) that

! :—/m(ﬂ0~VT8)(s)ds. (3.22)

Using the boundary condition (2.13) and the equation (3.22), one gets
T"|.=0,1=0.
After the determination of T, we require to take the initial data Ty of T as
THt=0)=T =T¢ —T*(r=0). (3.23)

Thus, the initial condition (2.8) is obtained from (3.23).

Finally, as in the above, it follows from the order €' in (3.10)-(3.11), (3.13) and
(3.16) that (u',p') satisfy the system (2.15)-(2.18).

Now we state the decay properties of the initial layer functions.

PROPOSITION 3.2. Let the assumptions of Theorem 2.1 hold. Then there exist a
unique and smooth solution (u®,p°,T1) to the system (2.10)-(2.14) and a unique and
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smooth solution (i',p') to the system (2.15)-(2.18) satisfying the exponential decay
to zero as T — oo, namely,

||(’17/0,T1,’17/1)(',T)||Hs(g) SCG_(M— (324)
for some positive constants C,a and any s> 1.

To prove Proposition 3.2, we recall the following lemma about the Stokes operator
[5, 13].

LEMMA 3.3. For the stationary Stokes equations
—AU+Vq=f(x,y,z),(x,y,z) EGa
V'U:(),(‘Tayaz) €G,
Ul,=01=0,U isperiodicwith respecttox andy,
we have that, if f € H'(G), then the following estimate holds:
10 z+2(ey + IVl zr ey SOl
where C' depends only upon the domain G.
Proof of Proposition 3.2. We only prove the exponential decay rate of u° in
(3.24) because the others can be easily obtained in similar way by the equation (3.22)
and the system (2.15)-(2.18) and the exponential decay rate of u".
Taking 92 of (2.10), multiplying the resulting equation by 924" and integrating
over G with respect to (z,y,z), by integration by parts, one gets
1d . s
5 0580 [y + 90380 () 3 =0
due to 93u°|,—91=0.
Using the Poincaré’s inequality, one has
d ~ .
078" ()72 +Cll07° (7) |72 <0
for some positive constant C. This yields to that
10:2° (1) || 12(qy < Ce . (3.25)
Noting that w(r) =024 satisfies

orw+ ﬁeg xw+Vop = Aw, (3.26)
Vow=0, (3.27)
w|z=0,1 =0, (3.28)
w(r=0)=wq (3.29)
Applying lemma 3.3 to the system (3.26)-(3.29), one has, for any [ >0,
”w(T)”HH-?(G) SC(Harw(T)HHl(G) JrEikHw(T)”HZ(G))- (3.30)

Using the estimate (3.30) repeatedly and (3.25), one has, for any s>1,

1% g1y S C D [100° | 2y < Ce ™€
1=0

The proof of Proposition 3.2 is complete.
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3.3. Approximating solutions. With outer functions and initial layer func-
tions defined in section 3.1 and 3.2, we can define the desired uniformly-valid approxi-
mating solution to the system (1.1)-(1.6). Then our previous computations show that

(UG ppsPapps Tapp) SOlves the following initial-boundary problem:

[atuapp ( pr ’ V)ngp] + vpfmpp Ek,‘ -7 €3 X u app
= Aug,,, + RaesTy,, + Ry, , + RT ., (3.31)
Vi, =0, (3.32)
8tT‘aE;op ( Uapp V) app — A,'_F;p;o + RZU,T + R;,Tﬂ
applz—o 1=0, (3.33)
Tappl:=0=1,T5,,[:=1=0, (3.34)
(u app’T;pp)(tZO) = (up +eug, Tg +€Ty), (3.35)

where the remainders R, ,,
by (3.18) and (3.19) respectively satisfy the the following estimate

R, r satisfy the estimate (3.7) and Rj

I,u>

Rj 1 defined

IRE o (0)l| 1= (@) < C* (7 +1)e ™, RS 1 (1)l 1= (c) < Ce(m? +7+1)e™7 (3.36)

for some positive constants C' and «a and for any ¢t €[0,S5] and any fixed S>0. The
estimate (3.36) can easily obtained by the definitions of R; ,,Rj, and the decay
estimate (3.24).

We now turn to the proof of convergence rate.

4. The Proof of Main Results

In this section, we will prove Theorems 2.1 and 2.2 by the careful energy method.
In the following denote C' by a positive generic constant independent of e. Noting
that C' may depend upon S for any fixed S>0. Let ¢t €[0,5]. We start with the proof
of convergence rate O(e?).

4.1. Convergence rate O(e?). In this subsection we assume that (2.1) holds.
We will prove Theorem 2.1.

Let (u€,p®, Tf) be the global weak solution to (1.1)-(1.6) in the Leray’s sense, see
(19, 20]. Let (ug,,, papp,T;pp) be the approximating solution constructed in section
83. Set (u%k,pR,TR) = (U — Uy, D —DPopp T —Ts,p)- Then it follows from (1.1)-(1.6)
and (3.31)-(3.35) that (u%,p%,Tx) satisfies the following ‘error’ equations

e[atuj% + (U’pr : V)U% + (uﬁ% : v) (u(elpp + u%)] + vpj% +—=e3 X uR

Ek

= Auyp+ RaesTkr — Rg,, o, — R s (4.1)
V-ufh =0, (4.2)
O TR+ (ugpy V)T +(ug V) (Tapp +TR) = AT — Ry 7 — Ry 1, (4.3)
Up|z=0,1=0, (4.4)
Tg|2=0,1=0, (4.5)
ug(t=0)=uRgo(2,y,2), Tr(t=0)=Tor(,y,2) (4.6)

Multiplying (4.3) by T§, and integrating over G with respect to (z,y,2), by integra-
tion by parts, Cauchy-Schwartz’s inequality, using the properties of the approximating
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solution, the equation (4.2), the boundary condition (4.5) and the estimates (3.7) and
(3.36), one gets

1d
2dt
== /GW% V) Tep Thdrdydz — /G (Rowr+ Ri 1) Thdrdydz

<O TRIZ: () + Clluglliz (g + O+ C(r? +7+1)%e 7207

”TIE%H%Q(G) + HVTEHQB(G)

Here we have used the estimate
| Rou 1+ R rllLze) < Ce+Ce(t? +1+1)e 7 (4.7)

on the remainder Rf, 7+ Rf 1.
Applying the Poincaré’s inequality and taking  to be sufficiently small but inde-
pendent of €, one gets

d € €
pn HTR”%%G) + ||VTR||%2(G)
§C||u§3\\%2(g)+Ce4+062(72+7+1)2672a7. (4.8)

Integrating (4.8) with respect to ¢ over [0,¢] for any t € [0,S] and any fixed S >0, one
gets

t
ITaOl )+ | VT i
t
S||T13(t:0)||2L2<G)+C/O [uk(t)|72(c)dt+C€® (4.9)
due to the fact that
t
/ (T2 +74+1)%e207dt < Ce.
0

Multiplying (4.1) by u$, and integrating over G with respect to (x,y,z), by integra-
tion by parts, Cauchy-Schwartz’s inequality, using the properties of the approximating
solution, the equation (4.2), the boundary condition (4.4) and the estimates (3.7) and
(3.36), one gets

ed, . .
5%‘|UR|‘%2(G)+HVUR”%Q(G)

=—e/(u§%-V)u2ppu§%dxdydz+ Ra/ egTEuﬁ%dmdydz—/(Rfm}u—i—Riu)u%dmdydz
G el G
< el Vgl luk @122 ) +olluglLz) + O Ra®|I TRl 72

+Oet +Ce* (T +1)%e 207,

Applying the Poincaré’s inequality, restricting € to be sufficiently small such that

e[ Vus,,ll =) < Ce< 1 and taking 6 to be sufficiently small(6 = 1) but independent

of €, one gets

d € € €
e lur®iz6) +lur®)i2(6) < CRAITRDI[L2 ) +Ce,
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i.e.

d

e

ex. (4.10)

€ € 1
um(W)|72(6y) < (CRGQHTR(‘J;)HQL?(G) +C€4)g

Integrating (4.10) with respect to t over [0,¢] for any t € [0,5] and any fixed S >0, one
gets

[uR (D720 < NuR(E=0)[I72(c)+C R T 17 (0.0):02(c)) + C€*. (4.11)
Combining (4.9) and (4.11), one gets

(D72 6y < Cll(uf TR) (E=0)1Z2(q) + Clum (B)l|72((0 0):2 () + C€*

Using Gronwall’s lemma and the assumptions on the ‘error’ of initial data, i.e.,
(e T (=) 2 sy = (e Té) 22y < O, ome et

[uR (D72 ((0,00:£2(c)) < C€?,s (4.12)

and, hence, one has

[uG ()12 (0.0):22(cy) < C€- (4.13)

Inserting (4.12) into (4.9) and using the assumptions on the ‘error’ of initial data
again, one gets

1T (0|72 () < C. (4.14)
Therefore, it follows from (4.14) that
TR E = ((0,0);22(c) < O™ (4.15)

The estimates (4.13) and (4.15) yields to the desired estimate (2.19) in Theorem 2.1.
The proof of Theorem 2.1 is complete.

Obviously, the convergence rate O(e%) is not optimal according to the assumption
on initial data. In the following subsection we obtain the optimal convergence rate
O(€?) under further assumption on initial data.

4.2. Optimal convergence rate O(¢?).  In this subsection we assume that
(2.1) and (2.20) hold. We will prove Theorem 2.2.

To get the optimal convergence rate O(e?), we need to cancel the order O(e) term
R{ 7y, given by (3.20), in the remainder Rj ;. by introducing another initial layer
function T2. We define T2 to be the solution of the system (2.22)-(2.23), which can
be solved by

T?(1)=— / OO[A’F — (V)T 4+ (@°V) Ty + (a°V)T*
(@' V)T + (a°V)o,T° (t = 0)7))(7)dr. (4.16)
Thus, we have

T?|,=0,1=0. (4.17)
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In fact, the assumption (2.20) and the definition (3.22) of T give
T'=0, near z=0,1,

which, together with (4.16) and the boundary condition (@, a')|,—01=0, yields to
the boundary condition (4.17). B
By the exponential decay of the initial layer functions #°,@',T", one have

IT2(7)|| s () < Ce™ . (4.18)

Now set T =T —e*T?=T°— Tepp— €2T?. Then (u%,p%,fﬁ) satisfies the following
modified ‘error’ equations

6[8,5113,3 + (u;pp ! V)u% + (u;:% ' V)( Uapp +UR)] + vpR + 0= Ek ez X uR

=Auxr+ RaeSTE—RZU’u — R, + Raeze*T?, (4.19)
V.us =0, (4.20)
atTR+( app V)TR+(UR V)( app+€2T2+T€)

=ATq— RS, 1 — Ri 1y — €25, VT? + € AT?, (4.21)
uR|z=0,1=0, (4.22)
Tf)-=01 =0, (4.23)
U (t=0) =gk (2,y,2), Tt =0) = Tgp(2,y,2) — T (1=0). (4.24)

Using the decay property (4.18) of T2 and the definition (3 21) of Rf 7y, one has the
following estimates on the remainder —RS, ;. — R§ 1y — €2t - VT2 4 2 AT? appear-
ing the system (4.21):

| = RS, 7 — Ry 1y — €2uG,, - VI? + EAT?|| 12y < C€. (4.25)

Noting that the estimate (4.25) is much better than the estimate (4.7). Now replacing
the estimate (4.7) by the estimate (4.25) in subsection §4.1, then, as in the proof of
Theorem 2.1, we can easily obtain the desired optimal convergence rate O(e?) in
Theorem 2.2.

The proof of Theorem 2.2 is complete.
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