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GAUGE METHOD FOR VISCOUS INCOMPRESSIBLE FLOWS∗

WEINAN E† AND JIAN–GUO LIU‡

Abstract. We present a new formulation of the incompressible Navier-Stokes equation in terms
of an auxiliary field that differs from the velocity by a gauge transformation. The gauge freedom
allows us to assign simple and specific boundary conditions for both the auxiliary field and the gauge
field, thus eliminating the issue of pressure boundary condition in the usual primitive variable for-
mulation. The resulting dynamic and kinematic equations can then be solved by standard methods
for heat and Poisson equations. A normal mode analysis suggests that in contrast to the classi-
cal projection method, the gauge method does not suffer from the problem of numerical boundary
layers. Thus the subtleties in the spatial discretization for the projection method are removed. Con-
sequently, the projection step in the gauge method can be accomplished by standard Poisson solves.
We demonstrate the efficiency and accuracy of the gauge method by several numerical examples,
including the flow past cylinder.

1. The gauge formulation
In this paper, we introduce a new formulation of the incompressible Navier-Stokes

equation and demonstrate that this new formulation is particularly suited for numer-
ical purpose. We start with the classical formulation of the Navier-Stokes equation:

{
ut + (u · ∇)u +∇p = 1

Re4u
∇ · u = 0 (1.1)

on Ω, where u = (u, v) is the velocity and p is the pressure, with the simplest physical
boundary condition:

u = 0 (1.2)

at Γ = ∂Ω. By taking the divergence of the momentum equation one can obtain a
Poisson equation for pressure:

−4p = ∇ · (u · ∇u) (1.3)

This can be thought of as a replacement for the incompressibility condition. The
task of solving (1.1) would become much easier if we could attach a simple boundary
condition to this equation. Unfortunately, the most natural candidate obtained from
extending (1.1) to the boundary:

∂p

∂n
= n · 4u (1.4)

involves evaluating the viscous term at the boundary. Not only is it difficult to
enforce this condition accurately, but maintaining consistency between (1.3) and (1.4)
(since this is a Neumann problem) in a discrete setting is also very difficult. As a
result, a projection method was invented to by-pass the issue of the pressure boundary
condition [3, 15, 10]. The price paid is that special discretization schemes have to
be used to discretize the pressure Poisson equation. This greatly limits the simplicity
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318 GAUGE METHOD FOR INCOMPRESSIBLE FLOWS

and flexibility of the projection method. This issue and a careful comparison between
the projection method and the gauge method proposed in this paper will be addressed
in Section 3.

The starting point of the gauge method is to replace pressure by a gauge variable
φ, and introduce the auxiliary field a = u +∇φ, and replace (1.1) by

at + (u · ∇)u =
1

Re
4a (1.5)

and

4φ = ∇ · a (1.6)

It is easy to see that (1.1) and (1.5-1.6) are equivalent, and φ is related to the pressure
by

p = ∂tφ− 1
Re
4φ (1.7)

The main advantage of this formulation is that we can use the gauge freedom to
assign an unambiguous boundary condition for a and φ. Corresponding to
(1.2), we can either prescribe:

∂φ

∂n
= 0, a · n = 0, a · τ =

∂φ

∂τ
(1.8)

or

φ = 0, a · n =
∂φ

∂n
, a · τ = 0 (1.9)

on Γ. Here τ is the unit vector in the tangential direction.

2. The finite difference methods
(1.5)-(1.9) can be solved using many different numerical techniques, including

spectral and finite element methods. In this paper, we choose to concentrate on finite
difference methods with Neumann boundary conditions supplemented to the gauge
field (1.8).

2.1. Temporal discretization. Depending upon the cell Reynolds number
Rc = Re4x

L (L is the typical size of Ω), we can either choose to treat the viscous term
explicitly or implicitly. With backward Euler in time, the finite difference scheme can
be written as:

an+1 − an

4t
+ (un · ∇h)un =

1
Re
4han+1 (2.1)

and

4hφn+1 = ∇h · an+1 (2.2)

un+1 = an+1 −∇hφ (2.3)

We will specify the spatial discretization and incorporation of the boundary condition
later. Similarly, one replaces (2.1) by

an+1 − an

4t
+ (un · ∇h)un =

1
Re
4han (2.4)
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in a forward Euler scheme, with (2.2) and (2.3) unchanged. (2.1) can be easily im-
proved to second order (in time) if we use Crank-Nicolson for the viscous term and
Adams-Bashforth for the convection term. In fact, there is no difficulty in going to
even higher order. This is particularly easy for explicit methods with Runge-Kutta
in time.

2.2. Spatial discretization. We will concentrate on the case in which the
viscous term is treated implicitly. There is a lot to be said about the case in which
the viscous term is treated explicitly, but we will postpone this discussion to a separate
paper.

The simplest way of discretizing in space is to define all numerical variables on
grid points and use centered differences for ∇h and the five-point formula for 4h. For
simplicity, we will denote the grid points by {(i, j), j ≥ 0} and specify j = 0 to be the
physical boundary. Writing a = (a, b), we impose

bn+1
i,0 = 0, an+1

i,0 = 2
φn

i+1,0 − φn
i−1,0

24x
− φn−1

i+1,0 − φn−1
i−1,0

24x
(2.5)

In (2.5), to avoid coupling the boundary value of a with the interior values of φ at
the same time step, it was necessary to use extrapolation from previous time steps.
For the first order (in time) scheme, we can replace the last formula by

an+1
i,0 =

φn
i+1,0 − φn

i−1,0

24x
(2.6)

The Neumann boundary condition for φ can be taken into account by using

φn+1
i,−1 = φn+1

i,1 (2.7)

in the evaluation of 4h. To evaluate ∇h · an+1 at the boundary j = 0, we use simple
horizontal extrapolation:

f0 = 3f1 − 3f2 + f3 (2.8)

At corner points, the same extrapolation formula can be used in the diagonal direction.
An alternative strategy is to define the numerical variables at the centers of the

computational cells. In this case, the simplest way of implementing the boundary
conditions is to use the reflection technique:

bn+1
i,− 1

2
= −bn+1

i, 1
2

, φn+1
i,− 1

2
= φn+1

i, 1
2

(2.9)

1
2
(an+1

i,− 1
2

+ an+1
i, 1

2
) = 2

φn
i+1,− 1

2
− φn

i−1,− 1
2

24x
−

φn−1
i+1,− 1

2
− φn−1

i−1,− 1
2

24x
(2.10)

and use the same strategy as described above to compute ∇h · an+1 at the boundary
points {(i, 1

2 )}.
2.3. Numerical result: the driven cavity flow. We implemented the explicit

gauge method on a canonical test problem – the driven cavity flow. The computational
domain is [0, 1]× [0, 1]. The boundary condition u = 0, v = 0 is imposed everywhere
at the boundary except at {y = 1} where we impose u = 1, v = 0. For initial data we
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Fig. 1. Driven cavity flow at Re = 104, t = 1000 with 128× 128 grid points.

choose the impulsive start: u = 0, v = 0. We used classical Runge-Kutta to discretize
time.
Figure 1 is the contour plot of stream function at Reynolds number 104 and t = 1000
with 128×128 grid points. It agrees very well with previous results obtained in [9, 14]
by solving directly the steady state equation.

We used a MAC grid for the space discretization, in which the exact projection
can be realized at the discrete level. We shall point out that when the viscosity
term is treated explicitly, the MAC scheme is exactly the same as the projection
method, as we explain below. It also performs very similarly to the explicitly gauge
method. We now use the forward Euler to explain the relationship between the MAC
scheme, the explicit projection method and the explicit gauge method. We use un

to denote the approximation of u at tn in a MAC staggered grid. That is, the x-
component (y-component) of u is discretized on the vertical side (horizontal side)
of the cell boundary. And the boundary condition is understand as the reflection
boundary condition (see [5] for details). We use the notation of ∇h, ∆h as the
difference approximation of ∇ and ∆ in the MAC scheme. Then, the forward Euler
discretization of the MAC scheme is given by,





un+1−un

4t + (un · ∇h)un +∇hpn+1 = 1
Re∆hun

∇ · un+1 = 0
un+1 · n = 0, un+1 · τ = 0 on Γ .

(2.11)

Above, we have written the boundary condition into the normal and tangent compo-
nent, which will be used below to explain the equivalentce between different schemes.
Introducing an intermittent variable u∗, (2.11) can be written in the following splitting
form:

u∗−un

4t + (un · ∇h)un = 1
Re∆hun (2.12a)
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Fig. 2. Impulsive started flow past an circular cylinder at Re = 550, t = 5 with 513× 768 grid
points, computed by the second order Gauge method. The free-stream far-field boundary condition
is used.
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Fig. 3. All the computational and physical parameters are same as in Figure 2. The com-
putation is done by the second order finite difference in vorticity stream function formulation with
Thom’s boundary condition and RK4 time stepping.





un+1−u∗
4t +∇hpn+1 = 0

∇ · un+1 = 0
un+1 · n = 0 on Γ

(2.12b)

and we enforce

un+1 · τ = 0 on Γ (2.12c)

Since (2.12a) is an explicit evaluation, there is no need a boundary condition for u∗.
However, when (2.12b) is implemented, a boundary value of u∗ is needed. We now
argue that it can be any number, say αb; hence, we can set it to be zero. Reformat
(2.12b) in the Poisson equation form,

{
∆hpn+1 = ∇hu∗

4t , u∗ · n = αb
D

Dnpn+1 = 4tαb
(2.13)
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un+1 = u∗ −4t∇hpn+1 (2.14)

Homogenize the boundary condition in a MAC grid, and we will find that (2.13)
is equivalent to

{
∆hpn+1 = ∇hu∗

4t , u∗ · n = 0
D

Dnpn+1 = 0
(2.13′)

Therefore, we have shown that the MAC scheme is equivalent to:
{ u∗−un

4t + (un · ∇h)un = 1
Re∆hun

u∗ · n = 0 on Γ
(2.15a)

{
∆hpn+1 = ∇hu∗

4t ,
D

Dnpn+1 = 0
(2.15b)

un+1 = u∗ −4t∇hpn+1 (2.15c)

un+1 = 0 on Γ (2.15d)

This is exactly the explicit projection method.
In the gauge method, it changes to

{
an+1−an

4t + (un · ∇h)un = 1
Re∆han

an+1 · n = 0, an+1 · τ = D
Dτ φn, on Γ

(2.16a)

{
∆hφn+1 = an+1

D
Dnφn+1 = 0 (2.16b)

un+1 = an+1 −∇hφn+1 (2.16c)

un+1 = 0 on Γ (2.16d)

The only difference is that un in the right hand side of (2.15a) be replaced by an,
which different from un by a gradient function.

A MAC grid not only gives the exact projection. But it also gives a natural way
to define vorticity and stream function at the discrete level[6]. It was shown in [6] that
the MAC scheme is equivalent to the standard 2nd order finite difference in vorticity
stream function coupled with the Thom’s boundary condition. If we take the discrete
curl operator to both (2.15a) and (2.16a), this leads to same equation. Indeed, it is
simply the vorticity transport equation in the discretized level.

ωn+1 − ωn

4t
+ (un · ∇h)ωn =

1
Re

∆hωn (2.17a)
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The nonlinear term has a slight difference [6]. The kinetic relation in both (2.15b)
and (2.1b) leads to

{
∆hψn+1 = ωn+1

ψn+1 = 0, on Γ (2.17b)

and the reflection boundary condition of the tangent velocity on the boundary becomes
the Thom’s formula [6], explaining the similarity in performance. A different variant
formulation of the gauge method in which a standard grid was used and the velocity
flux on the cell boundary was computed via averageing. The computation of the
driven cavity flow was computed and obtained a similar result.

2.4. Numerical result: flow past a circular cylinder. The next example is a
computation of the impulse started flow past a cylinder at Reynolds number Re=5501.
The polar coordinate (r, θ) was used and the computational domain was chosen to be

[1, 8]× [0, π]. An exponentially scaled grid based on the variable z = ln r was used to
cluster more points near cylinder and to regain a constant coefficient in the Laplace
operation so that the FFT can be used to solve the resulted linear systems.

The explicit second order difference gauge method was used on a standard 513x768
grid and the free stream boundary condition was used at the far-field. The result of
time t = 5 is plot in Figure 2. We also computed and plotted in Figure 3 the flow with
exact computational and physical parameters for the second order difference in the
vorticity-stream function with Thom’s boundary, which we have extensively studied
before [6]. The results are remarkably similar.

3. Comparison with the projection method
The projection method is a fractional step method that decouples the dynamic

momentum equation from the kinematic constraint of incompressibility. A simple
example is the following: Knowing un, compute un+1 by first computing an interme-
diate velocity field u∗ using

u∗ − un

4t
+ (un · ∇h)un = 4hu∗ (3.1)

with boundary condition u∗ = 0, and then projecting u∗ to the space of divergence-
free vector fields:

{
un+1 + Gh4tpn+1 = u∗

Dh · un+1 = 0 (3.2)

The projection step can be written as

4̃h4tpn+1 = Dh · u∗, ∂npn+1 = 0 (3.3)

with Neumann boundary condition, and

un+1 = u∗ −Gh4tpn+1 (3.4)

Here 4̃h = DhGh.
At a first sight this is very close to the the gauge method (2.1-2.3). A momentum-

like equation is solved, followed by a step of projecting to the space of divergence-free

1This computation was computed by Hans E. Johnston.
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vector fields. The auxiliary variable a plays the role of the intermediate velocity field
and φ (or 1

4tφ) plays the role of pressure. However, as we discuss in this section, such
similarities are rather superficial and it is their subtle differences that make the gauge
method advantageous.

The most important difference is that the gauge method is not a fractional step
method. (2.1) is a consistent discretization of a PDE, not a fractional step. While
in the projection method, u∗ never deviates much from the space of divergence-free
fields, a in the gauge method is O(1) away from it. We can formally write (3.1) in a
way similar to (2.1) using un = ũ∗ −4tpn, qn = 4tpn:





u∗ − ũ∗

4t
+ (un · ∇) · un +

1
4t
∇qn = 4u∗

4qn+1 = ∇ · u∗
un+1 = u∗ −∇qn+1

(3.5)

This looks very close to (2.1-2.3) except for the term 1
4t∇qn. It turns out that this

term makes a big difference as we discuss below. In fact, from a computational point
of view, (2.1-2.3) resembles much more the vorticity-velocity formulation in which
vorticity is first updated and velocity is then evaluated from the vorticity.

This difference has several profound consequences.

3.1. The projection method introduces additional numerical modes into the prob-
lem by formally increaseing the order of the PDE [4], i.e. the numerical method is a
singular perturbation of the original PDE. Very often, the spurious numerical modes
are of a numerical boundary layer type. This can be seen clearly from the follow-
ing simple example: We consider the unsteady Stokes equation on [−1, 1] × (0, 2π)
with no-slip boundary conditions at x = −1, 1 and periodic boundary conditions in
y. After a Fourier transform in the y variable, the problem is reduced to a family of
one-dimensional problems indexed by k ∈ Z. For the gauge formulation, this is





∂ta = (∂2
x − k2)a ,

∂tb = (∂2
x − k2)b ,

(∂2
x − k2)φ = ∂xa + ikb ,

(3.6)

and

a = u + ∂xφ b = v + ikφ (3.7)

The boundary condition becomes

a(±1, t) = φ′(±1, t) = 0 , b(±1, t) = ikφ(±1, t) (3.8)

Here and in what follows, we use the notation a = (a, b),u = (u, v) and

∆k = (∂2
x − k2) , ∇k =

(
∂x

ik

)
,

The normal mode solutions of (3.6) are of the form:

(a, φ)(x, t) = eσt (â, φ̂)(x) . (3.9)



WEINAN E AND JIAN–GUO LIU 325

where (â, φ̂) satisfies
{

σâ = ∆kâ ,

∆kφ̂ = ∇k ·â ,
(3.10)

with boundary conditions

â(±1) = φ̂′(±1) = 0 , b̂(±1) = ikφ̂(±1) (3.11)

Introducing µ such that

σ = −k2 − µ2 , (3.12)

Then the first equation in (3.10) becomes

(∂2
x + µ2)â = 0 , (∂2

x + µ2)b̂ = 0 , â(±1) = 0 . (3.13)

and the second becomes

(∂2
x + µ2)(∂2

x − k2)φ̂ = 0 , φ̂′(±1) = 0 . (3.14)

The odd solutions to (3.13) and (3.14) can be written as

â(x) = 0, b̂(x) = A sin µx (3.15)

and

φ̂(x) =
sinh kx

k cosh k
− sinµx

µ cosµ
. (3.16)

Now using the second equation in (2.10), we get

A =
−σ

ikµ cos µ
(3.17)

(3.11) From the boundary condition, we have

ik(
1
µ

tan µ− 1
k

tanh k) =
σ

ikµ
tan µ (3.18)

or

µ tan µ + k tanh k = 0 (3.19)

Going back to u and p variables, we obtain




û(x) =
cosµx

cos µ
− cosh kx

cosh k

v̂(x) =
µ

ik

sin µx

cos µ
− i

sinh kx

cosh k
,

p̂(x) =
σ

k

sinh kx

cosh k

(3.20)
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These are the symmetric solutions to the Stokes equation derived earlier in [4, 12].
The antisymmetric solutions can be find in a similar way.

Now we derive the normal mode solutions to the first order time discretization
scheme (2.1-2.3), keeping space continuous. These are of the form:

(an, φn)(x) = κn (â, φ̂)(x) . (3.21)

where (â, φ̂) satisfies





κ− 1
κ4t

â = ∆kâ ,

∆kφ̂ = ∇k ·â ,

(3.22)

and boundary conditions

â(±1) = φ̂′(±1) = 0 , κb̂(±1) = ikφ̂(±1) (3.23)

The factor κ at the front of b̂(±1) comes from the boundary condition (2.6). Let

σ̄ =
κ− 1
κ4t

(3.24)

and

σ̄ = −k2 − µ̄2 (3.25)

The solutions have exactly the same form as before, except (3.18) and (3.19) are
replaced by

ik(
1
µ̄

tan µ̄− 1
k

tanh k) = κ
σ̄

ikµ̄
tan µ̄ (3.26)

Hence

µ̄ tan µ̄ + k tanh k = (κ− 1)
σ̄

µ̄
tan µ̄ = 4t

σ̄2

µ̄(1− σ̄4t)
tan µ̄ (3.27)

Thus, we have

µ̄− µ = O(4t), κ− eσ4t = O(4t2) (3.28)

resulting in a first order accuracy of the overall scheme. Notice that there are no
spurious numerical modes and the numerical method is uniformly first order accurate.
The second order scheme can be analyzed in the same way.
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In contrast, the solution to the projection method is of the form:




ũ(x) =
cos µ̃x

cos µ̃
− cosh kx

cosh k
,

ṽ(x) =
µ̃

ik

sin µ̃x

cos µ̃
− i

sinh kx

cosh k
,

ũ∗(x) =
cos µ̃x

cos µ̃
− cosh kx

cosh k
− β4t

(
cosh λx

coshλ
− cosh kx

cosh k

)
,

ṽ∗(x) =
µ̃

ik

sin µ̃x

cos µ̃
− i

sinh kx

cosh k
− ikβ4t

(
1
λ

sinhλx

cosh λ
− 1

k

sinh kx

cosh k

)
,

p̃(x) = −β

(
1
λ

sinhλx

cosh λ
− 1

k

sinh kx

cosh k

)

(3.29)

where

λ = (k2 +4t−1)1/2 , β = −k2 − µ̃2 (3.30)

µ̃, β and λ satisfies

µ̃ tan µ̃ + k tanh k = βk4t (tanh k − k

λ
tanh λ) . (3.31)

This reveals clearly the existence of a numerical boundary layer mode associated with
λ. Not only is the first order accuracy in pressure is lost, but spatial discretization
also becomes subtle because of this spurious boundary layer mode.

3.2. Even though both φn+1 and 4tpn+1 solve a Poisson equation, in the projec-
tion method this Poisson equation has to be solved with very special schemes. This is
highlighted in (3.3) by writing 4̃h instead of 4h. The consistent projection method
demands that a discretization of (3.3)has to come from

{
un+1 + Gh4tpn+1 = u∗

Dh · un+1 = 0 (3.32)

with some conjugacy conditions between Dh and Gh. This is a mixed formulation
for (3.3) and has all the complications of a mixed formulation. The most well-known
example is the existence of parasitic modes. If standard second order centered dif-
ferences are used for Dh and Gh on a non-staggered grid, then the resulting discrete
Laplace operator 4h = Dh · Gh has the spurious checkerboard modes in its kernel.
Several ways of relaxing this framework have been proposed (see for example [13] and
[1]). Still, stringent constraints seem to exist on schemes for (3.3).

The gauge method, on the other hand, is very robust and free of such subtleties.
Straightforward methods can be used to discretize (2.2). To demonstrate this dif-
ference, we show in the following a comparison of the numerical results obtained
from the first and second order gauge method and the projection method. For the
first order projection method, we implemented (3.1-3.4) with both the homogeneous
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boundary condition u∗ = 0 (denoted by PM1.1) and the improved boundary condi-
tion u∗ ·n = 0, u∗ · τ = 4t∂τ pn [8, 11, 18] (denoted by PM1.2) for the intermediate
velocity field. Two different formulations of the second order projection method are
chosen for this comparison, one based on the improved velocity boundary condition
[8, 11, 18] (denoted by PM2.1). This is same as PM1.2 except that backward Euler is
replaced by Crank-Nicolson, and Adams-Bashforth is used to compute the convective
term. The second one is based on the pressure increment form [16, 2] (denoted by
PM2.2):





u∗ − un

4t
+ (un+1/2 ·∇)un+1/2 +∇pn−1/2 = ∆

u∗ + un

2
,

u∗ = 0 , on ∂Ω ,

u∗ = un+1 +4t(∇pn+1/2 −∇pn−1/2) ,

∇·un+1 = 0 ,

un+1 ·n = 0 , on ∂Ω .

For the spatial discretization we used the two methods described earlier in Section
2.2

We choose the following exact solution of the Navier-Stokes equation:





u(x, y, t) = − cos(t) sin2(πx) sin(2πy)
v(x, y, t) = cos(t) sin(2πx) sin2(πy)
φ(x, y, t) = cos(t)(2 + cos(πx))(2 + cos(πy))/4

(3.34)

Appropriate forcing terms are added to ensure that (3.34) is an exact solution. We
set ν = 1 and 4t = 4x so that the time step size is set by the convective term.

Tables 1-6 summarize the results for the case when numerical values are defined at
the cell centers. Tables 7-12 summarizes the results for the second example in which
numerical values are defined at the grid points. In both cases, the gauge methods
achieve the expected accuracy. This is clearly not the case for the projection method.
In the worst cases, the accuracy is entirely lost in the maximum norm.

One curious but not well-understood point is that the projection methods do not
perform badly in keeping the velocity field approximately divergence-free. In fact, it
often outperforms the gauge method in this respect.

We should remark that the poor performance of the projection method docu-
mented here does not imply that projection method cannot be used. It only implies
that naive spatial discretization schemes for the PPE as the ones used here does not
work for the projection method.

GM1 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 5.01E-3 1.37E-3 3.57E-4 1.91 6.37E-3 1.69E-3 4.37E-4 1.93 1.68E-2 4.98E-3 1.44E-3 1.77

u 1.25E-2 7.37E-3 3.99E-3 0.83 1.48E-2 8.57E-3 4.60E-3 0.85 4.10E-2 2.51E-2 1.39E-2 0.79

a 7.99E-2 4.33E-2 2.25E-2 0.92 8.89E-2 4.82E-2 2.50E-2 0.92 1.83E-1 1.01E-1 5.28E-2 0.90

φ 2.10E-2 1.14E-2 5.91E-3 0.92 2.59E-2 1.41E-2 7.32E-3 0.92 7.41E-2 4.09E-2 2.14E-2 0.90
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GM2 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 5.00E-3 1.37E-3 3.57E-4 1.91 6.43E-3 1.71E-3 4.38E-4 1.94 1.87E-2 4.83E-3 1.22E-3 1.97

u 2.01E-3 5.25E-4 1.33E-4 1.96 2.34E-3 5.97E-4 1.50E-4 1.98 4.22E-3 1.07E-3 2.68E-4 1.99

a 2.57E-3 6.69E-4 1.69E-4 1.97 2.90E-3 7.57E-4 1.91E-4 1.97 7.44E-3 1.99E-3 5.11E-4 1.93

φ 8.24E-4 2.14E-4 5.40E-5 1.97 1.03E-3 2.66E-4 6.72E-5 1.97 2.95E-3 7.84E-4 1.99E-4 1.95

PM1.1 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 2.12E-3 4.04E-4 6.87E-5 2.48 3.51E-3 7.32E-4 1.39E-4 2.33 1.87E-2 5.37E-3 1.52E-3 1.81

u 3.98E-2 2.80E-2 1.74E-2 0.60 4.85E-2 3.45E-2 2.19E-2 0.58 1.35E-1 1.13E-1 7.75E-2 0.40

p 8.00E-1 5.92E-1 3.82E-1 0.53 1.09E-0 8.08E-1 5.32E-1 0.52 3.73E-0 2.80E-0 1.92E-0 0.50

PM1.2 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 1.07E-3 1.74E-4 2.53E-5 2.70 1.39E-3 2.25E-4 3.28E-5 2.70 3.86E-3 6.84E-4 1.22E-4 2.49

u 7.19E-3 3.50E-3 1.71E-3 1.04 8.52E-3 4.10E-3 2.00E-3 1.05 1.60E-2 7.52E-3 3.54E-3 1.09

p 3.95E-1 2.61E-1 1.53E-1 0.68 5.33E-1 3.46E-1 2.01E-1 0.70 1.61E-0 9.99E-1 5.70E-1 0.75

PM2.1 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 1.32E-3 1.90E-4 2.55E-5 2.85 1.80E-3 2.54E-4 3.90E-5 2.77 6.00E-3 1.21E-3 1.01E-3 1.29

u 1.71E-3 1.09E-3 6.20E-4 0.73 2.85E-3 2.23E-3 1.66E-3 0.39 1.12E-2 1.21E-2 1.27E-2 -.09

p 2.21E-1 1.29E-1 6.75E-2 0.86 3.08E-1 1.75E-1 8.95E-2 0.89 9.67E-1 5.19E-1 2.56E-1 0.96

PM2.2 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 1.71E-4 3.56E-5 8.12E-6 2.20 2.75E-4 8.69E-5 3.02E-5 1.59 1.91E-3 1.65E-3 1.14E-3 0.37

u 3.30E-3 1.42E-3 6.90E-4 1.13 4.36E-3 2.38E-3 1.62E-3 0.71 1.55E-2 1.29E-2 1.26E-2 0.15

p 1.22E-1 5.77E-2 3.53E-2 0.89 1.57E-1 7.36E-2 4.36E-2 0.92 6.34E-1 2.77E-1 1.40E-1 1.09

GM 1 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 5.48E-3 1.45E-3 3.71E-4 1.94 6.88E-3 1.86E-3 4.88E-4 1.91 3.77E-2 3.12E-2 1.87E-2 1.51

u 2.34E-2 1.32E-2 7.01E-3 0.87 2.69E-2 1.50E-2 7.94E-3 0.88 6.41E-2 3.74E-2 2.03E-2 0.83

a 1.04E-1 5.49E-2 2.81E-2 0.94 1.11E-1 5.93E-2 3.06E-2 0.93 1.87E-1 1.02E-1 5.30E-2 0.91

φ 2.33E-2 1.20E-2 6.05E-3 0.97 2.79E-2 1.46E-2 7.44E-3 0.95 7.77E-2 4.18E-2 2.15E-2 0.93
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GM 2 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 5.47E-3 1.43E-3 3.65E-4 1.95 6.81E-3 1.75E-3 4.43E-4 1.97 1.96E-2 5.03E-3 1.27E-3 1.97

u 2.59E-3 6.52E-4 1.63E-4 2.00 3.10E-3 7.78E-4 1.95E-4 2.00 6.02E-3 1.51E-3 3.78E-4 2.00

a 3.41E-3 8.30E-4 2.04E-4 2.03 3.69E-3 9.08E-4 2.24E-4 2.02 8.00E-3 2.01E-3 5.04E-4 1.99

φ 9.32E-4 2.25E-4 5.51E-5 2.04 1.13E-3 2.76E-4 6.82E-5 2.03 3.17E-3 7.99E-4 2.00E-4 1.99

PM 1.1 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 2.43E-3 4.38E-4 7.23E-5 2.54 3.96E-3 7.91E-4 1.47E-4 2.38 2.15E-2 5.98E-3 1.66E-3 1.85

u 4.38E-2 2.94E-2 1.78E-2 0.65 5.27E-2 3.62E-2 2.25E-2 0.61 1.57E-1 1.22E-1 8.04E-2 0.48

p 1.05E-0 6.82E-1 4.11E-1 0.68 1.31E-0 8.88E-1 5.59E-1 0.61 3.84E-0 2.87E-0 1.93E-0 0.50

PM 1.2 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 1.15E-3 1.83E-4 2.61E-5 2.73 1.47E-3 2.36E-4 3.42E-5 2.71 4.41E-3 1.60E-3 5.42E-4 1.51

u 7.73E-3 3.62E-3 1.73E-3 1.08 8.94E-3 4.19E-3 2.02E-3 1.07 1.63E-2 7.54E-3 3.54E-3 1.10

p 8.26E-1 2.97E-1 1.64E-1 1.17 9.70E-1 3.75E-1 2.10E-1 1.10 2.36E-0 9.96E-1 5.68E-1 1.03

PM 2.1 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 1.37E-3 2.10E-4 3.25E-5 2.70 1.76E-3 2.79E-4 5.47E-5 2.50 5.34E-3 2.29E-3 9.05E-4 1.28

u 2.89E-3 1.19E-3 5.26E-4 1.23 4.54E-3 2.50E-3 1.63E-3 0.74 1.99E-2 2.29E-2 2.40E-2 -.14

p 3.91E-2 2.19E-2 1.19E-2 0.86 4.85E-2 2.79E-2 1.53E-2 0.83 1.20E-1 7.23E-2 4.10E-2 0.77

PM 2.2 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 1.99E-4 3.64E-5 8.35E-6 2.29 3.88E-4 1.40E-4 5.30E-5 1.44 3.04E-3 2.29E-3 1.81E-3 0.37

u 3.47E-3 1.24E-3 5.26E-4 1.36 4.72E-3 2.35E-3 1.57E-3 0.79 1.62E-2 1.86E-2 2.04E-2 -.17

p 2.03E-2 6.78E-3 2.31E-3 1.57 2.59E-2 8.58E-3 2.93E-3 1.57 1.13E-1 4.51E-2 1.78E-2 1.33

Some light can be shed on the performance of both methods by looking at the
smoothness of the error. This is displayed in Figure 4 for the second order gauge
method, and in Figure 5 for PM2.1. These two figures are representative of the error
structure we see in the two methods. The errors (in all variables) in the second order
gauge method always behave as in Figure 4, and the errors in the second order pro-
jection method always behave as in Figure 5, for both spatial discretization schemes
and both formulations of the projection method. We mention that the errors in the
first order projection method have a different structure. This is a point we will return
to in future work.

It is becoming increasingly clear that the smoothness of the error, particularly
near the boundary, plays a very important role in the overall accuracy of the difference
scheme. This is one reason why one-sided differences cannot be arbitrarily used at
the boundary. This is very well documented for the vorticity-based finite difference
methods in [6].
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Fig. 4. Error in velocity for GM2.
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Fig. 5. Error in velocity for PM2.1.

4. Conclusions
We presented a new formulation of the Navier-Stokes equation in terms of the

gauge variable and demonstrated that the gauge freedom can be used to eliminate
the subtleties in the boundary conditions. The most important advantage of this
formulation is that it is trouble-free – solving the Navier-Stokes equation is no more
difficult than solving the standard heat and Poisson equations. We restricted the
discussion to finite difference schemes, but there is no reason why finite element and
spectral methods cannot be used. In fact, we expect that the current formulation
with finite element discretization should lead to a numerical method most suitable for
complicated geometries.
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