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KINETIC MODELS OF OPINION FORMATION∗

GIUSEPPE TOSCANI†

Abstract. We introduce and discuss certain kinetic models of (continuous) opinion formation
involving both exchange of opinion between individual agents and diffusion of information. We show
conditions which ensure that the kinetic model reaches non trivial stationary states in case of lack of
diffusion in correspondence of some opinion point. Analytical results are then obtained by considering
a suitable asymptotic limit of the model yielding a Fokker-Planck equation for the distribution of
opinion among individuals.
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1. Introduction
Microscopic models of both social and political phenomena describing collective

behaviors and self–organization in a society have been recently introduced and ana-
lyzed by several authors [11, 15, 18, 24, 25, 27, 29]. The leading idea is that collective
behaviors of a society composed by a sufficiently large number of individuals (agents)
can be hopefully described using the laws of statistical mechanics as it happens in
a physical system composed of many interacting particles. The details of the social
interactions between agents then characterize the emerging statistical phenomena.

Among others, the modeling of opinion formation attracted the interest of a
increasing number of researchers (cfr. [8, 15, 18, 27] and the references therein). The
starting point of a large part of these models, however, is represented by a cellular
automata, where the lattice points are the agents, and where any of the agents of a
community is initially associated with a random distribution of numbers, one of which
is the opinion. Hence society is modeled as a graph, where each agent interacts with
his neighborhoods in iterative way.

Very recently, other attempts have been successfully applied [1, 22], with the
aim to describe formation of opinion by means of mean fields model equations. These
models are in general described by systems of ordinary differential equations or partial
differential equations of diffusive type, that can in some case be treated analytically
to give explicit steady states. In [1], attention has been focused on two aspects
of opinion formation, which in principle could be responsible for the formation of
coherent structures. The first one is the remarkably simple compromise process, in
which pairs of agents reach a fair compromise after exchanging opinions [2, 3, 8, 10,
12, 26, 30].

The second one is the diffusion process, which allows individual agents to change
their opinions in a random diffusive fashion. While the compromise process has its
basis on the human tendency to settle conflicts, diffusion accounts for the possibility
that people may change opinion through a global access to information. In the present
time, this aspect is gaining in importance due to the emerging of new possibilities
(among them electronic mail and web navigation [20]).
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Following this line of thought, we consider here a class of kinetic models of opinion
formation, based on two-body interactions involving both compromise and diffusion
properties in exchanges between individuals. Compromise and diffusion will be quan-
tified by two parameters, which are mainly responsible of the behavior of the model,
and allow for a rigorous asymptotic analysis. In consequence of our assumptions on
the microscopic interaction, in various relevant cases the model will satisfy mass and
momentum conservation, which are the starting point for studying the asymptotic
behavior.

In this direction, we shall show that the kinetic model gives in a suitable asymp-
totic limit (hereafter called quasi-invariant opinion limit) a partial differential equation
of Fokker-Planck type for the distribution of opinion among individuals. Similar diffu-
sion equations were obtained recently in [22] as the mean field limit of the Ochrombel
simplification of the Sznajd model [27].

The equilibrium state of the Fokker-Planck equation can be computed explicitly
and reveals formation of picks in correspondence to the points where diffusion is
missing.

The mathematical methods we use are close to those used in the context of kinetic
theory of granular gases, where the limit procedure is known as quasi-elastic asymp-
totics [17, 28]. We mention here that a similar asymptotic analysis was performed
on a kinetic model of a simple market economy with a constant growth mechanism
[7, 21], showing formation of steady states with Pareto tails [19]. In this context, the
mean field approximation leads to the same Fokker-Planck equation [5, 23], showing
consistency between kinetic and stochastic approaches.

The paper is organized as follows. In the next Section we introduce the binary
interaction between agents, which is at the basis of the kinetic model. The main
properties of the model are discussed in Section 3. These properties justify the quasi-
invariant opinion limit procedure, performed in Section 4. The limit procedure is then
illustrated by several choices of the diffusion in Section 5.

2. Description of the kinetic model
The goal of the forthcoming kinetic model of opinion formation, is to describe

the evolution of the distribution of opinions in a society by means of microscopic
interactions among agents or individuals which exchange information. To fix ideas,
we associate opinion with a variable w which varies continuously from −1 to 1, where
−1 and 1 clearly denote the two (extreme) opposite opinions. We will moreover
assume that interactions do not destroy the bounds, which corresponds to impose that
the extreme opinions can not be crossed. This crucial rule emphasizes the difference
between the present social interactions, where not all outcomes are permitted, and the
classical interactions between molecules, familiar to people working in kinetic theory
of rarefied gases [6].

Let I=[−1,+1] denote the interval of possible opinions. From a microscopic view
point, we describe the binary interaction by the rules

w′=w−γP (|w|)(w−w∗)+ηD(|w|)
w′∗=w∗−γP (|w∗|)(w∗−w)+η∗D(|w∗|) (2.1)

where the pair (w,w∗), with w,w∗∈I denotes the opinions of two arbitrary individ-
uals before the interaction and (w′,w′∗) their opinions after exchanging information
between them and with the exterior. In (2.1) we will not allow opinions to cross
boundaries, and thus the interaction takes place only if both w′,w′∗∈I. In (2.1) the
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coefficient γ∈ (0,1/2) is a given constant, while η and η∗ are random variables with
the same distribution with variance σ2 and zero mean, taking values on a set B⊆ IR.
The constant γ and the variance σ2 measure respectively the compromise propensity
and the modification of opinion due to diffusion. Finally, the functions P (·) and D(·)
describe the local relevance of the compromise and diffusion for a given opinion.

Let us describe the details of the interaction in the right hand side. The first
part is related to the compromise propensity of the agents, and the last contains the
diffusion effects of external events. Note that the pre-interaction opinion w increases
(getting closer to w∗) when w∗>w and decreases in the opposite situation. The
presence of both the functions P (·) and D(·) is linked to the hypothesis that the
availability to the change of opinion is linked to the opinion itself, and decreases as
soon as one gets closer to extremal opinions. This corresponds to the realistic idea
that extremal opinions are more difficult to change. We will present later on various
realizations of these functions. In all cases, however, we assume that both P (|w|)
and D(|w|) are non increasing with respect to |w|, and in addition 0≤P (|w|)≤1,
0≤D(|w|)≤1.

In absence of the diffusion contribution (η,η∗≡0), (2.1) implies

w′+w′∗=w+w∗+γ(w−w∗)(P (|w|)−P (|w∗|))
w′−w′∗=(1−γ(P (|w|)+P (|w∗|)))(w−w∗). (2.2)

Thus, unless the function P (·) is assumed constant, P =1, the total momentum is
not conserved and it can increase or decrease depending on the opinions before the
interaction. If P (·) is assumed constant, the conservation law is reminiscent of anal-
ogous conservations which take place in kinetic theory. In such a situation, thanks
to the bounds on the coefficient γ, equations (2.1) correspond to a granular gas like
interaction (or to a traffic flow model [13]) where the stationary state is a Dirac delta
centered in the average opinion (usually referred to as synchronized traffic state in
traffic flow modelling). This behavior is a consequence of the fact that, in a single
interaction, the compromise propensity implies that the difference of opinion is di-
minishing, with |w′−w′∗|=(1−2γ)|w−w∗|. Thus all agents will end up in the society
with exactly the same opinion. Note that in this elementary case a constant part of
the relative opinion is restituted after the interaction. This property does not remain
true if the function P depends on the opinion variable. In this case

|w′−w′∗|=(1−γ(P (|w|)+P (|w∗|)))|w−w∗|.
In fact, since γ∈ (0,1/2) and 0≤P (|w|)≤1, 0≤D(|w|)≤1,

0≤ε(w,w∗)=1−γ(P (|w|)+P (|w∗|))≤1.

Hence the general case corresponds to a granular gas interaction with a variable
coefficient of restitution [28].

We remark moreover that, in absence of diffusion, the lateral bounds are not
violated, since

w′=(1−γP (|w|))w+γP (|w|)w∗
w′∗=(1−γP (|w∗|))w∗+γP (|w∗|)w (2.3)

implies

max{|w′|,|w′∗|}≤max{|w|,|w∗|}.
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Let f(w,t) denote the distribution of opinion w∈I at time t≥0. A direct appli-
cation of standard methods of kinetic theory of binary interactions [6] allows us to
recover the time evolution of f as a balance between bilinear gain and loss of opinion
terms, described by the integro-differential equation of Boltzmann type

∂f

∂t
=

∫

B2

∫

I

(
′β

1
J

f(′w)f(′w∗)−βf(w)f(w∗)
)

dw∗dηdη∗, (2.4)

where (′w,′w∗) are the pre-interaction opinions that generate the couple (w,w∗) of
opinions after the interaction. In (2.4) J is the Jacobian of the transformation of
(w,w∗) into (w′,w′∗), while the kernels ′β and β are related to the details of the
binary interaction.

As usual in classical kinetic theory of rarefied gases, the interaction integral on
the right-hand side of (2.4) represents the instantaneous variation of the distribution
of opinion, due to the binary exchanges of information. The presence of the Jacobian
J , guarantees that equation (2.4) preserves the mass (total opinion), for any choice
of the rate function β. The transition rate is taken of the form

β(w,w∗)→(w′,w′∗) =Θ(η)Θ(η∗)χ(|w′|≤1)χ(|w′∗|≤1), (2.5)

where χ(A) is the indicator function of the set A, and Θ(·) is a symmetric probability
density with zero mean and variance σ2. The rate function β(w,w∗)→(w′,w′∗) character-
izes the effects of external events on opinion through the distribution of the random
variables Θ and Θ∗ and takes into account the hypothesis that bounds can not be vi-
olated. We remark that in principle the support B of the symmetric random variable
is a subset of I, to prevent diffusion to generate a complete change of opinion. This
property can be weakened by assuming for example diffusion as a random variable
normally distributed but well concentrated on zero.

For a general probability density Θ(·), the rate function β depends on the opinion
variables (w,w∗) through the indicator functions χ. This fact reminds us of a similar
property of the classical Boltzmann equation [6, 9], where the rate function depends
on the relative velocity. As we shall see, a simplified situation occurs when a suitable
choice of the function D(·) in (2.1) coupled with a small support B of random variables
implies that both |w′|≤1 and |w′∗|≤1, and the kernel β does not depend on the opinion
variables (w,w∗). In this case the kinetic equation (2.4) corresponds to the classical
Boltzmann equation for Maxwell molecules [4], which presents several mathematical
simplifications. In all cases however, methods borrowed from kinetic theory of rarefied
gas can be used to study the evolution of the function f .

3. Simplifications and main properties of the model
The main problem in opinion dynamics is the formation of stationary profiles for

the opinion. In the kinetic picture this corresponds to an investigation of the large
time behavior of the density of opinion f(w,t). To investigate in detail the large-time
behavior, a preliminary analysis of equation (2.4) is needed. We will start this analysis
by introducing some notations and by discussing the main properties of the kinetic
equation.

Let Q(f,f) denote the interaction integral,

Q(f,f)(w)=
∫

B2

∫

I

(
′β

1
J

f(′w)f(′w∗)−βf(w)f(w∗)
)

dw∗dηdη∗. (3.1)
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Let M0(A) be the space of all probability measures taking values in A⊆ IR and
by

Mp(A)=
{

Θ∈M0 :
∫

A

|w|pdΘ(w)<+∞,p≥0
}

, (3.2)

the space of all Borel probability measures of finite momentum of order p, equipped
with the topology of the weak convergence of the measures.

Let Fs(I), be the class of all real functions h on I such that h(±1)=h′(±1)=0,
and h(m)(v) is Hölder continuous of order δ,

‖h(m)‖δ = sup
v 6=w

|h(m)(v)−h(m)(w)|
|v−w|δ <∞, (3.3)

the integer m and the number 0<δ≤1 are such that m+δ =s, and h(m) denotes the
m-th derivative of h.

In the rest of the paper we will assume that the symmetric probability density
Θ(η) which characterizes the diffusion of information belongs to M2+α, for some
α>0. Moreover, to simplify computations, we assume that this density is obtained
from a given random variable Y with zero mean and unit variance, that belongs to
M2+α. Thus, Θ of variance σ2 is the density of σY . By this assumption, we can
easily obtain the dependence on σ of the moments of Θ. In fact, for any p>0 such
that the p-th moment of Y exists,

∫

IR

|η|pΘ(η)dη =E (|σY |p)=σpE (|Y |p).

By a weak solution of the initial value problem for equation (2.4), corresponding to
the initial probability density f0(w)∈M0(I), we shall mean any probability density
f ∈C1(IR+,M0(I)) satisfying the weak form of the equation

d

dt

∫

I
φ(w)f(w,t)dw=(Q(f,f),φ)=

∫

I2

∫

B2
β(w,w∗)→(w′,w′∗)f(w)f(w∗)(φ(w′)−φ(w))dw∗dwdηdη∗, (3.4)

for t>0 and all φ∈Fp(I), and such that for all φ∈Fp(I)

lim
t→0

∫

I
φ(w)f(w,t)dw=

∫

I
φ(w)f0(w)dw. (3.5)

The form (3.4) is easier to handle, and it is the starting point to explore the evolution
of macroscopic quantities (moments). By symmetry reasons, we can alternatively use
the symmetric form

d

dt

∫

I
f(w)φ(w)dw=

1
2

∫

I2

∫

B2
β(w,w∗)→(w′,w′∗)f(w)f(w∗)

(φ(w′)+φ(w′∗)−φ(w)−φ(w∗))dw∗dwdηdη∗. (3.6)

Existence of a weak solution to the initial value problem for equation (2.4) can be
easily obtained by using methods first applied to the Boltzmann equation [6]. On
the other hand, for a general kernel (2.5), it appears extremely difficult to describe in
detail the large-time behavior of the solution.
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For this reason, at first we restrict our analysis to the cases in which the kernel
β does not depend on the opinion variables (Maxwellian case). In this direction, let
us briefly discuss the importance of the support B of the probability density function
Θ(η) in connection with the possible simplification of the kernel. To clarify the point,
let us set

D(|w|)=1−|w|.

This function satisfies all the requirements we fixed in Section 2. Then, since

(1−γP (|w|))w+γP (|w|)w∗+(1−|w|)η≤ (1−γP (|w|))w+γP (|w|)+(1−|w|)η,

in order that |w′|≤1 it suffices that

(1−γP (|w|))w+γP (|w|)+(1−|w|)η≤1, (3.7)

or, what is the same

(1−|w|)η≤ (1−γP (|w|))(1−w). (3.8)

Since P (|w|)≤1, bound (3.8) is verified for all w≥0, as soon as η≤1−γ. An anal-
ogous result holds if w≤0. Hence, if D(|w|)=1−|w| and B=(−(1−γ),1−γ), both
w′ and w′∗ belong to the right interval.

Remark 3.1. Any choice of D(|w|) or B which is suitable to preserve the lateral
bounds of extreme opinions allows us to study in detail the dynamics of the model
with a significant simplification. In these cases, the kernel β defined in (2.5) simplifies
to

β(w,w∗)→(w′,w′∗) =β(η,η∗)=Θ(η)Θ(η∗).

In the rest of the paper we will limit ourselves to such types of kernels. As briefly ex-
plained in Section 2, this assumption is the analogue to Maxwell molecules interaction
in the Boltzmann equation [6].

From (3.4) (or equivalently from (3.6)) conservation of the total opinion is ob-
tained for φ(w)=1, which represents in general the only conservation property sat-
isfied by the system. The choice φ(w)=w is of particular interest since it gives the
time evolution of the average opinion. We have

d

dt

∫

I
wf(w,t)dw=

∫

I2

∫

B2
β(η,η∗)f(w)f(w∗)γ(P (|w|)w∗−P (|w|)w)dw∗dwdηdη∗

+
∫

I2

∫

B2
β(η,η∗)f(w)f(w∗)ηD(|w|)dw∗dwdηdη∗.

The first integral on the right–hand side represents the contribution of the exchange
of information to the variation of momentum. In case P (|w|)=1, this contribution
disappears, since, by symmetry,

∫

I2

∫

B2
β(η,η∗)f(w)f(w∗)γ(w∗−w)dw∗dwdηdη∗=0.
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In this case

d

dt

∫

I
wf(w,t)dw

=
∫

I2

∫

B2
ηΘ(η)Θ(η∗)χ(|w′|≤1)χ(|w′∗|≤1)D(|w|)f(w)f(w∗)dw∗dwdηdη∗=0, (3.9)

since the mean value of the density Θ is zero. This shows that P constant implies
that the average opinion is conserved. The situation changes when P is not constant.
In this case, the time evolution of the average opinion is given by

d

dt

∫

I
wf(w,t)dw=γ

∫

I
P (|w|)f(w)dw

∫

I
wf(w)dw−γ

∫

I
wP (|w|)f(w)dw. (3.10)

Note that equation (3.10) is not closed.
Let us fix now φ(w)=w2. We have

d

dt

Z

I
w2f(w,t)dw =

1

2

Z

I2

Z

B2
Θ(η)Θ(η∗)f(w)f(w∗)(w

′2 +w′∗
2−w2−w2

∗)dw∗dwdηdη∗.

(3.11)

Keeping in mind that Θ has zero mean and variance σ2, by easy computations one
shows that

1
2

∫

I2

∫

B2
Θ(η)Θ(η∗)f(w)f(w∗)(w′

2 +w′∗
2−w2−w2

∗)dw∗dwdηdη∗=

γ2

∫

I2
P (|w|)2(w−w∗)2f(w)f(w∗)dwdw∗−

2γ

∫

I2
P (|w|)w(w−w∗)f(w)f(w∗)dwdw∗+σ2

∫

I
D(|w|)2f(w)dw. (3.12)

The choice P (|w|)=1 leads to the simpler evolution equation

d

dt

∫

I
w2f(w,t)dw=−2γ(1−γ)

[∫

I
w2f(w)dw−m2

]
+σ2

∫

I
D(|w|)2f(w)dw, (3.13)

where m is the constant value of the average opinion

m=
∫

I
wf(w,t)dw.

Since |w|≤1, the boundedness of the mass implies that all moments are bounded.
This implies that, in all cases, we can draw conclusions on the large–time convergence
of the class of probability densities {f(w,t)}t≥0. By virtue of Prokhorov theorem
(cfr. [14]) the existence of a uniform bound on moments implies in fact that this class
is tight, so that any sequence {f(w,tn)}n≥0 contains an infinite subsequence which
converges weakly to some probability measure f∞.
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4. The quasi-invariant opinion limit
The analysis of the previous section shows that in general it is quite difficult both

to study in detail the evolution of the opinion density, and to describe its asymptotic
behavior. For a general kernel one has in addition to take into account that the
mean opinion is varying in time. As is usual in kinetic theory, however, particular
asymptotics of the equation result in simplified models (generally of Fokker-Planck
type), for which it is relatively easy to find steady states, and to prove their stability.
These asymptotics are particularly relevant in case they are able to describe with a
good approximation the stationary profiles of the kinetic equation. In order to give
a physical basis to these asymptotics, let us discuss the interaction rule (2.1) from a
slightly different point of view. For the moment, we will assume P (|w|)=1, so that
conservation both of mass and momentum holds. The case of a general P (|w|) will
be treated subsequently. Let us denote by E(X) the mathematical expectation of the
random variable X. Then the following properties follow from (2.1)

E[w′+w′∗]=w+w∗, E[w′−w′∗]= (1−2γ)(w−w∗). (4.1)

The first equality in (4.1) describes the property of mean conservation of opinion. The
second refers to the compromise propensity, which plays in favor of the decrease (in
mean) of the distance of opinions after the interaction. This tendency is a universal
consequence of the rule (2.1), in that it holds whatever distribution one assigns to Θ,
namely to the random variable which accounts for the effects of the external word in
opinion formation.

The second property in (4.1) is analogous to the similar one that holds in a
collision between molecules in a granular gas. There the quantity e=2γ is called
“coefficient of restitution”, and describes the peculiar fact that energy is dissipated
[28].

We consider now the situation in which most of the interactions produce a very
small exchange of opinion (γ→0), while at the same time both properties (4.1) remain
at a macroscopic level. This corresponds to pretend that, while γ→0,

∫

I2
(w+w∗)f(w)f(w∗)dwdw∗=2

∫

I
wf(w)dw=2m(t) (4.2)

remains constant, and

1
2

∫

I2
(w−w∗)2f(w)f(w∗)dwdw∗=

∫

I
w2f(w)dw−m2

0 =Cf (t) (4.3)

varies with time, and decays to zero when the diffusion is not present (i.e. σ =0).
Since in our case the kernel β does not depend on the opinion variables, (3.9)

implies that m(t)=m0 independently of the value of γ. Moreover, using the compu-
tations of Section 3, one obtains that Cf (t) varies with law

dCf (t)
dt

=−2γ(1−γ)Cf (t)+σ2

∫

I
D(|w|)2f(w)dw. (4.4)

Hence, if we set

τ =γt, g(w,τ)=f(w,t), (4.5)

which implies f0(w)=g0(w), it follows

dCg(τ)
dτ

=−2(1−γ)Cg(τ)+
σ2

γ

∫

I
D(|w|)2f(w)dw. (4.6)
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Letting now both γ→0 and σ→0 in such a way that σ2/γ =λ, (4.6) becomes in the
limit

dCg(τ)
dτ

=−2Cg(τ)+λ

∫

I
D(|w|)2f(w)dw. (4.7)

This argument shows that the value of the ratio σ2/γ is of paramount importance
to get asymptotics which maintain memory of the microscopic interactions. It is
remarkable that, thanks to (4.5), t= τ/γ, so that the limit γ→0 describes the large-
time behavior of f(v,t). On the other hand, since f(w,t)=g(w,τ) the large-time
behavior of f(w,t) is close to the large-time behavior of g(w,τ).

Remark 4.1. The balance of γ→0 and σ→0 in such a way that σ2/γ =λ, allows us
to recover in the limit the contributions due both to compromise propensity and the
diffusion. Other limits can be considered, which are diffusion dominated (σ2/γ =∞)
or compromise dominated (σ2/γ =0). As we shall present in Section 5, however, the
formation of an asymptotic profile for the opinion is linked to the first balance [1].

In the remainder of this Section, we shall present the rigorous derivation of a
Fokker-Planck model, starting from the Boltzmann equation for the opinion density
g(w,τ), when both γ→0 and σ→0 in such a way that σ2/γ→λ. For the sake of
simplicity, we will assume that P (|w|)=1. This type of analysis is close to the one
described in [7] for a kinetic model of wealth distribution in an open economy.

The scaled density g(v,τ)=f(v,t) satisfies the equation (in weak form)

d

dτ

∫

I
g(w)φ(w)dw=

1
γ

∫

I2

∫

B2
Θ(η)Θ(η∗)g(w)g(w∗)(φ(w′)−φ(w))dw∗dwdηdη∗.

(4.8)
Given 0<δ≤α, let us set φ∈F2+δ(I).

By (2.1),

w′−w=γ(w∗−w)+ηD(|w|).
Then, if we use a second order Taylor expansion of φ around w

φ(w′)−φ(w)=(γ(w∗−w)+ηD(|w|))φ′(w)+
1
2

(γ(w∗−w)+ηD(|w|))2φ′′(w̃),

where, for some 0≤θ≤1

w̃=θw′+(1−θ)w.

Inserting this expansion in the collision operator, we get

d

dτ

∫

I
g(w)φ(w)dw=

1
γ

∫

I2

∫

B2
Θ(η)Θ(η∗)[(γ(w∗−w)+ηD(|w|))φ′(w)+

+
1
2
(γ(w∗−w)+ηD(|w|))2φ′′(w)]g(w)g(w∗)dw∗dwdηdη∗+R(γ,σ), (4.9)

where

R(γ,σ)=
1
2γ

∫

I2

∫

B2
Θ(η)Θ(η∗)(γ(w∗−w)+ηD(|w|))2 ·

·(φ′′(w̃)−φ′′(w))g(w)g(w∗)dw∗dwdηdη∗.
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Since φ∈F2+δ(I), and |w̃−w|=θ|w′−w|
|φ′′(w̃)−φ′′(w)|≤‖φ′′‖δ|w̃−w|δ≤‖φ′′‖δ|w′−w|δ. (4.10)

Hence

|R(γ,σ)|≤ ‖φ
′′‖δ

2γ

∫

I2

∫

B2
Θ(η)Θ(η∗) ·

·|γ(w∗−w)+ηD(|w|)|2+δg(w)g(w∗)dw∗dwdηdη∗.

By virtue of the inequality

|γ(w∗−w)+ηD(|w|)|2+δ≤21+δ
(|γ(w∗−w)|2+δ + |ηD(|w|)|2+δ

)≤

≤22+δγ1+δ +21+δ|η|2+δ,

we finally obtain the bound

|R(γ,σ)|≤21+δ‖φ′′‖δ

(
γ1+δ +

1
2γ

∫

B
|η|2+δΘ(η)dη

)
. (4.11)

Since Θ is a probability density with zero mean and λγ variance, and Θ belongs to
M2+α, for α>δ,

∫

I
|η|2+δΘ(η)dη =E

(∣∣∣
√

λγY
∣∣∣
2+δ

)
=(λγ)1+δ/2E

(
|Y |2+δ

)
,

and E
(
|Y |2+δ

)
is bounded. Using this equality in (4.11) one shows that R(γ,σ)

converges to zero as both γ and σ converge to zero, in such a way that σ2 =λγ.
Within the same scaling,

lim
γ→0

1
γ

∫

I2

∫

B2
Θ(η)Θ(η∗)[(γ(w∗−w)+ηD(|w|))φ′(w)+

+
1
2
(γ(w∗−w)+ηD(|w|))2φ′′(w)]g(w)g(w∗)dw∗dwdηdη∗=

∫

I

[
(m−w)φ′(w)+

λ

2
D(|w|)2φ′′(w)

]
g(w)dw. (4.12)

Considering that φ∈Fs(I), we can integrate back by parts. This shows that the
right-hand side of (4.12) coincides with the weak form of the Fokker-Planck equation

∂g

∂τ
=

λ

2
∂2

∂w2

(
D(|w|)2g)

+
∂

∂w
((w−m)g). (4.13)

Last, since the solution to the kinetic model conserves mass and momentum, while
the second moment is uniformly bounded in time, conservation of both mass and
momentum pass to the limit. We remark that these conservations are difficult to
prove directly on the Fokker-Planck equation, due to the fact that φ(v)=v does not
belong to Fs(I). Hence we proved:

Theorem 4.2. Let the probability density f0∈M0(I), and let the symmetric random
variable Y which characterizes the kernel have a density in M2+α, with α>δ. Then,
as γ→0, σ→0 in such a way that σ2 =λγ the weak solution to the Boltzmann equation
for the scaled density gγ(v,τ)=f(v,t), with τ =γt converges, up to extraction of a
subsequence, to a probability density g(w,τ). This density is a weak solution of the
Fokker-Planck equation (4.13), and it is such that the average opinion is conserved.
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5. Other Fokker-Planck models of opinion formation
Theorem 4.2 can be generalized in many ways. Always remaining with the simpli-

fication of Remark 3.1, we can choose a general function P (|w|) in the interaction rule
(2.1). The main difference with respect to the proof of Theorem 4.2 is the evaluation
of the first order term into (4.9), which, using the fact that the mean value of Θ is
zero, reads
∫

I2
P (|w|)(w∗−w)φ′(w)g(w)g(w∗)dw∗dw=

∫

I
P (|w|)(m(τ)−w)φ′(w)g(w)dw, (5.1)

where m(τ) is the value of the average opinion at time τ ≥0,

m(τ)=
∫

I
wg(w,τ)dw.

Note that, by (4.5)

m(τ)=
∫

I
wg(w,τ)dw=

∫

I
wf(w,t)dw. (5.2)

Hence by (3.10) the evolution of m(τ) obeys the law

dm(τ)
dτ

=m(τ)
∫

I
P (|w|)g(w,τ)dw−

∫

I
wP (|w|)g(w,τ)dw. (5.3)

Finally, in the limit γ→0 we obtain that g(w,τ) satisfies the Fokker-Planck equation

∂g

∂τ
=

λ

2
∂2

∂w2

(
D(|w|)2g)

+
∂

∂w
(P (|w|)(w−m(t))g). (5.4)

Remark 5.1. The presence of a general propensity function P (|w|) introduces a
difficult to treat nonlinearity into the Fokker-Planck equation. The nonlinearity is
due to the fact that the average opinion is no more constant, and the evaluation of
the drift term requires the evaluation of (5.3).

While to our knowledge the Fokker-Planck equation (5.4) has never been consid-
ered before, linked pure diffusion and drift equations have been recently introduced
in [22]. These equations, in our picture, refer to diffusion dominated (σ2/γ =∞) or
compromise dominated (σ2/γ =0) limits. Looking at the proof of Theorem (4.2), it is
almost immediate to conclude that the diffusion dominated limit takes into account
only the second-order term into the Taylor expansion. To verify this, suppose that

σ2

γα
→λ, α<1.

Then we can set

τ =γαt, g(w,τ)=f(w,t), (5.5)

where now g(w,τ) satisfies

d

dτ

∫

I
g(w)φ(w)dw=

1
γα

∫

I2

∫

B2
Θ(η)Θ(η∗)[(γ(w∗−w)+ηD(|w|))φ′(w)+
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+
1
2
(γ(w∗−w)+ηD(|w|))2φ′′(w)]g(w)g(w∗)dw∗dwdηdη∗+R(γ,σ), (5.6)

with obvious meaning of the remainder. Since α<1, the first order term in the Taylor
expansion vanishes in the limit, and g satisfies the diffusion equation

∂g

∂τ
=

λ

2
∂2

∂w2

(
D(|w|)2g)

. (5.7)

The choice

D(|w|)=
√

1−w2, λ=2, (5.8)

brings to the diffusion equation

∂g

∂τ
=

∂2

∂w2

[
(1−w2)g

]
. (5.9)

This diffusion equation has been derived in a mean field approximation [22] to describe
the evolution of the Sznajd model in Ochrombel simplification [18] on a complete graph
of N nodes in case of two opinions. The same equation has been shown to describe
the former model in case of a large number q of opinions. The variable now represents
the mean distribution of occupation numbers and the limit is taken as both N and q
tend to infinity at the same rate.

Likewise, the compromise dominated (σ2/γ =0) limit can be considered. In this
case,

σ2

γα
→λ, α>1,

and we can set

τ =γt, g(w,τ)=f(w,t). (5.10)

The diffusion part disappears in the limit and we obtain the pure drift equation
∂g

∂τ
=

∂

∂w
(P (|w|)(w−m(t))g). (5.11)

Note that, due to (5.10) the evolution of the mean opinion m(t) obeys the law (5.2).
The choice

P (|w|)=1−w2

has been considered in [22]. In this case

∂g

∂τ
=

∂

∂w

(
(1−w2)(w−m(t))g

)
, (5.12)

where
dm(τ)

dτ
=−m(τ)

∫

I
w2g(w,τ)dw+

∫

I
w3g(w,τ)dw. (5.13)

Thus, our equation differs from the pure drift in magnetization obtained in [22] as the
mean field limit of the Sznajd model [27] in case of two opinions. There the first-order
partial differential equation reads

∂g

∂τ
=− ∂

∂w

(
(1−w2)wg

)
. (5.14)

Note that the sign in front of the drift (5.14) is now opposite to the sign in (5.12),
and the equation is now linear in g, even if the evolution of the mean opinion is not
closed.
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6. Stationary solutions of the Fokker-Planck opinion model
In this Section we analyze in some detail various cases of the interaction dynamics

in the Boltzmann equation from which it is possible to derive a Fokker-Planck equa-
tion with an explicitly computable steady state. The structure of the steady state
then represents the formation of opinion consequent to the choice of the interaction
dynamics. In most cases, we are forced to suppose P (|w|)=1, which implies conser-
vation of the average opinion, and Fokker-Planck (4.13) as underlying quasi-invariant
opinion limit. For any of these choices, we briefly discuss the link between D(|w|) and
the maximal support B of the diffusion variable.

The first model of the diffusion dependence on opinion we propose is

D(|w|)=1−w2.

Since P (|w|)=1, the interaction rules are

w′=w−γ(w−w∗)+η(1−w2)

w′∗=w∗−γ(w∗−w)+η∗(1−w2
∗).

In this case |η|(1+ |w|)≤1−γ implies |w′|≤1. Hence, for a given opinion B=
(−(1−γ)/(1+ |w|),(1−γ)/(1+ |w|)), which shows that when the opinion w is close
to zero and γ is small, the effects of the global access to information can move the
opinion towards extremals. This possibility reduces as soon as |w| increases. The
steady state distribution of opinion is a solution to

λ

2
∂

∂w

(
(1−w2)2g

)
+(w−m)g =0 (6.1)

where m is a given constant (the average initial opinion) −1<m<1. The solution to
(6.1) is easily found as

g∞(w)= cm,λ (1+w)−2+m/(2λ) (1+w)−2−m/(2λ) exp
{
− 1−mw

λ(1−w2)

}
, (6.2)

where the constant cm,λ is such that the mass of g∞ is equal to one. Note that the
presence of the exponential assures that g∞(±1)=0. The solution is regular, but not
symmetric unless m=0. Hence, the initial opinion distribution reflects on the steady
state through the mean opinion. In any case, the stationary distribution has two picks
(on the right and on the left of zero) with intensity depending on λ.

A similar result is expected from the choice

D(|w|)=1−|w|.
As discussed in Section 2 |η|≤1−γ implies |w′|≤1, and B=(−(1−γ),1−γ). Once
more, the support of the random variable, for γ small, covers the whole domain of
opinions. The steady state distribution of opinion is a solution to

λ

2
∂

∂w

(
(1−|w|)2g)

+(w−m)g =0 (6.3)

where m is a given constant (the average initial opinion) −1<m<1. The solution to
(6.1) is easily found as

g∞(w)= cm,λ (1−|w|)−2−2/λ exp
{
−1−mw/|w|

2λ(1−|w|)
}

, (6.4)
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where, as usual, the constant cm,λ is such that the mass of g∞ is equal to one. We
remark that the low regularity of D(|w|) reflects on the steady solution, which has
a jump in w=0. The jump disappears only when the mean m=0, and only in this
case do we have a symmetric distribution. As in the first case, the presence of the
exponential assures us that g∞(±1)=0, and the initial opinion distribution reflects
on the steady state through the mean opinion.

Last, we consider

D(|w|)=
√

1−w2

in the Fokker-Planck model (4.13). The steady state distribution of opinion solves

λ

2
∂

∂w

(
(1−w2)g

)
+(w−m)g =0, (6.5)

and equals

g∞(w)= cm,λ

(
1

1+w

)1−(1+m)/λ(
1

1−w

)1−(1−m)/λ

. (6.6)

As usual, the constant cm,λ is such that the mass of g∞ is equal to one. Since
−1<m<1, g∞ is integrable on I. Differently from the previous cases, however g∞(w)
tends to infinity as w→±1, and it has no peaks inside the interval I. The explanation
comes out from a deep insight into the connection between D(|w|) and the support B
in this case.

It is immediate to verify that, in order to satisfy the constraint in (2.1), one can
not choose directly D(|w|)=

√
1−w2. Within this choice, in fact, choosing w∗=1,

the first equality in (2.1) gives for η the upper bound

η≤ (1−γ)
(1−w)√
1−w2

.

Since the right-hand side converges to zero as w→1, it follows that there is no way to
satisfy the constraint. A different choice which gives in the limit the Fokker–Planck
equation with D(|w|)=

√
1−w2, is the following. For any given γ, we set

D(|w|)=
√

(1−(1+γp)w2)+, p>0,

where f+ denotes as usual the positive part of f , that is f+ =f if f >0, while f+ =0
if f ≤0. In this case, one can show that it is sufficient for η to satisfy the condition

|η|≤aγ =
1−γ√
1+γp

γp/2, (6.7)

to respect the constraint on post-interaction opinions. To give an example, let us
assume that Θ is uniformly distributed on the interval −aγ , aγ . Then σ2 behaves like
γ(3p)/2, and it is enough to set p=2/3 to obtain λ=1. The previous discussion shows
that the choice D(|w|)=

√
1−w2 in the Fokker-Planck equation (4.13) corresponds to

a kinetic interaction in which diffusion is of the order of γp, where p is taken so that
σ2/γ tends to a finite limit λ as γ→0. In this case, the smallness of the interval of
diffusion produces the peaks on w=±1.

A interesting feature of the Fokker-Planck equation

∂g

∂τ
=

λ

2
∂2

∂w2

(
(1−w2)g

)
+

∂

∂w
((w−m)g), (6.8)

is that it leads to close evolution of moments. We remark that equation (6.8) is to be
studied with the conservation of both mass and momentum.
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7. Conclusions
We introduced and discussed here some kinetic models of opinion formation based

on binary interactions involving both compromise and diffusion properties in ex-
changes between individuals. A suitable scaling of compromise and diffusion allows
us to derive Fokker-Planck equations for which it is easy to recover the stationary
distribution of opinion. Among these Fokker-Planck equations, one is emerging (6.8)
and takes the role of the analogous one obtained in [5, 7] for the evolution of wealth.
The main feature of this equation is that moments can be evaluated in closed form.
Further numerical studies are in progress to understand the evolution of opinion den-
sity for various choices of the underlying functions P (|w|) and D(|w|). In particular,
when P (|w|) is not linear, the evolution of moments is far from being completely
understood.
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