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HYBRID MULTISCALE METHODS I. HYPERBOLIC RELAXATION
PROBLEMS∗

GIACOMO DIMARCO† AND LORENZO PARESCHI‡

Abstract. In this paper we consider the development of hybrid numerical methods for the
solution of hyperbolic relaxation problems with multiple scales. The main ingredients in the schemes
are a suitable merging of probabilistic Monte Carlo methods in non-stiff regimes with high resolution
shock capturing techniques in stiff ones. The key aspect in the development of the algorithms is
the choice of a suitable hybrid representation of the solution. After the introduction of the different
schemes the performance of the new methods is tested in the case of the Jin-Xin relaxation system
and the Broadwell model.
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1. Introduction
Hyperbolic systems with relaxation are used to describe many physical problems

that involve both convection and nonlinear interaction [7, 22]. In the Boltzmann
equation from the kinetic theory of rarefied gas dynamics, the collision (relaxation)
term describes the interaction of particles [6]. Relaxations also occur in several other
problems ranging from water waves to traffic flow. In such systems, when the nonlinear
interactions are strong, the relaxation rate is large. In kinetic theory, for example, this
occurs when the mean free path between collisions is small (i.e., the Knudsen number
is small). Within this regime, which is referred to as the fluid dynamic limit, the
gas flow is well described by the Euler or Navier Stokes equations of fluid mechanics,
except in shock layers and boundary layers.

These problems represent a challenge for numerical methods due to the presence
of different time and/or space scales. In these systems, besides conventional deter-
ministic discretizations, a probabilistic approach is highly desirable. Monte Carlo
methods or probabilistic techniques at different levels are widely used to simulate
complex systems [3, 21]. They have many advantages in terms of computational cost
for problems with high dimensions, simplicity in preserving some physical properties
of the underlying problem (typically using a particle interpretation of the statistical
sample) and great flexibility when dealing with complicated geometries.

A characteristic of relaxation-like systems is to present a natural dimension reduc-
tion of the model due to a large variation of some parameters [7, 22, 17, 24]. Domain
decomposition techniques are then used in order to better adapt the modelling strat-
egy and the design of the numerical schemes. However this multi-modelling approach,
which at the mathematical level is a consequence of asymptotic approximations, re-
quires the a-priori knowledge of some of the scales in the problem which are typically
hard to know in practice [1, 19].
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A complementary strategy would be to use the full model in the whole computa-
tional domain and to design the numerical method in such a way that it is capable
of taking advantage of the model reduction induced by the presence of small scales
[4, 14, 15, 16, 23, 25]. Of course this would involve the development of heterogeneous
numerical methods which hybridize different numerical approaches of probabilistic
and deterministic nature.

Often, the design of such hybrid methodology involves not only the use of
hybrid numerical methods but also their efficient coupling with suitable multi-
modelling strategies. Clearly the details of the schemes are rather problem dependent
[5, 8, 26, 27, 18, 30, 31]. We quote the recent works by Weinan E and Bjorn Engquist
for a general approach to heterogeneous multiscale methods in scientific computing
[10, 11, 12].

In this work we describe a methodology that can be applied to design new hybrid
methods for the numerical solution of a wide class of hyperbolic problems that involve
different scales. The main components of the schemes is the use of probabilistic
Monte Carlo methods for the full model (far from equilibrium regimes) combined with
deterministic shock capturing techniques for the reduced one (close to equilibrium
regimes). An essential aspect in the development of the algorithms is the choice of a
suitable hybrid representation of the solution. The main features of the schemes can
be summarized as follows:

• In non stiff regions, where the solution of the full dimensional model is re-
quired, the schemes provide a probabilistic Monte Carlo approximation of the
solution.

• In stiff regions, where the reduced equilibrium model is valid, the schemes
provide a deterministic high order finite volumes (differences) approximation
without any time step restrictions induced by the small relaxation rate.

• In intermediate regions, the approximated solution is generated automati-
cally by the schemes as a suitable blending of a nonequilibrium probabilistic
component and an equilibrium deterministic component.

The rest of the article is organized as follows. First we introduce the model
problems we are considering. Then we present the different schemes in the case of the
Jin-Xin relaxation system. Next we apply the method to the more realistic case of the
Broadwell model. Some final considerations and future developments are discussed in
the last section.

2. Hyperbolic relaxation systems
We will consider here one-dimensional hyperbolic systems with relaxation of the

form [7]

∂tU +∂xF (U)=
1
ε
R(U), x∈R, (2.1)

where U =U(x,t)∈RN , F :RN →RN , the Jacobian matrix F ′(U) has real eigenvalues
and ε>0 is the relaxation time.

The operator R :RN →RN is said to be a relaxation operator, and consequently
(2.1) defines a relaxation system in the sense of Whitham and Liu [22], if there exists
a constant n×N matrix Q with rank(Q)=n<N such that

QR(U)=0 ∀U ∈RN . (2.2)

This gives n independent conserved quantities v =QU . Moreover such conserved
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quantities uniquely determine a local equilibrium value

U =E(v) such that R(E(v))=0. (2.3)

The image of E represents the manifold of local equilibria of the relaxation operator
R. Using (2.2) in (2.1) we obtain a system of n conservation laws which is satisfied
by every solution of (2.1)

∂t(QU)+∂x(QF (U))=0. (2.4)

For small values of the relaxation parameter ε from (2.1) we get R(U)=0 which by
(2.3) implies U =E(v). In this case system (2.1) is well approximated by the reduced
system

∂tv+∂xG(v)=0, (2.5)

where G(v)=QF (E(v)).

Remark 2.1. Following the terminology introduced in [10, 11, 12] the macroscale
process is described by the conserved quantities v whereas the microscopic process is
described by the variables U . The two processes and state variables are related to each
other by compression and reconstruction operators, characterized respectively by the
matrices Q and M such that QU =v and Mv =U , with the property QM = I, where
I is the n-dimensional identity matrix. The compression operator is in general a
local/ensemble average (projection to low order moments). The reconstruction oper-
ator does the opposite and in general it is under-determined, except close to the local
equilibrium state when R(U)=0 implies U =E(v).

2.1. Jin-Xin relaxation system. A simple prototype example of a relaxation
system in the case N =2 is given by the Jin-Xin system [17]

∂tu+∂xv =0,

∂tv+∂xau=−1
ε
(v−F (u)), (2.6)

which corresponds to taking U =(u,v)T , F (U)=(v,au)T and R(U)=(0,F (u)−v)T .
For small values of ε from the second equation in (2.6) we get the local equilibrium

v =F (u) (2.7)

and under Liu’s subcharacteristic condition a>F ′(u)2 solutions to (2.6) converges to
the solution of the scalar conservation law

∂tu+∂xF (u)=0. (2.8)

2.2. Broadwell model. A simple discrete velocity kinetic model for a gas
was introduced by Broadwell [2]. It describes a fictitious gas composed of particles
with only six (four) velocities in the 3D (2D) velocity space. In one space dimension
these models read

∂tf +∂xf =
1
ε
(h2−fg),

∂tg−∂xg =
1
ε
(h2−fg),

∂th=− 1
αε

(h2−fg), (2.9)
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where ε is the mean free path, f , h, and g denote the mass densities of gas particles
with speed 1, 0, and −1, respectively, and α=1 for the 2D model and α=2 for the 3D
one. The fluid dynamic moment variables are density % , momentum m, and velocity
u defined by

%=f +2αh+g, m=f−g, u=
m

%
. (2.10)

In addition define

z =f +g. (2.11)

Then the Broadwell equations can be rewritten as

∂t%+∂xm=0,

∂tm+∂xz =0,

∂tz+∂xm=− 1
2α2ε

(%2 +(1−α2)z2 +α2m2−2%z). (2.12)

Note that if the fluid variables % , m, and z are known then f , g, and h can be
recovered as

f =
1
2
(z+m), g =

1
2
(z−m), h=

1
2α

(%−z). (2.13)

A local equilibrium is obtained when the state variables satisfy

%2 +(1−α2)z2 +α2m2−2%z =0, (2.14)

which gives

z =zE(%,u)=





%

3
(2

√
3u2 +1−1), α=2,

1
2
%(1+u2), α=1.

(2.15)

Thus as ε→0 one gets the fluid dynamic limit described by the set of Euler equations

∂t%+∂x(%u)=0,

∂t(%u)+∂xzE(%,u)=0. (2.16)

To the next order, a model Navier-Stokes equation can be derived via the Chapmann-
Enskog expansion. For a description of the Broadwell model and its fluid dynamic
limit see, for example [2].

3. Hybrid methods
The starting point in the construction of the methods is the following definition

of a hybrid representation of a discrete probability density.

Definition 3.1. Given a discrete probability density pi, i=1,... ,N (i.e. pi≥0,∑
ipi =1) and a discrete probability density Ei, i=1,.. .,N called equilibrium density,

we define wi∈ [0,1] and p̃i≥0 in the following way

wi =

{ pi

Ei
, pi≤Ei 6=0

1, pi≥Ei

(3.1)
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pi(xj)

Ei(xj)

xj−1/2 xj+1/2

equilibriumequilibrium

nonequilibrium

Fig. 2.1. Hybrid representation of a cell value.

and

p̃i =pi−wiEi. (3.2)

Thus pi can be represented as

pi = p̃i +wiEi. (3.3)

Remark 3.1. If we take

β =min
i
{wi}, (3.4)

and

p̃i =pi−βEi, (3.5)

we have
∑

i

p̃i =1−β. (3.6)

Let us define for β 6=1 the discrete probability density

pp
i =

p̃i

1−β
.

The case β =1 is trivial since it implies pi =Ei, i=1,.. .,N . Thus the discrete proba-
bility density pi, i=1,... ,N can be written as a convex combination of two probability
densities in the form [26, 27]

pi =(1−β)pp
i +βEi. (3.7)

Clearly the above representation is a particular case of (3.3).
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In the case of a hyperbolic system with relaxation we recall that U(x,t)∈RN

denotes the solution of the system whereas E(v(x,t))∈RN denotes the equilibrium
state where v(x,t)∈Rn are the conserved variables.

Thus we consider the following general representation

U(x,t)= Ũ(x,t)︸ ︷︷ ︸
nonequilibrium

+W (x,t)E(v(x,t))︸ ︷︷ ︸
equilibrium

,

where W (x,t)=diag(w1(x,t),w2(x,t),.. .,wN (x,t)), 0≤wi(x,t)≤1 is a N×N matrix
that characterizes the equilibrium fraction and Ũ(x,t) the non equilibrium part of the
solution.

The general methodology consists of:
• Solving the evolution of the non-equilibrium part by Monte Carlo methods.

Thus Ũ(x,t) will be represented by a set of samples in the computational
domain.

• Solving the evolution of the equilibrium part by deterministic methods. Thus
W (x,t)E(v(x,t)) will be represented on a suitable grid in the computational
domain.

In the sequel, we will describe the different schemes in the case of the Jin-Xin
relaxation system (2.6) although our treatment extends far beyond this simple sys-
tem. In order to introduce the reader to the main tools used we start the section by
describing a simple Monte Carlo approach where the entire solution is represented by
samples [29].

3.1. Monte Carlo methods (MCM). First we rewrite the system in diagonal
form

∂tf +
√

a∂xf =−1
ε
(f−Ef (u))

∂tg−
√

a∂xg =−1
ε
(g−Eg(u)).

f =
√

au+v

2
√

a
, g =

√
au−v

2
√

a
,

Ef (u)=
√

au+F (u)
2
√

a
, Eg(u)=

√
au−F (u)

2
√

a
.

We assume −u
√

a≤F (u)≤u
√

a and u≥0 so that f,g≥0. This is guaranteed by
the subcharacteristic condition if F (0)=0.

We start by splitting the system in the two separate steps, a relaxation step
represented by a system of stiff ordinary differential equations

∂tf
r =−1

ε
(fr−Ef (ur))

∂tg
r =−1

ε
(gr−Eg(ur))

and a convection step

∂tf
c +

√
a∂xfc =0

∂tg
c−√a∂xgc =0.
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Note that, given an initial data f(x,0) and g(x,0), we can easily compute the exact
solution of the relaxation step as

fr(x,t)=e−t/εf(x,0)+(1−e−t/ε)Ef (u(x,0)), (3.8)

gr(x,t)=e−t/εg(x,0)+(1−e−t/ε)Eg(u(x,0)). (3.9)

This solution is then used as initial data for the transport step to get the approximate
solution at time t. We recall that ur(x,t)=u(x,0) during the relaxation step.

In the case of nonnegative initial data and if Ef ,Eg≥0, the solution of our prob-
lem can be sought in the form of a discrete probability density at each space point

p(x,v,t)=





f(x,t)
u(x,t)

, v =
√

a,

g(x,t)
u(x,t)

, v =−√a.
(3.10)

Let us define with {ν1,ν2,... ,νN} the initial samples from p(x,v,0) at a given
space point x, we know that νk =±√a, k =1,... ,N . Hence a Monte Carlo method
to obtain samples from pr(x,v,t) with fr(x,t) and gr(x,t) solutions of the relaxation
step is:

Algorithm 3.1 (Simple Monte Carlo for the Jin-Xin relaxation system).
1. Given a sample νk

(a) with probability e−t/ε the sample is unchanged
(b) with probability 1−e−t/ε the sample is replaced with an equilibrium sam-

ple. To extract an equilibrium sample proceed as follows

i. with probability
Ef (u(x,0))

u(x,0)
take νk =

√
a

ii. with probability
Eg(u(x,0))

u(x,0)
take νk =−√a.

Note that the above procedure requires the exact knowledge of u(x,0) which we
can only estimate from the samples at the given point x.

In practice we can integrate equations (3.8-3.9) over the cell Ij and write, up to
second order accuracy in space, the time evolution of the cell averages

fr
j+1/2(t)=e−t/εfj+1/2(0)+(1−e−t/ε)Ef (uj+1/2(0)), (3.11)

gr
j+1/2(t)=e−t/εgj+1/2(0)+(1−e−t/ε)Eg(uj+1/2(0)). (3.12)

Thus we can apply Algorithm 3.1 to the whole set of samples in the space interval
associated by the reconstruction of uj+1/2(0). The simplest method, which produces a
piecewise constant reconstruction, is based on evaluating the histogram of the samples
on the grid. Given a set of N samples p1,p2,... ,pN we define the discrete probability
density at the cell centers

p(xj+1/2)=
1
N

N∑

k=1

Ψ∆x(pk−xj+1/2), j = ... ,−2,−1,0,1,2,.. . (3.13)

where Ψ∆x(x)=1/∆x if |x|≤∆x/2 and Ψ∆x(x)=0 elsewhere.
Let us denote by the index k the sample νk and its position χk. If we use equations

(3.13) then uj+1/2 is given by the number of samples Nj belonging to the cell Ij

uj+1/2 =
1

N∆x

∑

χk∈Ij

1=
Nj

N∆x
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and the Monte Carlo procedure is applied to such a set of samples {νk |χk ∈ Ij}. In
this case, when we extract a new equilibrium sample νk in the cell Ij its position χk

is taken as uniformly distributed in the cell. We refer the reader to [28] (and the
references therein) for an introduction to basic sampling and different reconstruction
techniques with Monte Carlo methods.

Finally the transport step does not present any difficulty and can be applied
without any need of meshes or reconstructions. In fact, from the exact expression of
the solution fc(x,t)=fr(x−√at,t), gc(x,t)=gr(x+

√
at,t) we simply need to shift

the position of the samples according to the law

χk =χk +νkt, ∀k. (3.14)

In the sequel we will use the terminology “particle” to denote the pair (χk,νk) char-
acterizing the sample νk and its position χk.

The method described above deserves some remarks.

Remark 3.2.
• One important aspect of the method is that we do not need to reconstruct the

functions f and g but only the conserved quantity u. This is of paramount
relevance when dealing with very large systems, as in kinetic equations.

• The Monte Carlo scheme is conservative and preserves positivity of the solu-
tion without any time step limitation. Note that as ε→0 the method becomes a
Monte Carlo algorithm for the limiting scalar conservation law. This limiting
method is the analogue of a kinetic particle method for the scalar conservation
law [29].

• The simple splitting method we have described here is first order in time.
Second order Strang splitting can be implemented similarly.

3.2. The hybrid method (HM). The standard hybrid method is based on
the hybrid representation (3.7). Thus we assume our solution with the form

f(x,t)=(1−β(x,t))fp(x,t)+β(x,t)Ef (u(x,t)), (3.15)
g(x,t)=(1−β(x,t))gp(x,t)+β(x,t)Eg(u(x,t)). (3.16)

From the exact solution of the relaxation step (3.8) if we consider that initially

f(x,0)=(1−β(x,0))fp(x,0)+β(x,0)Ef (u(x,0)),
g(x,0)=(1−β(x,0))gp(x,0)+β(x,0)Eg(u(x,0))

we obtain the identities

fr(x,t)=(1−βr(x,t))fr
p (x,t)+βr(x,t)Ef (ur(x,t))

=e−t/ε[(1−β(x,0))fp(x,0)+β(x,0)Ef (u(x,0))]+

+(1−e−t/ε)Ef (u(x,0)),
gr(x,t)=(1−βr(x,t))gr

p(x,t)+βr(x,t)Eg(ur(x,t))

=e−t/ε[(1−β(x,0))gp(x,0)+β(x,0)Eg(u(x,0))]+

+(1−e−t/ε)Eg(u(x,0)).

By equating the equilibrium terms and the non equilibrium ones in the above equa-
tions and using the fact that ur(x,t)=u(x,0) we obtain the evolution for the unknowns
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fr
p (x,t), gr

p(x,t) and βr(x,t)

fr
p (x,t)=fp(x,0), gr

p(x,t)=gp(x,0). (3.17)

βr(x,t)=e−t/εβ(x,0)+1−e−t/ε. (3.18)

Note that βr(x,t)→1 as ε→0. If we start from β(x,0)=0 (all particles) at the
end of the relaxation a fraction 1−e−t/ε of the particles is discarded by the method as
the effect of the relaxation to equilibrium. Thus particles will represent the fractions
(1−βr(x,t))fr

p (x,t) and (1−βr(x,t))gr
p(x,t). Moreover the hybrid representation is

naturally kept by the relaxation.
After relaxation the exact solution of the transport step reads

fc(x,t)=(1−βc(x,t))fc
p(x,t)+βc(x,t)Ef (uc(x,t))=fr(x−√at,t)

=(1−βr(x−√at,t))fr
p (x−√at,t)+

+βr(x−√at,t)Ef (u(x−√at,0))

gc(x,t)=(1−βc(x,t))gc
p(x,t)+βc(x,t)Ef (uc(x,t))=gr(x+

√
at,t)

=(1−βr(x+
√

at,t))gr
p(x+

√
at,t)+

+βr(x+
√

at,t)Eg(u(x+
√

at,0)). (3.19)

To simplify notations let us set

f∗p (x,t)=(1−βr(x−√at,t))fr
p (x−√at,t),

E∗
f (x,t)=βr(x−√at,t)Ef (u(x−√at,0)),

g∗p(x,t)=(1−βr(x+
√

at,t))gr
p(x+

√
at,t),

E∗
g (x,t)=βr(x+

√
at,t)Eg(u(x+

√
at,0)).

Unfortunately now the hybrid structure of the solution is not kept since E∗
f (x,t) and

E∗
g (x,t) are not equilibrium states. For example the above set of equations can be

solved taking

βc(x,t)=0, (3.20)

and

fc(x,t)=f∗p (x,t)+E∗
f (x,t), (3.21)

gc(x,t)=g∗p(x,t)+E∗
g (x,t). (3.22)

Thus we need to resample the whole deterministic fraction E∗
f (x,t) and E∗

g (x,t).
Note however that if we move one step t1 further in the relaxation using fc(x,t)

and gc(x,t) defined above as initial data we have βr(x,t+ t1)=1−e−t1/ε and

fr(x,t+ t1)=(1−βr(x,t+ t1))fr
p (x,t+ t1)+

+βr(x,t+ t1)Ef (ur(x,t+ t1))

=e−t1/εfc(x,t)+(1−e−t1/ε)Ef (uc(x,t))

=e−t1/ε(f∗p (x,t)+E∗
f (x,t))+(1−e−t1/ε)Ef (uc(x,t)), (3.23)

gr(x,t+ t1)=(1−βr(x,t+ t1))gr
p(x,t+ t1)+

+βr(x,t+ t1)Eg(ur(x,t+ t1))

=e−t1/εgc(x,t)+(1−e−t1/ε)Eg(uc(x,t))

=e−t1/ε(g∗p(x,t)+E∗
g (x,t))+(1−e−t1/ε)Eg(uc(x,t)). (3.24)
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Thus, in practice, we can avoid resampling particles after the convection and apply
the resampling only on a fraction e−t1/ε of the deterministic fraction as needed by the
relaxation. More precisely taking cell averages of (3.23)-(3.24) as in a standard Monte
Carlo method, and using equations (3.13) for the reconstruction as shown later, the
algorithm to compute the particles that represent the fractions e−t1/εfc

j+1/2(t) and
e−t1/εgc

j+1/2(t) reads as follows:

Algorithm 3.2 (Hybrid Monte Carlo for Jin-Xin relaxation).

1. Given m=
∆x

N

∑

j

uc
j+1/2(t)

2. for each interval Ij, j = ...,−2,−1,0,1,2,.. .
(a) set βj =1−e−t1/ε

(b) set Nj =Iround
(

(1−βj)
∆x

m
uc

j+1/2(t)
)

(c) set Pj =
u∗p,j+1/2(t)

u∗p,j+1/2(t)+u∗E,j+1/2(t)
,

with u∗p,j+1/2(t)=f∗p,j+1/2(t)+g∗p,j+1/2(t)
and u∗E,j+1/2(t)=E∗

f,j+1/2(t)+E∗
g,j+1/2(t)

(d) for k =1,... ,Nj

with probability Pj take (νk,χk) as one of the advected particles.
with probability 1−Pj take one sample νk from the deterministic frac-
tion. To extract such a sample do the following

i. with probability
E∗

f,j+1/2(t)

u∗E,j+1/2

take νk =
√

a

ii. with probability
E∗

g,j+1/2(t)

u∗E,j+1/2(t)
take νk =−√a

iii. take χk uniformly distributed in Ij.
After this the hybrid solution is computed simply adding the deterministic terms

βjEf (uc
j+1/2(t)), βjEg(uc

j+1/2(t))

to the stochastic terms

(1−βj)fr
p,j+1/2(t)=

m

∆x
N+

j , (1−βj)gr
p,j+1/2(t)=

m

∆x
N−

j

where N+
j and N−

j are the number of samples in cell Ij equal to
√

a and −√a respec-
tively.

This permits us to avoid inefficient discard-resample procedures for small values
of ε. For example, as ε→0 we do not perform any resampling at all, and we obtain
a relaxation scheme for the limiting scalar conservation law.

Remark 3.3.
• The convection part corresponding to f∗p (x,t) and g∗p(x,t) is solved exactly

by the transport of particles as in a full Monte Carlo method. Instead the
convection part corresponding to E∗

f (x,t) and E∗
g (x,t) can be solved by finite

volumes or finite differences since it corresponds to solving the convection step
with initial data f(x,0)=βr(x,t)Ef (u(x,0)) and g(x,0)=βr(x,t)Eg(u(x,0)).

• In contrast to the simple Monte Carlo method positivity of the hybrid solution
and presence of time step restrictions depend on the deterministic scheme
used to solve the convection part for E∗

f (x,t) and E∗
g (x,t).
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• Note that the effective value of βj used in the above algorithm differs from
1−e−t1/ε. In fact if N c

j denotes the number of particles in cell j after the
convection step, during the relaxation we keep only an integer approximation
Nβ

j of (1−βj)N c
j . The effective value of βj can then be computed at the end

of the algorithm as

βE
j =1−Nβ

j

N c
j

.

3.3. A Componentwise hybrid method (CHM). A better approach would
consist in finding the maximum value of βc(x,t)>0 in order to maximize the deter-
ministic fraction in equations (3.19). In order to achieve this goal we consider the
componentwise hybrid representation

f(x,t)= f̃(x,t)+wf (x,t)Ef (u(x,t)), (3.25)
g(x,t)= g̃(x,t)+wg(x,t)Eg(u(x,t)). (3.26)

The relaxation step now leads to

fr(x,t)= f̃r(x,t)+wr
f (x,t)Ef (ur(x,t))

=e−t/ε[f̃(x,0)+wf (x,0)Ef (u(x,0))]+

+(1−e−t/ε)Ef (u(x,0)),
gr(x,t)= g̃r(x,t)+wr

g(x,t)Eg(ur(x,t))

=e−t/ε[g̃(x,0)+wg(x,0)Eg(u(x,0))]+

+(1−e−t/ε)Eg(u(x,0)).

Again by equating the equilibrium terms and the non equilibrium ones in the above
equations we obtain the evolution for the unknowns f̃r(x,t), g̃r(x,t), wr

f (x,t) and
wr

g(x,t)

f̃r(x,t)=e−t/εf̃(x,0), wr
f (x,t)=e−t/εwf (x,0)+1−e−t/ε, (3.27)

g̃r(x,t)=e−t/εg̃(x,0), wr
g(x,t)=e−t/εwg(x,0)+1−e−t/ε . (3.28)

As before the hybrid representation is kept by the relaxation process. The only
difference with respect to the HM method is that we discard particles from f and g
with different ratios.

The convection destroys the structure of the solution and we get

fc(x,t)= f̃c(x,t)+wc
f (x,t)Ef (uc(x,t))=fr(x−√at,t)

= f̃r(x−√at,t)+wr
f (x−√at,t)Ef (u(x−√at,0)) (3.29)

gc(x,t)= g̃c(x,t)+wc
g(x,t)Ef (uc(x,t))=gr(x+

√
at,t)

= g̃r(x+
√

at,t)+wr
g(x+

√
at,t)Eg(u(x+

√
at,0)). (3.30)

To simplify notations let us set

f∗p (x,t)= f̃r(x−√at,t), Ẽf (x,t)=wr
f (x−√at,t)Ef (u(x−√at,0)),

g∗p(x,t)= g̃r(x+
√

at,t), Ẽg(x,t)=wr
g(x+

√
at,t)Eg(u(x+

√
at,0)).
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Here we do not assume wc
f (x,t)=0, wc

g(x,t)=0 since we want to take advantage of the
componentwise hybrid representation in order to maximize the deterministic fraction
of the solution. Thus, starting from the deterministic fractions Ẽf (x,t) and Ẽg(x,t)
defined above we construct the new values of wc

f (x,t), f̃c(x,t), wc
g(x,t) and g̃c(x,t)

using Definition 3.1.
More precisely we define

wc
f (x,t)=





Ẽf (x,t)
Ef (uc(x,t))

, Ẽf (x,t)≤Ef (uc(x,t)) 6=0

1, Ẽf (x,t)≥Ef (uc(x,t))
(3.31)

and

E∗
f (x,t)= Ẽf (x,t)−wc

f (x,t)Ef (uc(x,t)). (3.32)

In this way we obtain

f̃c(x,t)=f∗p (x,t)+E∗
f (x,t). (3.33)

Note that if Ẽf (x,t)≤Ef (uc(x,t)) 6=0 we have f̃c(x,t)=f∗p (x,t) and thus we keep all
of the deterministic fraction. Similarly we compute wc

g(x,t) and g̃c
p(x,t).

The next relaxation step then applies straightforwardly using directly Algorithm
3.2 on cell averages. In fact moving one step further we have

fr(x,t+ t1)= f̃r(x,t+ t1)+wr
f (x,t+ t1)Ef (ur(x,t+ t1))

=e−t1/εfc(x,t)+(1−e−t1/ε)Ef (uc(x,t))

=e−t1/ε(f∗p (x,t)+E∗
f (x,t)+wf (x,t)Ef (x,t))+

+(1−e−t1/ε)Ef (uc(x,t)) (3.34)
gr(x,t+ t1)= g̃r(x,t+ t1)+wr

gEg(ur(x,t+ t1))

=e−t1/εgc(x,t)+(1−e−t1/ε)Eg(uc(x,t))

=e−t1/ε(g∗p(x,t)+E∗
g (x,t)+wg(x,t)Eg(x,t))+

+(1−e−t1/ε)Eg(uc(x,t)). (3.35)

The only difference is that now the final hybrid solution is recovered adding the
deterministic terms

((1−βj)wf (xj+1/2,t)+βj)Ef (uc
j+1/2(t)),

((1−βj)wg(xj+1/2,t)+βj)Eg(uc
j+1/2(t))

in each cell.

Remark 3.4. If we define after the convection step

βc(x,t)=min{wc
f (x,t),wc

g(x,t)}, (3.36)

we maximize the common value of βc such that the standard hybrid method applies.
This is particularly relevant in many applications where it is important that the hybrid
decomposition is component independent, for example, for more general relaxation
terms.



GIACOMO DIMARCO AND LORENZO PARESCHI 167

4. Implementation and numerical tests
In this section we report some numerical results for the different schemes consid-

ered. We use the shorthand MCM, HM1, HM2 and CHM to denote the Monte Carlo
Method, the Hybrid Method with the choices (3.20) and (3.36) respectively, and the
Componentwise Hybrid Method.

4.1. High resolution scheme for the equilibrium component. In order
to compute the evolution of the deterministic part of the solution in all the hybrid
methods we use a second order MUSCL type scheme based on cell averages [20]. The
second order scheme is defined taking as a flux

Fj(xi)=
fj(xi−j+2)−fj(xi−j+1)

4x
φ(θj(xi)) (4.1)

where φj is the limiter function

φj =φ(θj), θj(xi)= [
fj(xi)−fj(xi−1)
fj(xi+1)−fj(xi)

]ij .

For example the so-called ”superbee” of Roe

φ(θ)=max(0,min(1,2θ),min(θ,2)).

Finally the scheme for the convection step is defined as

f
n+1/2
j (xi)=fn

j (xi)+η(fn
j (xi+ij )−fn

j (xi))−

+ ij
η(1−η)

2
[Fn

j (xi+ij )4x−Fn
j (xij )4x], j =1,2 (4.2)

where η = 4t
4x and ij =(−1)j . As ε→0 the relaxation step becomes a projection step

and thus we obtain a second order in space, first order in the time relaxation scheme
[17] for the limiting scalar conservation law. Extension to the multidimensional case
can be done as usual dimension by dimension.

4.2. Jin-Xin system. In all tests we take initially the solution represented by
samples and F (u)=u2/2 (thus as ε→0 we have the Burgers equation). We consider
the following test cases with periodic boundary conditions.

4.2.1. 1D case. First we consider a one-dimensional test problem with initial
data

u(x,0)=
1
4
(2+sin(2πx)−sin(πx)), x∈ [−1,1], t∈ [0,1]. (4.3)

We report the numerical solution for different values of the relaxation parameter
ε=0.1, 0.01, 0.001 with 200 grid points starting initially with N =103 particles. The
particle solution has been reconstructed using the simple formula (3.13). The final
computing times are given in the figures captions (see Figure 4.1 and Figure 4.2). We
also compute the L1 norm of the error in time using a finite difference solution on a
very fine mesh(six times the mesh of the methods) as a reference result (see Figure
4.3).

In the same figure the number of particles as a function of time is also given. The
variance reduction of hybrid methods with respect to standard MCM is evident. In
particular HM2 and CHM have the better efficiency and accuracy properties (note
that the results of these two methods are very similar for ε=0.01 and ε=0.001).
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Fig. 4.1. 1D case: Solution at t=1 with ε=0.1 (top), ε=0.01 (middle) and ε=0.001 (bottom)
for MCM (left) and HM1 (right), with initial data (4.3). Particle solution (·), equilibrium solution
(dashed line) and hybrid solution (◦). The solid line represents a fully resolved numerical solution.

4.2.2. 2D case. Next we consider the 2D case

∂tu+∂xv+∂yw=0,

∂tv+∂xp(u)=−1
ε
(v−F (u)),

∂tw+∂yq(u)=−1
ε
(w−G(u)), (4.4)

with F (u)=G(u)=u2/2. For ε→0 we obtain the 2D Burgers equation
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Fig. 4.2. 1D case: Solution at t=1 with ε=0.1 (top), ε=0.01 (middle) and ε=0.001 (bottom)
for HM2 (left) and CHM (right), with initial data (4.3). Particle solution (·), equilibrium solution
(dashed line) and hybrid solution (◦). The solid line represents a fully resolved numerical solution.

∂tu+∂x
u2

2
+∂y

u2

2
=0. (4.5)

We consider periodic boundary conditions and initial data

u(x,y)=sin(πx)2 sin(πy)2, (x,y)∈ [0,1]2.

First we report the result for the three hybrid methods for ε=0.1 and ε=0.01
using a 40×40 mesh. The initial data is represented by N =8×104 particles. The
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Fig. 4.3. 1D case: Number of particles (left) and relative L1-error in time (right) for ε=0.1
(top), ε=0.01 (middle) and ε=0.001 (bottom), for (4.3) initial data.

results and the final computation times are shown in Figure 4.4 for ε=0.1 and in
Figure 4.5 for ε=0.01. We omit the results for the HM2 method since they are very
similar to the results of CHM.

Finally we also report the result obtained for ε=10−6 with a 80×80 mesh (Figure
4.6). In this latter case, due to the small value of ε all hybrid methods yield essentially
the same result corresponding to the second order relaxation scheme for the limiting
equation.
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Fig. 4.4. 2D case: Solution at t=0.5 with ε=0.1 for MCM (top) HM1 (middle) and CHM
(bottom).

4.3. Broadwell models. The extension of the above schemes to the case of
the Broadwell model equations does not present any particular difficulty and we omit
the details. We solve the Broadwell equations with α=1, corresponding to the four
velocity reduced Broadwell models, with the following initial data

ρ(x,0)=2 m=1 z =1 x<0,

ρ(x,0)=1 m=0.13692 z =1 x>0.
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Fig. 4.5. 2D case: Solution at t=3 with ε=0.01 for MCM (top) HM1 (middle) and CHM
(bottom).

We integrate over the domain [−1,1] with a reflecting boundary condition. We use
100 grid points for ε=1 and ε=0.02 and 200 grid points for ε=0.001 starting initially
with N =3×103 particles. The reference solution is obtained using a second order
finite difference solver with six times the cells number of the computed hybrid solution.

We report the results obtained with the different hybrid methods and the Monte
Carlo method (MCM) depicted with the reference solution. Note that the initial
datum for z is not a local equilibrium, which yields an initial layer. First we consider
the case ε=1 ( Figure 4.7) corresponding to a non-stiff (rarefied) regime where all
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Fig. 4.6. 2D case: Solution at t=3 with ε=10−6 for HM methods.
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Fig. 4.7. The numerical solutions of Broadwell equations for %=(◦), m=(+) and z(∗) with
MCM (top left) HM1 (top right) HM2 (bottom left) CHM (bottom right) for ε=1. The solid line
represents a fully resolved numerical solution.

the hybrid methods give a very similar result to MCM. In fact, we are far from the
local thermal equilibrium and the solution is represented mostly by samples in all
schemes. In the intermediate regime ( Figure 4.8, where ∆x, ∆t and ε are of the same
order, the methods give different results, in particular HM1 is very close to MCM,
whereas HM2 and CHM provide a more accurate solution with fewer fluctuations
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Fig. 4.8. The numerical solutions of Broadwell equations for %=(◦), m=(+) and z(∗) with
MCM (top left) HM1 (top right) HM2 (bottom left) CHM (bottom right) for ε=0.02. The solid line
represents a fully resolved numerical solution.

due to the stochastic component of the solution. The small hump that is possible to
notice near x=−0.2 is part of the exact solution. It is due to the fact that the initial
condition represents an exact traveling shock wave for the relaxed system. Finally
we consider the stiff regime ε=10−6 (Figure 4.9), corresponding to the Euler limit
where the solution is a shock wave moving right with speed s=0.86038 determined
by the Rankine-Hugoniot jump condition. In this latter case all hybrid methods give
essentially the same result due to the high resolution second order deterministic solver.

5. Conclusion
In this paper we have considered the development of hybrid methods for mul-

tiscale problems. Here we restricted our analysis to the case of hyperbolic systems
with relaxation. The general methodology is based on a suitable blending of parti-
cle representation of the non-equilibrium part of the solution with a finite difference
or finite volume approximation of the equilibrium part. In order to better explain
the structure of the schemes we considered applications to simple relaxation systems.
Several numerical results show the efficiency of the schemes and their ability to merge
correctly the probabilistic and the deterministic fraction of the solution. The schemes
here presented rely on a relaxed scheme as deterministic solver and on a kinetic-like
interpretation of the hyperbolic system for the Monte Carlo solver. In summary we
can say that all hybrid methods presented here have better computational efficiency
and accuracy properties of a full particle solver. The gain in efficiency and accuracy
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Fig. 4.9. The numerical solutions of Broadwell equations for %=(◦), m=(+) and z(∗) with
MCM (top left) HM1 (top right) HM2 (bottom left) CHM (bottom right) for ε=10−6. The solid
line represents a fully resolved numerical solution.

is inversely proportional to the relaxation parameter ε. Among hybrid methods, the
HM2 scheme, due to its generality, represents the most promising method for realistic
applications.

Several interesting questions remain open among which we mention:
• Inclusion in the schemes of a more general fluid solver.
• Extension of the present methods to kinetic equations and other multiscale

problems such as diffusive limits.
• Convergence and error estimates for the hybrid schemes.

Finally let us mention that the examples presented here refer to unsteady prob-
lems. In many applications (for example in kinetic theory) the problems are mostly
steady state. Similarly to Monte Carlo methods, suitable averaging procedures in
time on the stochastic fraction of the hybrid methods may be used in such cases to
speed up convergence.

The prospects in these directions are encouraging and we hope to present more
challenging results in the near future [9].
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