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Abstract: We establish phase transitions for a class of continuum multi-type particle
systems with finite range repulsive pair interaction between particles of different
type. This proves an old conjecture of Lebowitz and Lieb. A phase transition still
occurs when we allow a background pair interaction (between all particles) which
is superstable and has sufficiently short range of repulsion. Our approach involves
a random-cluster representation analogous to the Fortuin-Kasteleyn representation
of the Potts model. In the course of our argument, we establish the existence of a
percolation transition for Gibbsian particle systems with random edges between the
particles, and also give an alternative proof for the existence of Gibbs measures with
superstable interaction.

1. Introduction

Although the study of phase transitions for Gibbsian systems is one of the main
subjects of statistical mechanics, examples of models exhibiting phase transition are
mainly restricted to lattice systems. For systems of particles in the continuum the
situation is still quite unsatisfactory. Besides the mere existence of phase transitions
for some unknown interactions (as shown in Appendix B of Israel [17]) and the
canonical-ensemble approach of Johansson [18, 19] in one dimension, there exists
essentially only one specific model for which a phase transition is known to occur:
the model of Widom and Rowlinson [32]. This is a multi-type particle system in
Md, d > 2, with hard-core exclusion between particles of different type, and no
interaction between particles of the same type. The phase transition in this model
for large activities z was established by Ruelle [31] using a version of the Peierls
argument. Lebowitz and Lieb [23] extended his result to multi-type particle systems
in which the hard-core exclusion is replaced by a soft-core repulsion between unlike
particles. Such models can also be viewed as continuum versions of the Ising or
Potts model. Lebowitz and Lieb needed the condition that the soft-core repulsion
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is sufficiently strong (or, equivalently, that the temperature is sufficiently low), and
conjectured that a phase transition for large z should still occur without this proviso

In this paper we establish the existence of phase transitions for a large class of
continuum Potts models including the Widom-Rowlinson model and its soft-core
variant. In particular, we shall verify the preceding conjecture. We also include a
background interaction between all particles (independently of their types) which is
superstable but not too repulsive in relation to the intertype repulsion. Our approach
is based on a random-cluster representation analogous to the Fortuin-Kasteleyn rep-
resentation of the lattice Potts model, see [8, 7, 16J. This gives a certain continuum
percolation process, which has previously been studied e.g. by Given and Stell [15]
from a different point of view. A phase transition for the continuum Potts model
follows if we can show that the corresponding percolation process contains an infinite
cluster A similar program was recently carried out by Chayes et al. [3] for the hard-
core Widom-Rowlinson model (related ideas appear also in [14]). In that case, the
existence of infinite clusters follows from a stochastic comparison with the Poisson
Boolean model of continuum percolation (see [25]), while our more general frame-
work requires somewhat more involved arguments. We note that the random-cluster
representation requires the symmetry of interaction between particles of different
types In non-symmetric Widom-Rowlinson models, the existence of a phase transi-
tion has been established by Bricmont et al. [2] using a version of the Pirogov-Sinai
theory.

We now describe the setup. We consider the Euclidean space l Λ d > 2, and
fix an integer q > 2. Let S/ denote the class of all locally finite subsets of Rd A
configuration of particles in Md with q distinct types (without multiple occupancies)
is described by a vector X = (X\, , Xq) of pairwise disjoint sets X\, ,Xq£ <&*.
We write ,J^'(q) for the class of all such multitype configurations Any X e ,j£'{q) is
uniquely determined by the pair (X, σ), where X = sp(X) := X\U .. U Xq is the set
of all occupied positions, and the type function σ = σ(X) : X —» {1, , q} is defined
by σ(x) = s if x G Xs, 1 < s < q J£* is equipped with the σ-algebra which is
generated by the counting variables ,jfc' 3 X —> #(X Π A) for bounded measurables
Δ C Mfί, and ,Jf/{q) with the restriction of the product σ-algebra on ,jf/q. The set
of all configurations in a measurable set A C Άd will be denoted by J£^[ , and the
corresponding σ-algebra is similarly defined

The interaction between the particles is assumed to be given by a formal Hamil-
tonian of the form

H(X) =

^2 φ(χ-y)+ Σ ψ(χ-y)
{x.y}CX

σ(x)φ(y) L ' J —

Here X e ,£'(q\ X = sp(X), σ = σ(X), and the pair potentials φ, ψ . ffi^ -> ] - oo, oo]
are even measurable functions. The first term Hφ is the most important contri-
bution to the Hamiltonian. It describes a repulsion between particles of different
types. The second term H^ corresponds to a type-independent background pair in-
teraction Specifically, we assume the following There exist constants u > 0 and
0 < ri < τ'2 < Γ3 < T/χ such that

(Al) (strict repulsion of φ) φ > 0, and φ{x) > a when \x\ < r^ .
(A2) (finite range of φ) φ(x) = 0 when \x\ > r^ .
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(A3) (strong stability and regularity of φ) either φ > 0, or φ is superstable and
lower regular in the sense of Ruelle [30], see (13) and (14) below.

(A4) (short range of repulsion for φ) φ(x) < 0 when \x\ > r2, and the positive
part φ+ of φ satisfies

/ Φ+(χ) dx < oo .
J{\x\>τλ}

(A5) (scale relations) ri < r3/2\/d + 3, and r\ is sufficiently small (depending on
g,ϋ,r2,Γ3; cf. (11) below).

We believe that already the case φ = 0 is of some interest. The reader has the
option of concentrating on this case and forgetting about conditions (A3)-(A5); he
then can skip quite a number of technicalities in Sects. 3 and 4.

Given a finite box A c Rd, a boundary condition Y e &$, and an activity

parameter z > 0, the associated Gibbs distribution QA\Y o n &>A is defined by

QΛlY(dX) = Z-j^ exp[-# Λ | Y (X)] TtΛidXi)... πΛ(dXq) . (1)

In the above,

HΛlΎ(X) = H*{YCX) + H+

φ(x -y) + V" φ(x - y)
{x,y}CXuY {x,y}CXUY

[with X G ̂ \q\ X = sp(X), Y = sp(Y), and σ the common extension of σ(X) and
σ(Y)] is the Hamiltonian in A with boundary condition Y; ΈA = π\ is the Poisson
point process on 3&A with constant intensity z, i.e.

^ ί^ ί { } (2)
n=0 U' J λ n

for any bounded measurable function / on 3&Λ\ and ZA\Y is a normalizing constant
usually called the partition function. (We will always use symbols like ZA\γ to denote
such normalizing constants, but their precise meaning will vary with the context. Also,
throughout the paper we will often suppress the dependence of some quantities on
the parameters z, q, φ, φ which will be considered as fixed.) Later on, we will prefer
to consider QA\Y a s a measure on 3^^ which is supported on the set *5&̂ ?γ = {X G
J2Γ^ :Xi\A = Yiϊoτ\<i< q}.

Since φ is not necessarily of finite range, QA\Y is only well-defined if we require
that Y (resp. its support Y) is tempered in the sense that

sup k~d

k-1 iezd:\i\<k

where Ni(Y) = #(Y Π Δ(ϊ)) is the number of particles in the cubic cell

Δ(i) = [-6/2, δ/2[d+δi, ieZd, (3)

of an arbitrarily fixed side length δ > 0. It is then easy to see from (13) and (14) that
HA\γ is well-defined and exp[—HΛ\γ] is integrable with respect to
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It is evident from (1) that, for fixed X 6 <&Λ, m e conditional distribution of σ(X)
under the condition spX = X relative to QA\Ύ is that of a discrete Potts model on
X with a position-dependent interaction between the type-variables. This justifies
calling our model a continuum Potts model

Definition. A probability measure Q on .J*Γ((?) is called a tempered Gibbs measure for
the continuum Potts model or, for short, a continuum Potts measure with activity z > 0
and interaction potentials φ, ifi if Q is supported on the set of tempered configurations
and, for any box A C Wd, the probability kernel Y —> QΛ\Y from .£'$ to ,^q) is
a version of the conditional distribution under Q of the configuration in A given the
configuration outside of A.

Continuum Potts measures always exist, as will be shown in Sect. 4. A phase
transition is said to occur if there exists more than one continuum Potts measure.
The following theorem, which is our main result, shows that this happens when z is
sufficiently large.

Theorem 1.1. Suppose φ and φ satisfy assumptions (Al) to (A5), and let q > 2. If
the activity z is sufficiently large (depending on the model parameters d, u, and r\ to
r^), there exist at least q distinct continuum Potts measures for z, q, φ, ψ which are
invariant and ergodic under translations and can be distinguished by the densities of
particles with a fixed type.

In Remark 4.3 at the end of the paper we will show that the phase transition
manifests itself also thermodynamically by a non-differentiablity ("discontinuity") of
the pressure. Here is a number of further remarks.

Remark 1.2. The scale assumptions (A5), in their present form, are certainly an arte-
fact of our method. We note, however, that the condition r\ < r-$ is essential. For if
Ψ has a hard core of radius > r^ then the particles do not feel the additional intertype
repulsion of range r^.

Remark 1.3. As a kind of converse of Theorem 1.1, we have that the continuum Potts
measure is unique for sufficiently small z (depending on φ, ψ and q). This can be
deduced from (A3) either by the method of correlation equations [27, 301 or, under
a slight sharpening of (A3), by Dobrushin's uniqueness criterion [4, 5]. This leads
naturally to the question of whether the occurrence of phase transition is monotone
in z, i.e., whether there exists a critical zc = zc(d, q, φ, ψ) such that uniqueness holds
for z < zc and non-uniqueness for z > zc. We are unable to settle this issue

Remark 1.4. In the above, the inverse temperature β was set equal to 1 This is no
loss of generality because β can be absorbed into φ and φ. However, one may ask for
the phase transition region in the (z,/3)-plane when q, φ, ψ are fixed. As the proof
of Theorem 1 1 will show, there exists a decreasing function ZQ : ]0, oc[—>]0, oo[
(depending on all model parameters) such that the continuum Potts measure is non-
unique whenever β > 0 and z > zo(β). In particular, for given z > zo(oc) a phase
transition occurs for sufficiently large β, but as in the previous remark we are unable
to answer the question of monotonicity in β

Remark 1.5 Suppose we take q = 2 and ψ = 0 and consider, for each X e ,£'(2\ the
set X\ G .£>' of particles of type 1. Let A C Wι be a fixed box and A D A so large
that the distance between A and Md \ A exceeds the range r^ of φ. It is easy to see
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that the conditional distribution of X\ Π A given X\\A under QA\Y does not depend
on Y and has a π/i-density proportional to

[π

= exp -z I (1 - exp[- V] φ(x - y)]j dy .
XξzX\ J

The image of a continuum Potts measure under the projection X —• Xγ is therefore a
Gibbs measure on J2Γ for the formal Hamiltonian

H(

z

ι\χ) = z ί (1 - exp [ - J2 v(χ - y)])dy'

and the activity z. In the special case of the hard-core potential

(X) for \x < r
otherwise, ( 4 )

this relation between the two-type model and its one-type marginal was discovered
by Widom and Rowlinson [32]. We conclude from Theorem 1.1 that, for large z,
the one-type particle system with Hamiltonian H(

z

ι) and activity z exhibits a phase
transition, in that there exist two translation-invariant Gibbs measures with different
particle densities.

The rest of this paper is organized as follows. In Sect. 2, we obtain the random-
cluster representation for the continuum Potts model on a compact set A C M.d.
Section 3 is devoted to the existence of percolation in the random cluster model and,
in particular, for Gibbsian systems of particles of a single type. By "percolation" we
here mean the occurence of infinite clusters. In Sect. 4 we conclude the proof of
Theorem 1.1 by taking the infinite-volume limit A | Rd. In particular, we obtain the
existence of continuum Potts measures for arbitrary z > 0 and thus, in the case q=l,
the existence of tempered Gibbs measures for pair interactions φ satisfying (A3) and
a condition of upper regularity that weakens (A4).

2. The Random-Cluster Representation

The purpose of this section is to obtain a joint construction of the continuum Potts
model on a fixed finite box i c l ^ with parameters z, φ and q, and a related edge
process which we call the continuum random-cluster model. This is analogous to the
joint construction of the discrete Potts model and its Fortuin-Kasteleyn representation,
which was discovered by Edwards and Sokal [7]. The continuum random-cluster
model was introduced first by Klein [22]; see [15] and the references there for some
subsequent work. In the particularly nice case of the Widom-Rowlinson model when
ψ = 0 and φ is given by (4), the random-cluster representation was rediscovered
independently by Chayes et al. [3] and by the present authors.

In the course of the construction, we will pay particular attention to measurability
questions. One reason for doing so is that some of the earlier work on continuum per-
colation involves constructions of probability spaces in which most of the interesting
events turn out not to be measurable, as pointed out by Meester and Steif [26, 25].
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Let Y G >J£\c be a fixed tempered boundary configuration. We identify Y with the
boundary condition Y = (Y,0, ,0) G .Λ^[c} of type-1 particles. (The assumption
of constant type might seem unnaturally restrictive, but it keeps things simpler and is
sufficient for our purposes.)

The basic idea of the random-cluster representation is to introduce random edges
between the particle positions We thus introduce the set

of all possible edges between pairs of points in W1. The natural σ-algebra on E^d
consists of all sets of the form {{x,y} G E^d : (x,y) G A} with measurable A C
Rrf x Jkd. In particular, for any measurable A C M.d the set

EΔ = {e G EΆd . e C Δ}

of all edges within A is measurable. We write

Z = {E c Emd : E locally finite}

for the set of all edge configurations. <% comes equipped with the σ-algebra which
is generated by the counting variables E —> #(E Π F) with bounded measurable
F c EMd.

We will construct a probability measure IP = IPz^\γ on ,$7^ x rf which models
the following random mechanism. Indistinguishable particles appear in A according
to a Gibbs distribution for the background interaction ψ with activity zq and boundary
condition Y. Each particle picks a type at random from {1, , q}. Finally, each pair
e = {x,y} of particles (one of which may belong to Ϋ) is connected by an edge
with probability p(e) = 1 - exp[—φ(x - y)], independently of all other pairs; the
particles in Y are all connected to each other deterministically. Note that φ enters the
construction only via the edge probabilities p(e).

Specifically, the measure IP will be built from the following three constituents.

- The distribution of particle positions. This is given by the (single-type particle)
Gibbs distribution P^γ in A with boundary condition Y, interaction ψ, and ac-
tivity zq, i.e.,

% Z-fγ exp [ - ]Γ ψ(x - y)j πz

Λ\dX) , (5)
{x,y}eEXuY\Eγ

X G .JKΛ (Note that this measure coincides with QA\Y when q = 1.) Henceforth
we shall view P^γ as a probability measure on ,i$" which is supported on the

set ,JK'Λ\γ = {X e .*/ : X \ A = Y}
The type picking mechanism. For a fixed set of positions X G *&\\γ, we let λx^
denote the distribution of the random vector

{x G X : rx = .
/l<s<g

where (Tx)xGxnyi are independent and uniformly distributed on {1, , q}, where-
as τx = 1 for x G X \ A = Y.
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- The edge drawing mechanism. For given X e <5&A\Y, let μχ,Λ denote the distribu-
tion of the random edge configuration {e e Ex : ηe - 1} e ^ , where (ηe)e<EEx

are independent {0, l}-valued random variables with

ί 1 - e-
φ(χ-y) when e = {x, y} e EMd \ EΛc

: =( 1 when e e We

The measure μχ,A is a point process on EMd (which may be viewed as a PA~
thinning of the complete edge set Ex).

The desired probability measure IP on ^ ( ς f ) x & is now defined by

This definition makes sense because the mappings X —> λ x ^ and X -^ μχ,yi are
probability kernels, as we will show in Lemma 2.4 below. IP is supported on the
set of all (X, E) e ^ ( q ) x % which are such that X G 3tή^ and E C Ex with
X = spX.

We now consider the event Ω c «^ ( g ) x ^ that the particle types are constant
on each connected component of the graph (spX, E Π Esvχ). Equivalently, Ω can
be described as the event that no two vertices with different types have an edge in
common. Formally, we can write

{x,y}eE s=l

Since the functions (X, x) —> lχs(x) are measurable (see 5.1.9 in [24]) and (X, E) —>
ΣeeE 9&ie) *s measurable for any measurable g on 3&^ x ^ d , this way of writing
shows that Ω is measurable. We also have

ΊP{Ω) > Pz

Λ

q

lY({Y}) = e-">M/ZΛ\Y > 0 .

Thus we can introduce the conditional measure

= 1P( \Ω).

is the random-cluster representation measure with which the rest of this section
is concerned.

Our first result is that if we disregard the edges, and look only at the particle
positions and their types, then we obtain the continuum Potts model. We write pr for
the projection from 3&{q) x W onto { \

Proposition 2.1. ΊPQ O pr" 1 = QA\Y

Proof. For X e &jβγ, let Ωx be the X-section of Ω. It follows straight from the

definitions that, for X = spX,

e£Eχ:eg.Xs for any 5
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It is also easy to see that J ττz

A(dX) \χ:A is precisely the q-fo\ά product measure

(nA)
q on :J^A (which is in fact supported on >JΰA). Hence, for any bounded mea-

surable function / on ,£'(q) we can write

J ffoprdlPn = cx J fopvdIP

PΛ\Y

= c2 ί(πA)
q(dX) f(X U Y) exp \-

where c\, C2, CT, are suitable constants. Since both IP Q and QA\Y a r e probability
measures, we have c$ = 1 and the proposition follows D

Proposition 2 1 shows in particular that, under IP n, the conditional distribution
of σ(X) under the condition spX = X is nothing other than the Gibbs distribution
for a discrete Potts model on the finite set X with constant boundary condition
1 on Y = X \ A It is therefore no surprise that the conditional distribution of
E under spX = X corresponds to the classical Fortuin-Kasteleyn random-cluster
representation of the Potts model, as we will show next

Consider the mapping sp . (X,E) —> (spX, E) from ,Jf/{q) x K onto ,£>' x <ζ.
For each (X, E) G .£' x % with E C Ex we let K(X, E) denote the number of
connected components in the graph (X, E) . We will show in Lemma 2 4 below that
K(-, ) is measurable. We define the continuum random-cluster distribution CA\Y on
,&' x ΫJ by

CΛ]γ(dX, dE) = Z-fγ qK(X'E) Pz

m(dX) μχ,Λ{dE) , (6)

where PZ

A\Y is as in (5) with activity z rather than zq, and ZA\Y is again a normalizing
constant (different from the one in (5)). Recall that, for any X e >&Ά\γ, the edges
drawn by μχ,A include all edges in Eγ This means that CA\γ is defined by means
of the so-called wired boundary condition. Note further that the definition (6) makes
sense also for non-integer q > 0.

Proposition 2.2. JPΩ ° sp"1 = CA\Y

Proof. For (X, E) e Jfc' x K with X e >Ά'A\γ and Eγ C E C Ex let

Ω{XjE) = {Xe .JTΛq) • spX = X, (X, E) e Ω}

The definition of \χ,Λ then implies that

.E)) = q ι y

where KA{X^E) is the number of connected components of (X, E1) that are com-
pletely contained in A. Indeed, under XXyΛ all q^XnΛ) possible values of σ(X) have
equal probability. Getting an element of Ω(χ^E) requires consensus of σ(X) on each
connected component of (X, E), and σ(X) is equal to 1 on the unique component
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containing Y\ this means that each of the KA(X, E) connected components of (X, E)
not containing Y has a choice between q different values.

Proceeding as in the proof of Proposition 2.1, we obtain for any measurable
function / on S&\ x %Λ\Y >

JfospdlPΩ = cιJp%γ(dX)JμXtA(dE)f(X,E)\XiA(ΩiXtE))

Pz

A\γ{dX) j μXΛ{dE) f(X, E) q^(XtE)

with suitable constants ci, c>ι > 0. Here we used the fact that PZ

A\Y is absolutely

continuous relative to PZ

A\Y with density proportional to X —> q#(χnΛ\ Comparing

this with the definition (6) of CA\Y we obtain the desired result because K(X, E) -

KA(X, E) is constant and equal to either 0 or 1 according to whether Y = 0 or not.

D

Our third result in this section relates the influence of the boundary condition
on the type of a single particle to connectivity probabilities in the random-cluster
representation. For measurable ΔCΛ, l<s<q,Xe 3&{q) and (X, E) e & x 2Γ
with E C Ex we define

q

NΔt8(X) = #(Xs Π Δ) , 7V (̂X) = J2 NΔjS(X) = #(spX n Δ)
s=\

and

NΔ^Ac(X, E) = #<x e X ΠΔ:3 a path in (X, E) from x to some y e X \ Λ \ .

The functions NΔiS and NΔ on 3&^q> are measurable by definition, and the measur-
ability of NΔ^Ac will be shown in Lemma 2.4 below.

Proposition 2.3. For any measurable Δ C Λ,

/ (q NΔΛ - NΔ) dQA\Ύ = (q - 1) / NΔ^Ac dCA\Y . (7)

Proof. By Proposition 2.1, the integral on the left-hand side is equal to

μx,λ(dE) Σ / λχ,A(dX)(q l{σ(χ,x)=i} - 1

where Ω(χ^) is as in the proof of Proposition 2.2. If x is connected to Λc in (X, E),
the innermost integral is equal to (q—l) λχ?yi(^(X,£)) because in this case the particle
type σ(x) = 1 on Ω^x^y Otherwise, σ(x) is independent of Ω(χtE) under λχ}A and
takes all values in {1, . . . , q] with equal probability, which implies that the innermost
integral vanishes. The result now follows as in the proof of Proposition 2.2. D

We finally need to settle the measurability questions.

Lemma 2.4. (a) The mappings X —> \χ,A and X —• μχ,A are probability kernels
from 3& to J^(q) resp. if.

(b) For any measurable A C A, the functions NΔ^Ac and K(-, •) on 3& x <§Γ
are measurable.
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Proof (a) The fact that λχ:Λ depends measurably on X is well-known in connection
with the randomization of a point process; see [20], p. 17 and Lemma 1.7. As for
μx,Λ, we consider its Laplace transform LXA. For any measurable function / :
Ewι —> [0, oof we have

e x P [
e(ΞE

= e x P [ -
{x,y}CX

where

Since / is measurable, the function X —> Lχ^(f) is measurable. Lemma 1.7 of [20]
thus again implies that μχ^A depends measurably on X.

(b) Consider the set Π of all quadrupels (x, y, X, ̂ G l ^ x l ^ x ,^ 4 x rί which
are such that x, y G X, % ¥ V> a n ( i x i s connected to ?/ in the graph (X, E1 Π
We may write B = \Jn>ι Bn, where

Bλ =

and, for n > 1,

Bn+] =

vex

Since the functions (x, X) —» lχ(x), (x, y, E) -^ 1E;({X, y}) and X —» J ] v G X ρ(^, X)
[for measurable p] are measurable (cf. 5.1.2 and 5.1.9 of [24]), it follows by induction
that Bn is measurable for any n, whence B is also measurable.

Since

NΔ»Λc(X,E)=

with g(x, X, E) = 1 when Σy(ΞX\Λ IBOE, y, X, i£) > 0 and g(x, X,E) = 0 otherwise,
we now see that NΔ^ΛC is measurable on ,&' x CS. Also, for any k > 1 we have
K(X, E) > k if and only if

xi, A G I \<ι<j<k

In view of the above, the last expression depends measurably on (X, E), and this
yields the measurability of K. D
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3. Percolation in the Random-Cluster Model

In this section we will establish the existence of percolation for continuum random
cluster distributions CA\γ when q > 1 is an arbitrary real number, z is sufficiently
large and the boundary condition Y contains sufficiently many particles.

For any box A C Rd we set

Λ^^oo(^, E) = #<x e X ΠA: x belongs to an infinite cluster of (X, E Π Ex)\ .

It follows from Lemma 2.4 that NA^OO is measurable. We consider again the cells
Δ(i) defined by (3) for the side length δ = r3/\Λί + 3. The main result of this section
is the following.

Proposition 3.1. Suppose assumptions (Al) to (A5) hold and z is sufficiently large
(depending on the parameters of our model). Then there exists an ε > 0 and an
integer n* > 1 such that

/ •

for any cell A = A(i), any finite union A of cells, and any boundary condition Y G
3&Λc with at least n* particles in each cell.

The proof of this proposition consists of two steps. First we will find a measure
CA\γ which is stochastically smaller than CA\Y and such that, conditionally on the
particle configuration, the edges are drawn independently of each other. It is therefore
sufficient to establish percolation for CA\Y. This will be done by discretization and
comparison with a mixed site-bond percolation problem on the lattice 7Ld.

The definition of CA\Y is based on the following two ingredients.

- The distribution of particle positions is given by the marginal distribution

MΛ]Y = CA]γ( x 2Γ)

of CA\Y on 3&.
- For given X G J3Γ, the distribution βx of edges is defined as the distribution of

the random set {e G Ex : ήe = 1}, where (ήe)eeEx are independent {0, l}-valued
random variables with

1 — e~u

Prob(τye = 1) = p := — — — when e = {x, y} with \x - y\ < r 3qe u + 1 — e u

and Prob(7ye = 1) = 0 otherwise; the constants r 3 and u are as in assumption (Al).
It follows as in Lemma 2.4 that X -» βx is a probability kernel from 3£ to &1.

We now define CA\γ on S& x <% by

CA\Y(dX, dE) = MA\Y(dX) βχ{dE) . (8)

For the sake of comparison we note from (6) that

CA\Y(dX, dE) = MA\Y{dX) μq

XΛ(dE) , (9)

where
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= qKιX E)μχ,Λ(dE)/ J qK(X' >dμx.Λ

is the discrete random-cluster distribution on X Π A with wired boundary condition
on the set X \ A

To state the relationship between CA\Y and CA\Y we recall that a probability
measure v\ on a partially ordered measurable space is said to dominate a second
probability measure VΊ if j f dv\ > J f du2 for any increasing bounded measurable
function / In this case we write v\ >z ^2

Lemma 3.2. For all q > 1 and X E .Jfc\ we have μq

χ Λ >z fix and therefore CA\γ h

Proof By assumption (Al),

Pλ(e)/q(l -pΛ(e)) > β/(l - p)

for all e G E The relation μq

χ Λ >z fix thus follows from a well-known comparison
inequality for discrete random-cluster distributions; see e.g. inequality (7.11) of [16]
(this reference deals only with the case of equal edge probabilities, but the proof
works without change in the general case). The second assertion is immediate from
(8) and (9) D

Since NA^OO is increasing, Lemma 3.2 shows that in order to prove Proposition
3 1 it is sufficient to prove the analogous result for CΛ\Y In the case ψ = 0, this can
be achieved by a further stochastic comparison. Namely, the point-process analog of
Holley's inequality [29, 12] together with Lemma 3.5 below then imply that MΛ\Y h
πA

z, so that Proposition 3 1 follows from the fact that the so-called random connection
model of Poisson particles with random edges exhibits percolation when the particle
density is large enough [28, 25]. In the general case such a stochastic comparison does
not work. Nevertheless, it is possible to extend the proof of percolation in the random
connection model to our present setting. Specifically, we shall use a discretization to
compare the percolation problem for CA\γ with a site-bond percolation problem on
the lattice Zd.

The basic idea is as follows We consider the division of Wd into the cells Δ(i)
defined by (3). The side length δ is chosen so small that any two points in adjacent
cells have distance less than Γ3, which means that 6 = r^/Vd + 3. For a suitably chosen
number 77,*, we will call a cell good relative to a given particle-edge configuration
if there exist at least n* particles in the cell and these particles, together with the
associated edges, form a connecte d graph. Two neigboring cells will be said to be
linked if there exists an edge joining a particle in one cell to a particle in the other
cell. An infinite cluster of particles joined by edges then certainly exists whenever
there exists an infinite cluster of good cells joined by links This is a correlated mixed
site-bond percolation problem on Zd For suitably chosen parameters, percolation in
this lattice model can be established by means of a comparison with the Bernoulli
site-bond percolati on problem to which we turn now

Consider the integer lattice Zd, and let 0 < p < 1 Declare a site / e ΊLd, or a
bond {?', j} between two sites of distance 1, to be open with probability p, and closed
otherwise These designations are done independently for all sites and bonds Let θ(p)
denote the probability that the origin is open and belongs to an infinite component of
the open graph consisting of open sites and open bonds. We shall use the following
fact.
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Lemma 3.3. For d>2, there exists a threshold value pc < 1 (depending on d) such
that θ(p) > 0 when p > pc.

Proof This follows either by an adaptation of the usual Peierls argument, or by an
application of an inequality of McDiarmid and Hammersley (see inequality (10.8) in
[21]) which implies that θ(p) exceeds the corresponding probability for the Bernoulli
pure site percolation problem with parameter p2. D

We shall also take advantage of the following well-known fact on random graphs.

Lemma 3.4. For any positive integer n and 0 < p < I, let 2^ j P be the random graph
on n vertices where each pair of vertices independently forms an edge with probability
p. Then, for fixed p,

7(71, p) = Probί 3 ^ j P is connected] —• 1 as n —> oc .

In particular, j(p) = infn>i 7(n,p) > 0.

Proof The first statement follows from the simple observation that ^ j P is certainly
connected if the first vertex is connected to any other vertex by a path of length
2. A straightforward estimate shows that the latter event has probability at least
1 — (n — 1)(1 — p2)n~~2. This also gives the second assertion because each η(n,p) is
positive. (A complete account of the asymptotic behaviour of &n p can be found in
[1].) •

We finally need a third preparatory lemma which will allow us to control the
measure MA\Y. For X G <S&A\Y l e t

K

where ZA\γ is as in (6). Note that hA is the Radon-Nikodym derivative of MA\Y

with respect to PjJ,y.

Lemma 3.5. For q > 1, there exists a constant a > 0 (depending on q, r^/r-s and p)
such that for any box A c Md, X G S£A\Y andxeA\X ,

hA(X U {x}) > a hΛ(X) .

Proof Since x G A, we can ignore the normalizing factor ZA\Y Let μ^i^yi denote
the distribution of the random edge set {e G EXUx \ Ex : ηe = 1} e &, where (ηe)
are independent {0, l}-valued with Prob(?7e = 1) = pA(e). (We omit the braces around
x for brevity.) Then we can write

hΛ(X U x)/hΛ{X) = J μ%Λ(dE) I μx{x,Λ(dE')

with μ\ Λ as in (9). To estimate the last expression we note that, due to the finite
range assumption (A2), all particles of X joined to x by μx\χjA belong to the ball
B - {y G Wd : \x — y\ < r^\. We split B into a minimal number k of disjoint
Borel sets B\,..., Bk of diameter at most r3; k obviously depends only on the ratio
r4/r3. Writing XJ' = X Π Bj for the configuration in Bj, we let Aj denote the set
of all E G & for which the graph (Xj,En Eχj) is connected, ί < j < k. For
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E G A = P| *=1 Aj, there exist at most k different clusters of (X,E) which can be
joined together by the edges in E' drawn by μx\χ:A- Hence K(X U i , E U E') >
K(X, E) — k when E G A. This gives us the first inequality in

hΛ(XUx)/hΛ(X) > q~kμq

χΛ(A)

> q-kμx(A)

> Q~hΊ(P)h =' OL

The second inequality above comes from Lemma 3.2 because A is increasing. The
last estimate follows from the fact that A\, , Ak are independent under fix, each
Aj having probability at least j(β) by Lemma 3.4 D

We now turn to the comparison of the percolation problem for CA\γ with the
Bernoulli site-bond percolation problem on Zd First of all, we introduce the number
n* on which the definition of good cells is based. To this end we fix any p* with
pc < p* < h where pc is as in Lemma 3.3. By Lemma 3.4, we can find a number
n* such that

j(n,p) > y^h and λ(n,p) = 1 — (1 - p)n" > p* when n > n* (10)

Note that \(n*,p) is a lower bound of the fix -probability for the the existence of at
least one edge between particles in neighboring cells when each cell contains at least
n* particles.

Having defined n^, we are in a position to specify the second scale condition in
assumption (A5) We require that r\ is so small that

(n* - \)v{rx) < (S-2r2)
d , (11)

where v(r\) is the volume of a ball with radius r\. Since n* depends on p (and d) by
(10), this condition on τ\ involves u and q in addition to r^ and r^. In particular, if u
is so large that we can choose n* = 1 then condition (11) becomes trivial, in which
case we can take n = r2.

The key step in the proof of Proposition 3.1 is to estimate the conditional prob-
ability that a cell Δ(i) contains at least n* particles, given the configuration outside
of Δ(i). For arbitrary i G Z,d, we use again the abbreviation Nz = NΔiι) for the
counting variable associated to Δ(i), and for any box A D Δ(i) and any Y' G >&Άa)c

with Y' \ A = Y we consider the conditional distribution M^%\γι of the particle
configuration in Δ(i) given the configuration Y' in Δ(i)c relative to MA\Y

Lemma 3.6. If r\,T2^r^ satisfy (A5) as specified by (11) and z is sufficiently large,

we have

for all i G 'Σd, all A C Md which are a finite union of cells, each tempered Y G >J^Άc

with Nj(Y) > n* for all cells Δ(j) C Λc, and any Y' G *&Ά{iγ with Y' \ A = Y.

Proof We can assume that Δ = Δ{ϊ) is contained in A because otherwise the assertion
holds trivially Then

MAMY,(dX) = Z-χ

Mγι hΛ(X U Y') e x p [ - ^ | y / ( X ) ] ττΔ(dX) ,
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X G <3&Δ, with a normalizing constant ZΛ,Ϊ\Y' By (2), this implies that for any
n > 0 ,

= n+1) z /
1 / M ( d X iV ) ( X ) (12)MΛ^γ,(Ni = n) π + 1

with

exp [ - ^ ^(x - 2/)] ftΛ(X U7'U x)/hΛ(X U F') .
L

By Lemma 3.5, the last ratio of /i^'s is at least α, so that we only need to look
at the exponential term. Consider the reduced cell Δo which is obtained from Δ by
removing a boundary layer of thickness ri. By (A5), the volume (δ — 2r2)d of ΔQ is
still positive. Together with (A4), this gives us the lower bound

9i\Y'(X) >OL I dx exp I - ^ ψ(x - y)

yex

which is independent of Y'.
To estimate this further we use an argument of Dobrushin and Minlos [6]. Consider

the set

Ax = {x e Δo : \x - y\ > rx for all x e X} .

If Ni(X) = n<n* then

\ΔX\ > \AQ\ - (n* - l)υ(ri) =: v* > 0

by assumption (11). Here | | stands for the volume of a set in Rd. On the other hand,
Markov's inequality yields for any c > 0 ,

x e Δx : V " ψ(x -y)>c\\ < (n* - 1)b(n)/c ,

where b(r\) is the integral in assumption (A4). This shows that

ae~c[v* - (n* - l)b(n)/c]

when Ni(X) < n*. Choosing c sufficiently large, we find that there exists a constant
b > 0 such that gt\γ'(X) > bn* whenever Ni(X) < n*. We thus arrive at the
conclusion that the ratio in (12) is at least bz when n < n*. Hence

n=0

< {bz - I ) " 1

when bz > 1. The lemma thus follows when z is so large that 1 — (bz — I ) " 1 > /
Π
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We now return to the picture of good cells and links between good cells. Suppose
z is as large as required by Lemma 3.6, and A is a finite union of cells. By (10) and
the choice of z, the conditional probability under C A\γ of the event that a cell Δ(i)
is good given the particle configuration V outside of Δ(i) and all edges which are
not contained in Δ{i) is at least

Condition (10) also guarantees that the conditional probability for two neighboring
cells to be linked when they are good is not less than λ(n*,β) > p*. By a standard
comparison argument, we can conclude that

f
/ A^-ocdC^Y > n* 0(p+) =: ε > 0

j

for such z and A and all i. Together with Lemma 3.2, this observation completes the
proof of Proposition 3.1.

We now specialize to the case q = 1. Let P be a tempered Gibbs measure on ,JK'
with pair potential ψ and activity z. In complete analogy to Sect. 1, this means that
P is supported on the tempered configurations in ,>£" and, for any finite box A in Md,
admits PZ

A\Y as conditional distribution under the condition X \A = Y Assumptions
(A3) and (A4) imply that such a P exists; see Remark 4 2 By the case q = 1 of
Lemma 3.6, the conditional probabilities of P satisfy P^{ι)\γ/{Nt > n*) > ^/p^ for

all i e 7Ld and all tempered Y' £ .J&Ά(ι)c when z is large enough. The argument
above thus gives the following corollary of independent interest

Corollary 3.7. Suppose X is a configuration of particles chosen at random according
to a tempered Gibbs measure P with pair interaction ψ and activity z. Suppose further
that any two distinct particles x, y £ X with \x — y\ < r?, are connected by an edge
with probability p > 0, independently for all such pairs of particles. If (A3) to (A5)
hold and z is sufficiently large then, with probability 7, there exists an infinite cluster of
particles connected by edges. Explicitly, the measure Cp(dX,dY) = P(dX)βχ(dE)
satisfies

Cp( sup A^c^oc > l) =1

In the case of no interaction (ψ = 0) when P is a Poisson point process, this
result was obtained first by M. Penrose [28] (It is then not necessary to assume that
the edge probabilities are uniformly positive for short distances.)

4. The Infinite-Volume Limit

In this section we will complete the proof of Theorem 1.1 by investigating the Gibbs
distributions QA\Y m the infinite volume limit A j WJ*. Many of our arguments are
standard, but we have to be careful with various details

We assume again that q is an integer > 2. As before, we consider the cells Δ(i)
defined by (3) with δ = ?'3/\Λί + 3. For notational convenience we assume without
loss of generality that the units in Wd are chosen in such a way that δ = 1. The limit
A I ¥>d will be taken along the sequence
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Λ(n) = [-n- l/2,n

of boxes of volume υn = (2n +\)d.
Let Y G S& be any conίiguaration with a fixed number n* of particles in each

cell, i.e., Ni(Y) = n* for all i G 7Ld. For each n, Y defines the boundary condition

of particles of type 1. We look at the projection

Qn = QΛ(n)\Y(n) (X G ̂ Γ(<?) I X Π Λ(n) G •)

of QΛ(Π)\Y(Π) t 0 ^(n); n e r e X n Mn) = (^β Π Λ(n))ι<a<q G ̂ ί ^ ) is the restriction

of X G 36^ to Λ(n).
To obtain asymptotic translation invariance we take a spatial average of Qn. For

x G Md, the translation ^ : &(q) -> ^ ^ j s defined by

It is well-known [24] that the mapping (x,X) —> i^xX is measurable. In view of
the cell structure we have imposed on M.d, we will confine ourselves first to lattice
translations. So we define

i<EL(n)

with L(n) = Λ(n)ΠZd. We will show that the sequence (Qn) admits an accumulation
point in a fairly strong topology which is defined as follows.

Let S% denote the class of all measurable functions / : <2&{q) —• M which are local
and tame, in that there exists some ί > 1 such that / = f( ΠΛ(έ)) and |/ | < KI+NAW)
for some constant b = b(f) < oo. The topology r^ of local convergence on the set
of all probability measures R on ^ ( Q ) with / N^dR < oo for each finite box Δ is
then defined as the weak* topology induced by J2ί, i.e., as the smallest topology for
which the mappings R —> J f dR with / G 3% are continuous.

The basic result of this section is the following.

Proposition 4.1. Suppose φ and ψ satisfy (Al) to (A4) and z > 0 is arbitrary. Then
there exists a subsequence of (Qn) which converges in τ<g to a limit Q. This Q is a
continuum Potts measure for φ, ψ and z. It is invariant under the lattice translations
(βi)ieid and of second order in the sense that J N\ dQ < oo for each finite box

Δ cld.

Let us show first how Theorem 1.1 follows from the preceding proposition and
the results of the foregoing sections. Suppose z and n* are as large as required
by Proposition 3.1. Let Y be a configuration with n* particles in each cell and an
associated limiting measure Q be chosen according to Proposition 4.1. To achieve
invariance under the full translation group (ΰx)xelSίd we pass from Q to the average

Q(1)= / Qoϋ'ιdx.
JΔ(0)
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Q ( 1 ) is a continuum Potts measure of second order Also, Q ( 1 ) is symmetric under
exchanges of the types 2, . ,q because all Qn exhibit this symmetry.

Applying Propositions 2.3 and 3 1 we see that, for A - A(0),

\Λ-NΔ)dQn > (q-iyυ-1 Σ I
ieUn)'-

> (a - l)ε .

and also that the expression on the left-hand side is increasing in A. Since N^,\, NΔ £
fZ, the same inequality holds for Q in place of Qn, and using the monotonicity in
A we obtain that

ί -NΔ)dQ{l)>0

for A = [—1,1^, and by translation invariance also for A = A(0). Together with the
symmetry of Q ( 1 ), this means that

P\(Qil)) > PI(Q{X)) = =pq(Q(l)),

where ρs(Q(l)) = J NΔ(o),s dQ(l) is the expected density of particles of type s. For
2 < t < q, let Q(t) be the (lβx)xEΆd-invariant continuum Potts measure which is
obtained from Q ( 1 ) by interchanging the roles of the types 1 and t. It is then obvious
that the matrix (ps(Q^)ι<s,t<q is regular. By the ergodic decomposition theorem
(which can be derived in analogy to the lattice case considered in Chapter 14 of
[9J), this implies the existence of (ΰx)xeΆd-ergodic continuum Potts measures with
the same property; cf. Corollary (14.18) and Comment (16.19) in [9] The proof of
Theorem 1 1 is thus complete To conclude, let us note that our estimates also imply
that ps(Q(s))/ρ(Q(s)) -> 1 as z -» oo for each type s.

We now turn to the proof of Proposition 4.1. We might follow the lines of Ru-
elle [30] or, under slightly stronger assumptions on φ, of Dobrushin [4, 5]; these
references, however, work with other topologies than τ%. We prefer to sketch here
an alternative "thermodynamic" approach in the spirit of large deviation theory. We
proceed in four stages.
Step 1. Energy and entropy estimates. Suppose φ is superstable and lower regular. By
definition, super stability means that there exist constants α, b > 0 such that, for all n
and X G >J&Λ(n),

HΦ(X)> J2 [aNτ(X)2-bNτ(X)] . (13)
ι(EL(n)

Lower regularity is defined as the existence of numbers Ψi > 0, i G 7Ld, such that
Ψ := Στ(ΞIίd ^ < oc and

V^ φ(x — y) > —Ψτ-3Nτ(X)Nj(X) (14)
x^XnΔ(i), yeXΠΔ(j)

for all X G >#/ and i, j G Zd. For our fixed configuration Y, both conditions together
imply that

HA{n)\Ύ{n) > \^ [a N2 - 6* Nτ] > -C* Vn

for all n, where 6* = b + Ψn* and c* = b\/Aa.
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As is well-known, the relative entropy (or Kullback-Leibler information) of two
probability measures μ,v on the same measurable space is defined by I(μ v) =
J log / dμ > 0 if μ has Radon-Nikodym density / relative to v, and I(μ\ v) = oo
otherwise. Using (1) we obtain for each n, writing π n ? g =

v~lI(Qn; π n > g ) = -v~ι / HΛ(n)\Y(n)dQn - v~ι log ZΛ(n)lY(n)

< c* + zq =: c . (16)

The inequality follows from the energy estimate (15) and the fact that ^Λ(n)|Y(n) >
7ΓA(n)({^})q I n the case φ > 0, the preceding inequality (16) holds trivially with
c = zq.
Step 2. The existence of an accumulation point Q. We first need to introduce the
relative entropy density. For any ($^G^d-invariant probability measure R on ^\
this is defined as

where R(k) is the projection of R onto &j$ly For the existence of this limit we
refer to [9], Theorem 15.12. The important fact we need here is that the sublevel sets
{/ < c} are sequentially compact in the topology r ^ . This was shown in Proposition
2.6 of [13].

We now consider the following particular sequence (Qn) of (ΰi)ie^d-invariant
measures. For each n, we write Qn for the probability measure on 3&^ relative to
which the particle configurations in the disjoint blocks A(n) + {In + l)i, i e 7Ld, are
independent with identical distribution Qn, and we set

Qn=V~l Σ QnOϋT1 .
ιeL(n)

It is not difficult to see that I(Qn) = v~ιI(Qn;πn^q), cf. the proof of Proposition
(16.34) in [9]. Together with (16) this shows that the sequence (Qn) has a subsequen-
tial limit Q in r ^ . Clearly, Q inherits the (βi)ieTjd-invariance of the Qn. Now the
point is that, by a slight variant of Lemma 5.7 in [13], the sequences (Qn) and (Qn)
are asymptotically equivalent in τ%. We thus conclude that a subsequence of (Qn)
converges to Q.

Step 3. Bounds on the second moments. Suppose first that ψ is superstable and lower
regular, and let i E Z d and n > 0 be arbitrary. Using the estimates (15) and (16)
together with the nonnegativity of the relative entropy we find

JN^dQn
jeL(n) '

nl ^ J HΛ(nWn) dQn + J (^7V0 - NήdQn

< n\+ 2zq/a + (6*/α)2 =: m . (17)

In the alternative case when ψ > 0, a uniform bound on J Nf dQn can be obtained
from the fact that, in this case, the density of QA(Ϊ)\X relative to (nA(i))q is bounded
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uniformly in X G ̂ Δ^y Since Nf is the supremum of functions in J^, we conclude

in particular that J NfdQ < oo. Hence Q is of second order.
Step 4. Verification of the Gibbs property. To show that Q is a continuum Potts measure
we need to check that, for any k > 0 and any local function / on ,Jι*Γ(ςr) with

fdQ= ί fMk)dQ

Here we use the abbreviation /Λ(X) = f f dQΛ\x, X G J£j[<?\ For notational conve-
nience we confine ourselves to the case k = 0; for general k one can argue similarly.
Since / G cvί, we know that j f dQ = LimJ/Qn' along the subsequence (rz;) with
On' —> Q The consistency and translational homogeneity of the Gibbs distributions
imply that, for each n,

Therefore it only remains to show that

f fΔ{0)dQn, (18)

along the subsequence (nf). This is obvious when ψ has finite range because then fΔ(0)
is local In the general case, we approximate fΔ®) by the bounded local functions
ΪΔ®),k = /z\(0)( Π ̂ l(A )), k > 1. Namely, arguing as in the first lines of the proof of
Lemma 7.4 of [11] we find that

NodQΔ{o)\x+ I NodQΔ(0)\χnΛ(k)\ (19)
J J

for sufficiently large k In addition to our assumptions φ > 0 and (14), this estimate
requires only the upper regularity of φ + ψ, which means that

(20)

for all X G .Jfi' whenever \i—j\ exceeds some constant. This property follows trivially
from (A2) and (A4). If ψ is superstable, a variant of Lemma 7.3 in [11] shows that
there exists a constant C < oo such that

with D = 21 a. If ψ > 0, we can even set D = 0. Inserting this into (19) and using
the Cauchy-Schwarz inequality and (17) we arrive at the estimate

/ \fΔ(0) - fΔ(0),k\ dQn < 4[Cm'/ 2 + DΦm] ^ Ψj =. ε(k)



Phase Transition in Continuum Potts Models 527

The same estimate holds with Q in place of Qn. Since ε(k) —» 0 as k —> oo and
fΔ(θ),k £ S% for all fc, assertion (18) follows immediately. The proof of Proposition
4.1 is therefore complete.

We conclude with two remarks.

Remark 4.2. Proposition 4.1 evidently implies the existence of continuum Potts mea-
sures for arbitrary activities z > 0. Of course, it is also true in the case q-\ and then
gives us the existence of tempered Gibbs measures for pair interactions ψ satisfying
(A3) and the upper regularity (20) (with (/? Ξ 0), as established first by Dobrushin [5]
and Ruelle [30]. Compared with [30], the preceding argument is less elementary but
also much less involved, whereas the methods of [5] need a non-integrable singularity
of ψ at the origin. Note, however, that these references provide stronger information
on the moments of the limiting Gibbs measures.

Remark 4.3. Suppose each particle type s is equipped with its own activity zs > 0,
so that the parameter z > 0 is replaced by the vector z = (z\,..., zq). Let ZA\γ{z) be
the associated partition function, cf. (1). Using the techniques of [10], one can show
that the pressure

p(z) = Jirn^ v~ι logZΛ ( n )\Y ( n )(z)

(exists and) is equal to

- inf \U(R) + Iι(R) - V ps(R)log z3] .
R L ^-^ J

s=l

In the above, the infimum extends over all probability measures R on J2Γ(<?),

U(R) = lίn^Vn1 / #Λ(n)|Y(n) dfl(n)

is the energy density, and I\ (R) is the relative entropy density of R with the Poisson
point processes of intensity 1 as reference measures. If z is so large as required be-
fore and z = (z,..., z\ one can further deduce from (16) with the methods of [10]
that the infimum above is attained by Q and thus also by Q i , . . . , Qq. (In fact, if ψ
has a non-integrable singularity at the origin, an analog of the variational principle in
[11] shows that the infimum is attained precisely for all (f&x)xe^d-invariant continuum
Potts measures.) Since ps(Qs) > PsiQt) for 1 < s ^ t < q, this means that the convex
function (log z\,..., log zq) —+ p(z) admits q tangent hyperplanes at (log z,..., log z)
with distinct slopes in each direction. Consequently, the pressure p(z) is not differ-
entiable with respect to zs at (z,...,z) for each 1 < s < q, provided z is large
enough. By the usual Legendre-Fenchel duality formalism, this non-differentiability
corresponds to a discontinuity of the pressure as a function of the particle densities
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