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Abstract: An action functional, related to the Higgs model to field theory, depending
on a complex scalar field and a U(1) connection is defined. The complex scalar field
is a section of a line bundle associated to a principal U(1)-bundle with base space
1R3\{x1,...,x,,}‘ The points xi,...,x, are the positions of » magnetic monopoles
of magnetic charges m;,...,m,, with Z;’zl m; = 0. The existence of minimizers of
the action functional is proven using direct methods of the calculus of variation.
Regularity and decay properties of the minimizers are obtained. By constructing ex-
plicit comparison field configurations, we establish accurate upper and lower bounds
for the action of the minimizers in a variety of special situations, e.g. n = 2 and
m; = —mj.
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1. Introduction

The variational problem studied in this paper arises in the description of the quantum
counterparts of classical vortex configurations in the U(1)-Higgs model in 2 + 1
space-time dimensions. Using Euclidean functional integral methods to construct
the Green functions of the U(1)-Higgs model one is led to study the classical
variational problem described in the abstract: In attempting to calculate these Green
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functions within a semi-classical approximation one finds that the leading terms can
be expressed in terms of the solutions to that variational problem [5]

In the following we first review some results about the U(1)-Higgs model and
its classical vortex configurations Then we introduce the notions required to state
the variational problem in a mathematically precise manner.

The Lagrange density of the U(1)-Higgs model in 2 + 1 space-time dimensions
is given by

1 1 _
L(@A) = 5 dA N KdA + 5D, 0 A *D@ — *V(|9)),
e

where 4 = (4,dx") is a U(1)-connection (the gauge field) on a complex line bundle
over three-dimensional Minkowski space, and @ (the Higgs field) denotes a section
of this bundle. The symbol % denotes the Hodge star operation on forms, d is
the exterior derivative, and D4 = d — i4 denotes the covariant derivative. Finally,
V(|®|) (the Higgs potential) is a polynomial in |®| bounded from below. It is given,
for example, by

V(e = S0l "),

where A (the coupling parameter) is a positive constant. Since we are using units
in which the velocity of light and Planck’s constant are unity, we are left with only
one basic unit, that of length. The action fﬁ(@,A), is dimensionless. Thus p?, e
and / have dimension (length)~'. Passing to dimensionless variables,

1 1
-0 — P, —A, — A
p pe

and choosing suitable units, we end up with

1
( A 2 2
1o (pe)xl Hx’) e_zA_> A,

1 1 _
L(@.A) = JdA N *dA + 3D, ® N *Dy® — %V (|P]) (11)

and .
A
vieh = gl -1y (1.2)
Time-independent configurations (®,4) with the property that the time-
component of 4 vanishes are called static The energy of a static configuration

is given by

1 1
E(da) = [ |5ldal’ + 5IDudl” + V(|@)| dx. (13)

R2
where a,(x) = A,(t,x) (i=1,2), ¢(x)= ®P(t,x) and |[D,¢|*> .= *(Dyp A *kDyh).
This energy functional has been studied in the mathematical literature, see e g. [7, 1]
and references therein We summarize some key results.

Let a be a continuous connection and ¢ a C'-section Assume that
lim sup |1 —|¢]| =0,

IO x| =

Ix|"*°|Dy| < const, for some 6 > 0 (1.4)
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Then the configuration (¢, a) defines a homotopy class given by the winding number
of the map
X
d)( ) . Sl N Sl ,
|¢(x)| |x|=r

provided r is large enough. This winding number, m, coincides with the vorticity
of the gauge field @ which is defined by

mzlimL [ daeZ. (1.5)

r—00 nlxlgr

It is expected (conjecture by Schoen and Yau’79) that the homotopy class of (¢,a) is
well defined under the only assumption of finite energy. Thus the space of classical
field configurations (¢,a) of finite energy very likely decomposes into infinitely
many, topologically distinct classes labeled by their vorticity. We call a finite-energy
configuration with properties (1.4) and (1.5) a m-vortex configuration.

Further, existence of finite-energy solutions to the variational equations derived
from (1.3), i.e., static solutions to the classical Euler-Lagrange equations derived
from (1.1), have been established in [7] and [1]. More precisely, let m € Z and
A > 0. Then there exists a smooth, finite-energy critical point (¢, a) of the energy
functional E(¢,a) defined in (1.3), with ¢(0) = 0. (¢, a) is rotationally symmetric
in the sense that

a=mo(r)do,
¢ = o(r)e™’, (1.6)

where a(r), @(r) € C*=(0,00), and (r,0) are polar coordinates in IR2. Moreover,
¢ and « are strictly increasing from 0 to 1 on (0,00), and we have the following
decay properties for » = 0:

(D1) 1—[¢]* < Me+7,
(D2) |da| < Me™"",
(D3) [Da| < Me™#",

where p and M denote positive constants depending only on A and m. For this
reason we can think of these solutions as describing “extended classical” objects
(vortices). In the Bogomol'nyi limit, A = 1, the solutions satisfy first order, “self-
dual” equations, and one has a rather detailed picture of all finite-energy solutions.
For 1+ 1, however, only the existence of rotationally symmetric solutions has been
established. One has the heuristic picture that vortices (of vorticity |m| = 1) attract
or repel one another, for 4 < 1 or 4 > 1, respectively.

An attempt to understand the quantum counterparts of these classical solutions
(or, more generally, of the different homotopy classes of vortex configurations)
within a functional integral formalism leads to the variational problem which is the
subject of this paper. This is described in [S]. In order to state the problem in a
mathematically precise manner, we require some definitions:

We choose a set of n distinct points in R3, x := {x),...,x,}, and define

My =R\ {xy,...,x,}
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equipped with the Euclidean metric. U(1)-bundles over M, are classified by the
second cohomology group H Z(Mi,l),

H*M,Z)=Z& -®Z (nsummands). (17)

Let m .= {m;, ,m,} be a set of n non-vanishing integers We then denote by
P, » the U(1)-bundle over M, specified by m according to (1.7). The n integers
my, ,m, can be interpreted as magnetic charges of n magnetic (Dirac) monopoles
located at the points xi,...,x, of R3.

Let 49 be a connection on P, , and Fy = dA, its corresponding curvature or

field strength Then every other connection 4 on Py, is of the form
A=Ady+ A4, (1.8)

where 4 is a globally defined 1-form on M,. We choose an explicit reference con-
nection Ay: On a ball containing the punctures x;, ..,x, we choose 4 to be given
by A}, such that its curvature, FJ/, is harmonic on M,, ie., given by

n
Fi(x)=2n3m, * dE(x — x,), (19)
j=1
where E(x) = 1[x|7! is the fundamental solution of the Laplacian in three-
dimensional Euclidean space Let {¢/}*] be the open cover of M,, as indicated
in Fig 1 below Then Ag is locally given as a family of 1-forms {Ag(j)(x) Cj =
1, . ,n+1, and suppAg(’) C (D}, where

nooomy o (b = xDdx? — (0 — x2)dx!

A ()= 3

S22 —xnl o3 -+ - x|

>

with
D -1 forl1 £i<j<n+1
1, = o (1.10)
1 for ]l £j<i<n
Furthermore, on the intersections ()N @OU+D j =1 |n, Ag(j) and Ag(’H) are

related by the transition conditions

[
X )C]

2 2

‘ x?—x
A () = AlD () — dp P (x),  where Y (x) = m, arctan< f) .
This corresponds to transition functions g; ;1 : ¢V N OUTD — U(1) given by

gl,]+1 = exﬁlw(l)('x))’ fOr j = 13 s

Similarly, we have transition functions ¢; 5 - 0 N %) — U(1), for k=3,...,n+1,
given by

k-1
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Fig. 1. (Choice of the open cover {¢U )};’:11 of My). Let ¢ > 0 be small and denote by (74, 0;,z;)
cylindrical coordinates centered at the point x; = (xi’,xiz,x? ), i =1,...,n, with z;-axis parallel to
the x3-axis. In the neighbourhood of each puncture x; of My = R3\{x;, ,xn} we take two
(smooth) surfaces T’ such that, for r; < & IT\ = {r; = £z;}, and, for r; > 3¢, IT', = {x* =
x? + 2¢}. Thus we obtain a pair of surfaces meeting each other only in the point x;. In the exterior
of a sphere containing x; and x,, but not x;, i = 3, we deform the pairs of surfaces associated with
x1 and x, in an axially symmetric way, as indicated in the figure Thus we obtain a closed surface
and a new pair of surfaces, which in turn is combined in a similar manner with the pair of surfaces
associated with x3, and so on 0@, .,(9(") denote the domains bounded by the closed surfaces
constructed in the process above O1) and @"*+1) denote the remaining unbounded domains, which
overlap each other outside some sphere containing all punctures xj, ,xy

One easily checks that on the intersections OV N @) N @U+D j =2, ... n, the co-
cycle conditions g;, j(x)g;, j+1(x) = g1,j+1(x) are satisfied. Henceforth we require neu-
trality in the sense that

n
Sim=0. (1.11)
i=1
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Let Q C R? be a closed ball containing the punctures xi, . ,x, in its interior, and
let Qp = {x € R? dist(x,Q) < 1} Then we can choose the reference connection
such that

on Q, Aq is given by 4%, defined in (1.10),
Ap vanishes outside €y, (112)
Ay smoothly interpolates between Ag and 0 on Q\Q.

Note that all information about the topology of the U(1)-bundle P, ,, is encoded in
the curvature £, of the reference connection A. T

Next, we consider sections of the complex line bundle £, ,,, the bundle associated
to P, ,, With respect to the open cover {C((/)}’/’i]', a section @ of E, ,, is given by a
family of complex-valued functions {®) . ¢*/) — C|j =1, . ,n+ 1}. On all non-
empty intersections () N @®) 1 < j, k < n+ 1, the transition conditions

P(x) = gj(x) PN (x) (1.13)

are satisfied. Finally, for a fixed connection 4 on P, ,,, the covariant derivative on
E, , restricted to ) reads

3 .
Di®|ein(x) = ; (V@] ¢n ) (x)dx'

— d¢(j)(x) — iA”(j)(X)df,(j)(x)

On all non-empty intersections transition conditions analogous to (I 13) hold.
As a consequence, |®| and D;P| are globally defined, non-negative functions
on M,

In the following we identify forms and vectors by the canonical isomorphism
provided by the Euclidean metric, ie., if o(x) = Zf;l o,(x)dx" is a one-form
and f§ = %Z? i1 Bi(x)dx' Adx) is a two-form we identify ox) with the vector
(o1 (x), 22(x), 23(x)) and P(x) with the axial vector (f23(x), f31(x), f12(x)). Further-
more, dx stands for the Lebesgue volume element on IR? or IR?, respectively.

In the following we consider the renormalized action functional

~ m;m 1
$@A) =73 L+ o [ [FP() — [FP(x)]dx
i<y b — x| R\Q

+ [ l[curlA|2(x) + (curl 4 - Fy)(x)
i, L2

+%|VA0+,,@|2(x)+ V(|@)(x)| dx , (114)

which arises in the description of the quantum counterparts of classical vortex con-
figurations This action functional is well defined (Lemma 11 (ii)) on a space,
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Z, of pairs, (®,4), where @ is a Sobolev section of E, and 4 = Ao + A are the
components of a connection of Py ,. The space F is defined as follows:

F = {(®,4), @ a section of E, , with the properties (1.13),

Ao + A4 a connection on Py, with 4y defined in (1.12):
(|9, 4) € HYAR3RT x R?),curl 4 € LR RY),
|Vap+a®| € (R RY), V(|®]) € L' (R RF)} (1.15)

We remark that the action functional (1.14) defined on the space % is invariant
under gauge transformations

A—A+VY, & — PV |

with ¥ € HZZ(R3; R).

The subject of this paper is to minimize the action functional S(®,4) on %
and prove regularity and other properties of the minimizers. Unfortunately, this
variational problem is not well posed, since the term proportional to |curl 4% in
S(®,A4) is not coercive. This difficulty can be avoided by choosing a fixed gauge.
Lemma 1.1. (i) Assume that A € H-*(R3;R3) and curld € LI(R3;R3). Then

loc

there exists a gauge transformation A — A 1= A + V\y with |y € Hlf;cz(]Rz’; R), such
that V-4 =0 a.e., and the following identity holds:

[ |eurl ] dx = [ |VAP dx, (1.16)
R3 R3

where [VA[? = Y7 8:4;]%
(ii) Let Ay be the reference connection defined in (1.12). Assume that A €
HE2(R3R3). Then the following identity holds:

[ eurld-Fodx = [ A-curl Fodx . (1.17)
My 2\2

The proof of Lemma 1.1 will be given in the Appendix.

Now, for any (®,4) € &, we may assume that 4 satisfies the Coulomb gauge
condition V-4 =0 and (1.16); as guaranteed by Lemma 1.1, (i). Then the varia-
tional problem above reduces to a variational problem with the following coercive
action functional
g mim; 1 2 B2
S(o,4)=n} +5 J [F[e) = |Fg[P ()] dx + S(2,4)

i< =% 2gpie

where

S(@,4) := [ %]VAIZ(x) + A4 - curl Fy(x) + %IVAOHQI)lz(x) + V(|®D)(x)]| dx .
M_

(1.18)



454 I Frohlich, M Leupp, UM Studer

The functional S(®,4) is invariant under gauge transformations
A—A+VYy, & — bV,

where Vi is constant For the second term on the r.hs. in (1.18) this follows by
Lemma 1.1, (ii) Thus we may impose the condition |, x Adx =0, where K C Q is
a compact set with Lebesgue measure |[K| > 0. This additional gauge condition is
important in our analysis as it permits us to apply the Poincaré inequality. Then we
enlarge the space of admissible sections and 1-forms by setting

7 = {(@,A), & a section of E, , with the properties (113),

Ao + A a connection on Py, with 4y defined in (1.12).

(|@),4) € HEX(R?, RY x R3), |V, 4 ®| € L2 (R?),

loc
[ Adx = 0 for the compact set K C Qp, with [K| > 0} . (119)
K

A minimizer for the functional S(®,4) on the enlarged space F turns out to be
a minimizer for S(P,4) on F

We briefly summarize our main results' In Sect 2 we prove the existence of
minimizers, (@,4), for S(®,4) on F under very general hypotheses concerning the
potential ¥ (Theorem 2 1) In Sect 3, we study regularity and decay properties of
the minimizers: The section @(x) and the form 4(x) are smooth on R*\{xy,...,x,}
(Theorem 3 1) The function |@| is bounded above by 1, and, in the neighbour-
hood of any puncture x,, 4 is Holder continuous (Lemma 3 1), and @ possesses a
Hélder continuous extension to x; (Theorem 3.2) with a zero at x; The functions
1 — |®[%, [curl (49 + 4)| and |PV 4,14 ®| decay to zero exponentially fast, as |x| tends
to infinity (Theorem 3 3). In the last section, we derive accurate upper (Theorems
4.1, 4 2) and lower bounds (Theorem 4 3) on the action S of the minimizers in the
special situation M, = ]R3\{x1,xz}, i.e.,, for two magnetic monopoles of opposite
magnetic charges The action essentially grows linearly with the distance |x; — x;|
and in the monopole charge.

Independently, T. Riviére [10] worked on the same minimization problem He
gives a direct and short proof of the existence of minimizers and then focusses on
an asymptotic analysis of the minimizers when the coupling parameter /4 tends to
infinity.

2. Existence Results

Our main result in this section is the existence of minimizers for S on & (where
S and # are defined in (1.18), (1.19)), under very general hypotheses concerning
the potential V'

Theorem 2.1. Suppose V - R — IR is continuous, non-negative and coercive in the
sense that

V(x) = C'|x|* — C, for some constant C > 0 and all x € R 2.1)

Also suppose that there exists an element (9',4") € F such that s' .= S(@',4") <
oo Then there exists an element (@,A4) € F which minimizes S on F
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Remark. For a choice of M, with x = {x1,x;} and m = {—m,m}, the existence
of (9',4') € & follows from Theorems 4.1, 4.2 and Lemma 1.1. The proofs can
easily be generalized to the general situation.

The proof of Theorem 2.1 is based on the techniques presented in [5]. We
remark that, if the bundles Py, and E, , are trivial (i.e. 4o = 0) and if the term
S A - curl Fodx in (1.18) is replaced by — [, curl4 - Heqdx, where Hex € L’n
HIL’CZ, this minimization problem has already been solved [14]. In our proof we fill
in the details how to handle the difficulties arising from the fact that 45 (x) =

O(Jx — x;]~1), for x — x;, and that @ is only a local section.

Proof. Let {Q;}ren be a sequence of compact, smooth domains (balls, for in-
stance) exhausting R3, with K C Qy C ©;. The proof comprises three steps: (i)
First we investigate the coercivity properties of S restricted to the compact sets €.
(i) Then, we study the convergence behaviour of a minimizing sequence in & and
extract a subsequence, which converges, in a sufficiently strong sense, to an element
(@,4) € #. (iii) By weak lower semi-continuity of S and a monotone convergence
argument, we show that (®,4) minimizes S on &.

Step (i). Let {4 }ren be given, and denote by S(P,4; Q) the functional in (1.18),
but with integration over € instead of M,, then

S(P,A4; Q) = c[||VA||§2(Qk) - + HVAO+A¢”i2(Qk)

| A-curlFydx
@\Q

+f V(|d§|)dx].
o2

For the second term we have used that, due to our choice of A4y, suppcurl Fy C
Q0\Q, and we can further estimate it by

| A-curl Fydx
2\2

< Al = CK; Q)| VAl 200

A

C(K; QoI VA| 20,y » (2.2)

where we have used Poincaré’s inequality and the hypothesis that | xAdx =0in 7.
With the coercivity hypothesis (2.1) for the potential ¥ we can estimate the last
term and get

>c [%HVAHfZ(m) = 30K QY + V19l
+CM P g — C|Q"I] ’

where we have used Kato’s inequality for the third term. Splitting the first term and
applying Poincaré’s inequality again, we obtain:

S(@,4;2%) 2 1(K; QA0 + 2l 1] gy — 3K ), (23)

where ¢,, i = 1,2,3, are positive constants.
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Step (ii) We have that inf (g 4)c7 S(®,4) > —o0, due to inequality (2.2) and
the non-negativity of the potential V. Let ((®,,4,)) be a minimizing sequence
for § in #, ie, S(Pu,An) — inf(g ayc7 S(P,A4), as m — co. We may assume
that S(@,,,4,) < s’ < 0o, uniformly in m € N. By (2.3) and since supp curl Fy C
Qo\Q2 C Q,Vk € N, we have that

CI(K> Q/{)”AHI”;.[I.Z(QU + CZ” |(pml H%.[J.Z(QA) é S((pm; Am) + c3(Ka QA)

S5 (K ) < oo,
uniformly in m € N. Hence (4,) is bounded in H"“?(¢;,R*), and (|®,|) in
H"“2(Q;;R"), for any k. Since H'->-spaces are reflexive, we may assume — if
necessary extracting a diagonal sequence — that for any &

Aw — A weakly in H"?(Q;R*) and  [@,] — ¢ weakly in H2(Q;RT), (2.4)

hence (¢,4) € HE2(R3 R* x R?). Using Rellich’s theorem, we conclude that

Ay — A in L(Q;R?) and |®,| — ¢ in L2(Q, R™), for all k € N. Furthermore,
we may assume — if necessary again by extracting a diagonal sequence — that

|P| — ¢ pointwise, a.e. on €, for all k. (25)
Next, we show that we may assume the sequence of sections (@,,) to be such
that (Dﬁ,f) — @) in Lz(@ij),(lj), forall j=1,...,n+ 1 and k£ € N, where Cfif) =
)N @, and that @ is also a section of the complex line bundle Eyxm
Let j,k be an arbitrary but fixed pair. (We note, that our construction of the
cover {¢)} in Fig. 1, is such that the bounded set ¢’ has Lipschitz boundary, for
every j and k) Then we have that

(a) (<I>(’)) is bounded in L”(Cffij);(]:),l < p = 6, because of the boundedness

m
of (|®,]) in H"2(;R") and the Sobolev imbedding on Cf’,((]). By extracting a
subsequence, if necessary, we may assume that

2] — 0 weakly in (05 ©), 15 p 6. 20

m

(b) Since 4 € L2(¢\)), Holder’s inequality and (2.6) yield that

N W

|\Af)j)<15,(,f)||u((/<,; ) is uniformly bounded in m € N, for 1 < ¢ <
),

(c) We claim that 4, @) — 4 #7) weakly in LI(C{);€*), for 1 < g < 3 This
implies that

N W

”A"’qj;{)||m((f§”;¢‘) is uniformly bounded in m € N, for 1 < g <
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Indeed, for © € L7 ((9(/ ). ), q : —q— > 3, we derive the bound

[ (4@ — 49V vdx
@I((J)

[ A — @) vdx
02!)

[ (A — )PP - vdx| +
(92/)

< [ 4m — A/_I“Lr(@f(!’;mz)”djﬁnj)”u(@;(/&c)”T“Lq’(@;”;@) + (9& - ‘c)(@ﬁ,{) — Q(j))dx R
k

for r€[1,6), pe[l,6] and 4- 1€ LX(0O); T). By the compact imbedding H(¢\)

— Lr(@fcj)) of Rellich-Kondrachov, we conclude that || 4, — 4|, o) 0. Using

(2.6) the claim follows.
(d) Due to (2.2) and the non-negativity of the potential ¥, we conclude that the

sequence (V ., @) is bounded in L*(0'; €?), and again—if necessary passing
0 m
to a subsequence we have that

1=V, LB = A weakly in L2(0; C?). (2.7)
Next, using (2.6) and 4,, — 4 in L?(£4; R3) we find that, for any 7 € Cg"(@ij); ),
f ¥ tdx = [ (-V- 1)@ — iAf)j) 1@ — idy, - 1 dx
(0/(‘]) (()U)
— [ VA<” D zdx

(m—o00) ( )

where we have used that (—V - 7) and 45 - 7 are in L*(0; €). Since C°(0; €?)
is dense in Lz((O,(CJ ), C3), we conclude, by the uniqueness of weak limits, that

(1) =V A (j), a.e. on (Dﬁ(j).

Note that, because of the imbedding L2((O(’ )y LP(@(’ ), for 1 £ p < 2, the se-
quence ( x(’ )) is bounded in LP(@E(’ ), C3). Statements (b), (c) and (d) together imply
that, for 1 < ¢ < %,

||V¢Sr{)”[ﬂ((9£j);c3) § IlXSr{)||Lq((9§(f);q:3) + “Af)j)¢$nj)”llq(@§(/);q:3) + ||Amd§£,{)||Lq((9§(!);c3)

is uniformly bounded in m € N. Together with (2.4), this shows that the sequence
((Dﬁ,{)) is bounded in H 1"7((9(’ ), C), forl1 <¢g = ;, and, by appealing to Rellich—
Kondrachov imbedding, we get that (@ﬁ,{)) is relatively compact in L’((OI((’ ),(E),

for 1 < r < 3. In particular, (tbfnj)) is relatively compact in LZ(@gf );(E), and we
conclude (passing to a subsequence and comparing with (2.6)) that

o) — o) e [H0YP;T). (2.8)
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The chain of arguments from (a) to (d) is valid for any @(’),j =1,.. ,n+1,and
k € N Thus, by applying a double-diagonal sequence process in j = 1,...,n + 1 and
k=1,2,..., we may assume that (®,,) actually possesses properties (2.5), (2.7) and
(2 8). The section property (1.13) of @ follows from (2 8) and the section properties
of the @,,’s

We conclude this step by showing that (@,4) € &, see (1.19). The regularity
properties of (@,4) are already established. That the gauge condition fk,idx =0
is satisfied follows from the L?(€;, R3)-convergence of 4,, — A and the fact that
K C Qy, for any k.
Step (iii) By weak lower semi-continuity of the L?>-norm and (2.4), we have that

[ |VA[*dx < liminf [ [VA4,,|dx.
o m—0o0 Q

Since curl Fy € C5°(Q20\2; R?), we conclude from the L’-convergence of 4,, — 4
that

[A-curl Fydx = lim fAm -curl Fydx ,

m-—oC
Q

for all ; We denote by {A"} a locally finite partition of unity subordinate to the
open cover {C‘(’)}’;;rll, ie, A e Cgo(@), for some j=j(i), 0 < A <1 and
>~ hY = 1. Again using the weak lower semi-continuity of the Z?-norm, we get
that

j Vaea®fdx =52 [ V00, APV R dx

1>l(,(/)

< 3 liminf [ |VA(,; ¢f,{)|2h")dx

iz1 MTee &

= llmmff A\

Mm—00

d)m !2d-x k)

m

for all €; Finally, since V' is continuous and non-negative, we obtain, by using
(25) and Fatou’s lemma, that

[ V(1@])dx < liminf [ V(|®,])dx
& m—=00 o

for all ;. These facts imply that, for any &,

S(@,4,0;) < hm me(CD,,I,A,,,,QA) llm me(cD,,,,A,,,) = m)f - S(2,4)
EF

By the Monotone Convergence theorem, and letting & — oo, we see that (@,4)
minimizes S on . [

Corollary 2.2. Let (®,4) be a minimizer of S on F Then (@, 4) minimizes S on
F and A satisfies the Coulomb gauge condition V-4 =0, ae on R3

Remark. For special configurations of the punctures xi,...,x,, we expect the
minimizers to be unique (up to gauge tranformations) In general, however, the
minimizers will not be unique. This is described at the end of Sect 4
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Proof. Since S(@,4) < oo, suppcurl Fy C Q\Q and V is non-negative, we con-
clude that V4| € L?>(IR?). Then one easily derives that

chrlfi”i?(llv) + v '4”22(1113) = ||Vf_1||22(m3) . (2.9)
On the one hand, S(@,4) < oo, and (2.9) imply that (D,4) € &, and, moreover,
§(2,4) < So+5(2,4) ,

where Sp := “Z;q Ixz—XI +1 fmg\g[|F0|2(x) — |Ft2(x)]dx, by Lemma 1.1, (ii).
On the other hand, we 1nfer by construction of S (see Introduction) that

inf S(¢A)>S0—|— Linf _S(®,4) = S+ S(2.4).
(D, A)eF ,A)EF

Thus, inserting (P,4), we conclude that (@,4) minimizes S on %, and by
Lemma 1.1, (ii), that
llcurl 4%l 2wy = [ VA2 - (2.10)

Finally, (2.9) and (2.10) show that V-4 =0, a.e. on R3. O

3. Regularity Results and Exponential Decay

In this section we study the regularity of the minimizers (@,4). This is done in
two steps: First, the regularity is discussed in a domain excluding the singularities
X1,...,%, of Ay, ie., on Q% = R3\Qr, where

Qp := |J Br(x;), for some arbitrarily small R > 0.
i=1

Second, regularity properties in the neighbourhoods of these singularities, i.e. on
Qg, are established. We recall that the integers m;, for i = 1,...,n, are non-zero.

3.1. Regularity away from the singularities.

Theorem 3.1. For a potential V : R — R™*, given by

V(x):= g(x2 — 1), (3.1)

a minimizer (@,4) of S on F has the regularity properties:
A € C°(Q%;R?), and ® restricted to Q5 is a C>-section, i.e., on any chart
0D, j=1,..,n+1, 8V e 0D N Q; ).

Remark. For definiteness we have chosen the potential V' (x) as in (3.1). But the
following proof can easily be generalized (with the help of Lemma 3.1) to other
potentials sharing the qualitative properties of the potential in (3.1). These properties
are: V is non-negative, ¥ (x) = 0 if and only if |x| = 1 and ¥ (x) = ¥(x?) for some
smooth V.
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Proof. Set (0 := ('), and ¢ = @', 4, .= Agj), A.=Aand A.=Ay+A4 on C.
From Corollary 2.2 we recall that V - 4 = 0. Thus, minimality of (®,4) implies
that (@,A4) is a weak solution of the variational equations

0=—AD+2id - VO + |A* P +i(V - 49)D + %(|cb|2 -1, (V1)

0= —A4 + D4 + curl Fy — Im [(V, D) D] (V2)

on (. In (V1) and (V2) the explicit potential (3 1) has been inserted

By standard regularity theory of elliptic equations (see for instance [6]) and by
using the iterative bootstrap argument the regularity results stated in the theorem
are established. [

32 Regularity in the neighbourhood of the singularities In this subsection we
discuss the regularity of the minimizers (@, 4) in neighbourhoods Bg(x;) C @Q of the
singularities x, of 4y For definiteness we again consider the potential

V(x) = g(x2 —1).

Lemma 3.1. Ler (@,4) be a minimizer of S on # Then, for any i =1,. ,n and
R >0 with Bgp(x,) C Q, we have that

() |@| < 1,ae on R3,
(i) 4 € C¥*(Bg(x,); R®), with o <}

Proof Let @) =@ and 4-=4.
(1) We define a comparison section @ by
N O (x), if |@|(x) <1
P(x) =< .
(), if el 2 1.
Then, (#,4) € 7, see (1.19). By minimality of (®,4) we infer that
0 = S(d,4)— S(P,4)

1 1 .
= / [§|VA0+A¢’2(X) - ivaqu’P(x) +V(|®[)(x)| dx
{v]o|(0> 11
= / V(|®))(x)dx,
{x:|®|(x)>1}

where we have used that on {x [®@|(x) > 1} N j=1,.. ,n+ 1,

Vi a PP () — |[Vigea P (x) = [V(S|0]) — i(4) + A)D | D)2 — |V s D
= r(vAg,,Hcﬁ”))lqn + V| D[P = |V n D)
= Vi ra @ (|OP — 1) + |V]@]?
>0
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Since ¥ (x) is positive for |@| > 1, it follows that {x : |®|(x) > 1} is of measure
Zero.

(ii) Recall that suppcurl Fy C Qo\Q due to our choice of 4y, see (1.12). Thus,
similarly as in (V2), we find that 4 weakly solves the variational equation

— |@|))4 = —Im[(V,, ?)P]

on Bg(x;). Note that |®|(x) and (V4,®)P(x) are well-defined, a.e. on Bgr(x;),
due to (1.13). Using the regularity result in (i) standard elliptic regularity theory
(see for instance [6]) yields that 4 € H*?(Bg(x;); R?) — C%*(Bg(x;); R?), for
0<ac= %.El

The next step is to improve the regularity properties of the section @ in the balls
Bgr(x;). This can be accomplished by studying the variational equation (V1), i.e.,

o)+ 2 (l@l2 ne =o, (32)

A +4=

where 4 W = \& . Equation (3.2) raises hopes that one can develop a “covari-

A(J)
ant” LP-theory. Hoowever this is a rather delicate business, since x; is a boundary
point of O)(j = i,i + 1) and 45’ (x) = O(]x — x;| "), for x — x;. The approach we
present here is based on an expansion in monopole harmonics.

Let x; be the origin of our coordinate system and let 0% := Bg(x;) N O, P :=
Bgr(x;) N O and %P := @D Extracting the part of Eq. (1.10) singular in x;
we rewrite the connection in the form

AP 4 =4+ af?, (3.3)

where‘ ag’ —q%, with g :=% € Z\{0}, and 4 comprises the terms
of Ag)’('ﬂ) + A regular on Bg(x;). The form A is Holder continuous, due to

Lemma 3.1, and Corollary 2.2 implies that V - 4 =0, a.e. on Bg(x;). Hence,
Eq. (3.2) reads

A
—A,ar @0 = =204 + V 0s @0 — |40 — Z(|®)* — 1)9%b = HYP .
o 0 2

Clearly we have that |Hy| € L2(Bgr(x;)), as a consequence of Lemma 3.1 and the
fact that |V, ®| € L*(Bg(x;)). For technical reasons we introduce a cut-off function,
X € C(Br(x:)),0 < x(x) < 1, and y(x) =1, for |x| < 3R. Hence u®’: —xd’“b
weakly solves the equation

—Aa:,,,ua’bszgb (40)®*° —2Vy - vab@“b tHY (3.4)

on 0%, where |u| € Hy*(Br(x;)) N L™ and |H| € L*(Br(x:)).
We introduce spherical coordinates (7,6, @), with (dr,d0,rsin 0d¢) the corre-
sponding orthonormal frame of 1-forms. In these coordinates we have that

ab q _ .
ay”’ = rsinG(il cos 0)r sin O0d ¢
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and

1
— ———0gsin 00) — ————0>
r2sin 0 osm Yo = r2 sm 0
il—cost’?(3 . ,(£1 — cos 0)?

+2i
1 r2sin 7 r2sin’ 0

(3.5)

Next, we recall a result of [13] (Wu and Yang): Let g € %Z\{O} The monopole

ab
harmonics Y, qim>

(Y9200, 0) = Oym(0)e ™D . [ = |gl,|g| + 1,... and m = —1,—[ + 1, ...},

qlm

are real analytic sections of the complex line bundle (restricted to S?) around a
monopole of charge 2q. They form a complete and orthonormal set with respect to
the scalar product

n2n
<Y;1[m7 ql’m ff( qlm q/’m )(6 (P)d(l) sin 0d0 = 5//’5mm’ . (36)
00

The functions @, satisfy the ordinary differential equations

—Sl—éé(;sln660+ (m+qcos0) Oum =[I(1+1)—¢*1Oym . (3.7)
n

We remark that the scalar product in (3.6) is well-defined, since
(qum ql'm’ )(0 (/’) - (qum ql’'m’ )(6 (P)

on the intersection (N (°.
We expand u®? and H%” in monopole harmonics:

u® b(r 0, Q)= [2|:| Zluq/m(r) q/m(e Q) (3.8)
gq| m=—
and
H* b(r 0, Q)= Z Z hqlm(") q]m(o ), (3.9)

I=|q| m=—1

where ugn(r) == (YGumu(r, +, + ))s2 and hyp(r) == (Yum, H(r, -, + ))s2 are com-
plex-valued functions. Both sums converge in the norm || ||, induced by the scalar
product in (3.6), and Parseval’s identity yields that

0 [ o) !
28 P = i), 2 5 V) = [HI0) - (310)

I=|g| m=~—1 I=|q| m=—

for a.e. r € [0,R]. Moreover, we conclude that the functions u,(7) and Ay, (r) are
in L*([0,R], #*dr), since

R R
f |/’1q1m(7‘)'2}’2d}" = f ||H||§2(r)r2dr = ”HHiZ(BR(r,)) :
0 0
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Let f € C§°([0,R]). Using (3.5), (3.7) and V - a“’b = 0, we obtain that
B,0s (S Y1) = Lt S ()Y i » (3.11)

where Ly := — 50,770, + 5[I(I + 1) — ¢*]. Thus, testing (3.4) with f(r)YZ’,f’,,(e,<p)
on Bg(x;), we conclude, using (3.8)—(3.11), that u,, (or more precisely, the real-
and imaginary parts of u,,) weakly (in L*([0,R],7*dr)) solves the following (sin-
gular) Sturm-Liouville problem

quuqlm(r) = hqlm(r) s
Ugm(R) =0

In order to exploit this fact, we consider

gim(7) == ugm(r)r and ﬁqlm(r) = Rgim(r)r . (3.12)

The function 7, is a weak solution of the (singular) Sturm-Liouville problem

quaqlm(r) = };qlm(r) s
fiym(R) = 0 (3.13)

in L%([0,R],dr) with Ly := —2 + 5[I(I + 1) — ¢*]. The homogeneous (real) dif-
ferential equation quU(r) = 0 is an Euler equation and has the two solutions

(1)(7') = 7%l (2)(,-) = pl— , 3.14)

where oy := 5 + /(I + 3)* — ¢%. Since Ay1) = '—*2\—[ and oy > 3, for all [ >

g > 1, it follows that vf,‘f{ o)) € IX([0,R],dr), but o} ¢ L2([0,R],dr), for all

1= |q >3 By general Sturm-Liouville theory [3, 11], Lil 1 is said to be of the
limit-circle type Lq, (z|q > 1) of the limit-point type at the singular endpoint
r =0. In the limit-circle case, one has to impose a boundary condition at » =0
to make (3.13) well-defined. This is achieved by Lemma 3.1, which, by (3.10),
rules out that #yy1,(r) diverges, as r — 0. Thus, for a C-valued function % €

L*([0,R],dr) we define the Green’s operator G, by

~ R ~
Gah(r) := [ Gu(r, p)h(p)dp , (3.15)
0
with the kernel
.0) 2oy — D)7 'pl~apa, if 0 <r < p <R
rp) =
P 2oy — D)7 lprart=a, if 0 <p<r <R
It is easy to show that
~ +v3 .
. CR)|IA| R if org = 0y 1
|Gih(r)| < LR 3 ‘ :E“ (3.16)
42001 — 3) 72 |hl| 2o pyary * 72 i 0 > 3,
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and, that G, i € CO([0,R]; ©). Hence G, L*([0,R],dr) — L*([0,R],dr)NC° is a
bounded, self-adjoint operator. The solution of problem (3.13) is continuous and
given by N R

ﬁqlm(r) = Gq/hqlm(r) + R Gq/hqlm(R)rdql (3 17)

We prove regularity properties for u®? = y@®*? in two steps:
(i) By the smooth gauge transformation

A—A+VY, & — PV, (3.18)

with ¥(x) .= A(0) + x, we may impose (besides the Coulomb gauge) the additional
gauge condition 4(0) =0 Since 4 is Holder continuous with Holder exponent %,
we conclude from Lemma 3 1 and from the fact that |V, @| € L?(Bg) that

[ TTH® (x) € L (Br(x)) - (3.19)

Thus, Eqs (39), (3 10) and (3.12) imply that r‘%ﬁq;m(r) € L([0, R],dr) Exploit-
ing this fact one can improve inequality (3.16), ie.,

Ll .

C(g,R)|Ir th/m”LZ([o,R],d,) - 7, if oy <2
|Gq]h~q/m(r)| = C(%R, E)Hr_%ﬁql’"“Lz([O,R],d;) e if oyl = 2 (3 2())
4(20(q1 - 4)_% l'rg%;;qlm

2 .
oryany s i og > 2,

for 0 < r < R, where ¢ is some arbitrarily small positive constant
(ii) We prove that the sum in (3 8), ie.,

oc !
(P 0,0) = u P (r,0,0) = >3 ugn(r)Y (0. ¢) .
I=|q| m=-1

converges uniformly (on natural domains specified below) Inequality (3.20) is use-
ful in reaching this goal. In addition, suitable uniform estimates on the monopole
harmonics are required, which we derive in the Appendix; see Theorem A 1.

Let [“={0<0=<3+copecS'}tad I"={;-¢c<0=<meeS'}, such
that (0,R] x I%? C %, and let 0 < & < g := So(|g|). We define an auxiliary
section

ﬁqlm(r) a,b
r1+5 Y;][m(ea(p)a

/
Pl (0, 0) = >

m=—
for € (0,R] and (0,¢) € I** From (3.17) and (3.20) we infer that if |g| < 2
then (]5;‘11’ is continuous on [0,R] x /*" for § < &y = oy, — 1, and if |g| > 2 then
a.b

gl is continuous on [0,R] x I*? for § < dy =1 Moreover, since og > 2, for
[ = |q| + 1, one finds that

3~ 1~ N
/2 |uq/m(r)' = C(é, qu)”r th/m”LZ([Q,R].d/) : },1+o 5 (3 21)

for 0 < r < R From (3 21) and Theorem A 1 it follows that

1

1 1
. (AN L :
sup [¢qi(r. 0. @) = C(0.4,R)™> <?> < > ir thlnz“iz([O.R].dr)> =" My

Br(x:i) m=—1
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. I _ir 2 — L2
Since Z(l)i|q| Yomet I thlm”LZ([O,R],dr) = ||x| ;H“LZ(BR(x,)) (by (3.12),(3.10),
(3.19) and the Lebesgue Convergence theorem), we conclude that

1

§ M, = C ( § %) ”,x'—%H”LZ(BR(xi)) <©o0.

I=|q| I=|q|

Thus, we have a majorizing series for qbg’,b(r, 0, ), and, by the Weierstrass theorem,
(3.12) and (3.8), it follows that

u™(r,0, ) = r’¢3°(r,0,0), (3.22)

with qﬁg’b = E;’:l al d);’,b a continuous section on [0,R] x 12,

This regularity result also holds for the original section @ (before the smooth
gauge transformation (3.18) is applied) in the neighbourhood of any singularity x;.
We summarize these results in the following theorem:

Theorem 3.2. Let (®,4) be a minimizer of S on &F with V as in Eq. (3.1). Then,
for any monopole located at x;, with integer magnetic charge m; =: 2q=+0, and
R > 0, with Byr(x;) C Q, the section @D phas a Hilder continuous extension
to x;, Le.,

Q(l)’(H—l)(}’, 6, ®) = r5¢g),(l+1)(r’ 0,0),

where d)g)’(m) is a continuous section on [0,R] x I*®, 1% := {0 < 0 < F+eoe
S'Y and I* :={% —¢ < 0 < m,¢ € S'}. The Holder exponent & depends on |q|,
ie. 6 < gy — 1,1 lql £2,and 6 < 1, if |q| > 2.

Remark. These regularity results are not optimal. However, they give good support
to the conjecture that the statement above holds for & < oy, — 1, for all g, where

_ 11
dgg) — 1 =1/lal+ 3 — 3.

3.3. Exponential Decay. In order to arrive at a better picture of the properties
of minimizers, (P,4), we propose to study their decay properties. Let Qf := €
denote the exterior of y. The neutrality condition in (1.11) and the choice of A4y
in (1.12), 4o = 0 on Qf, imply that @ := @ and 4 := 4 = Ay + A4 are well-defined
on £§. From Theorem 3.1, (V1), (V2) and V - 4 = 0, by Corollary 2.2, we infer
that (®,4) smoothly solves the variational equations

0= AP +2id - VO + |AP P +i(V - )P + §(|<1>|2 - 1o, (V1)

0=—dA+V(V - 4) — Im[(V,P)D] (V2"

on Qf. Further, we recall from Lemma 3.1 that |®| < 1 on Qf. In the follow-
ing theorem we state the resulting exponential decay for 1 — |@|%, |curl4| and
|®V 4P|, whenever (P,4) is a smooth, finite-action solution to (V1”) and (V2")
with |@| < 1.
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Theorem 3.3. Assume that (9,4) € F is a smooth solution to (V1"), (V2") on
Q6 Further assume that |®| <1 on Qf Then either |®| =1 (and V4@ =
curld = 0), or else |P| < 1 on Qf For every /. > 0, given ¢ > 0, there exists
M = M(e, 1) < oo such that

1 — @, |[Re(PV,®)| < Me™1-eImlxl (3.23)
lcurl 4], [Im (@V,®)| < Me~ (19 (3.24)
on Qf, where my = min(/l%,Z)

The proof to establish exponential decay is based on the method presented in
[7, Sects. II1.7-111.9]. A detailed proof can be found in [8].

Assume that a (neutral) system of »n magnetic monopoles, given by (x, m),
can be decomposed into x (neutral) subsystems, given by (x!,m?),...,(x",m"). Let
Q% denote a closed ball with center ; containing all punctures of the set x*. If
Qb = {x : dist(x, Q") < 1}, we further assume that the subsystems are separated
by

11;13Ffl dist(QE, Q) > 1.

The theorem above implies that the action Sz,m of a minimizer (@,4) for the
system (x, m) is bounded from above by the actions S~)_(k,mk of minimizers (®*, 4")
for the subsystems (x*,m*), ie,

- K
Sea(@.4) = 3 Sy (2,45 + Cde™% (3.25)

where d, = infy . |wp — )| and C,c are some positive constants.

Indeed, Theorem 3.3 implies that 1 — |@*(x)]> £ Mye~U=armb—ol on R3\ Q.
Thus, for R, sufficiently large, we can choose a gauge such that @(x) > 0
on Qg, where Qg := R3\{x"|x —wy| < R} C R3\QS. In this gauge (3.24)
implies exponential decay for |4k|. Hence, for R > Ry, we modify (@, 4") on Qp,
by

1— @k =1 -0y and A% =4 yp,
where yg is a smooth cut-off function, with yr(x) = 1, if |x — | < Rand yx =0,
if [x — w| = R+ 1. This defines an admissible comparison configuration (@%,4%)
“localized” in Bgyi(wy). By (3.23) and (3.24) it follows that
0 < Su (P, AR) = Sy (95, 4°) < C(My, 2)RPe 2R
for R > R;, where m = min(/l%, 1)
Take R = 1(dy —2) = max{R; - 1 < k <k} If 4} denote the reference con-

nections for the subsystems (x*,m%), then Ao := >f_, 4% is, in addition to 4o, a
reference connection on the bundle Py, w.r.t. the system (x, m). Define

. K
@ =[P and 4:=> 4k.
k=1 k=1
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Then @ is a section of Ej , and Ao + A a connection on Pym. Let 4 := Ao+ A — Ay.
Since the configurations (®%,4%) are localized in Bgyi(wy) one easily derives that

K
Som(@.4) = 3 8w (@h.AD)

where R = 1(d, — 2), which implies (3.25).

Note that the accuracy of the upper bound in (3.25) depends essentially on the
choice of the subsystems. A lower bound for S, ,(®,4) of the type of (3.25) will
only exist for an appropriate choice of the subsystems. This is discussed at the end
of Sect. 4.

4. Bounds on the Action of the Minimizers

In this section we focus on the special situation M,, where
={x1,x;} and m={-m,m}, for m a positive integer,

i.e. an anti-monopole-monopole pair located at positions x; and x, respectively.
We establish accurate upper and lower bounds for the action S of the minimizer
(9,4). As a consequence, the action essentially grows linearly with the distance
|x; — x| and the monopole charge m. Thus, in addition to the exponential decay,
this confirms the heuristic picture, that the action is concentrated in m vortex tubes
joining both monopoles. That means, in any plane orthogonal to the symmetry-
axis, the minimizer describes a vortex configuration consisting of m vortices. Since
vortices exhibit different types of behaviour for 4 < 1 and 4 > 1, respectively, the
following arrangements of the vortex tubes will occur: For 4 < 1, all vortex tubes
are concentrated on the symmetry-axis, whereas, for 4 > 1, they repel each other,
forming a spindle. For A = 1, there is no interaction between the vortex tubes. Thus
they are concentrated on the symmetry-axis.
For 2 < 1 we have the following upper bound:

Theorem 4.1. Let 0 < A < 1. Consider two monopoles of integer magnetic charge
—m and m located at positions xy,x,, respectively, with |x; —x;| =: 1. Let (2,4)
denote the minimizer of the functional S(®,4) on &, with V as in Eq. (3.1). Then,
given ly > 0, there exists some constant sy such that S(®,A4) is bounded above by

S(P,4) < so+ lew;, forl=ly, (4.1)

where ey, ; is the energy of a rotationally symmetric, critical point with vorticity
m of the energy functional E defined in Eq. (1.3).

For repelling vortex tubes we have a slightly weaker result.

Theorem 4.2. Let 1 > 1. Consider two monopoles of integer magnetic charge —
and m located at positions xy,x,, respecnvely, wzth |x1 —xz| =: 1. Let (®,4) denote
the minimizer of the functional S(®,A) on %, with V as in Eq. (3.1), and let 6
be an arbitrarily small positive constant. Then there exists a constant sy such that
S(P,A4) is bounded above by

S(D,4) < 5o+ O+ mle;, asl— co. (42)
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where e, is the energy of a rotationally symmetric, critical point with vorticity 1
of the energy functional E

Proof (Theorem 4 1) Let us consider the situation in Fig. 2. Since any (®,4) € F
yields an upper bound on S(@,4) we construct some @ and 4 := 4y + A according
to the heuristic picture sketched at the beginning of this section. That is, on the slab
V we choose @ and A such that (®,4) is, in any {x’=const.}-plane, a rotationally
symmetric ciritical point centered on the x3-axis. In the ball Br(x;), we set & =0
and A to be approximately equal to the connection describing a magnetic monopole
located in x, with charge m,. Finally, on the domains V;, appropriate interpolations
are constructed.
We now present the details of our construction.

(i) Given m and 4, there exists a smooth critical point, (¢,a), of £ with e, ; 1=
E(¢p,a) < co (¢,a) is rotationally symmetric in the sense of (1 6). On the slab V
we set

o' %) = X,
A", x4 = a(x',x?), (4.3)

where we identify the 1-form a with the vector a = (ai1,42,0). Hence we obtain that
(@,4) € C=(V,C x R?), and, furthermore that

. 1 N A
S(P,A4; V) = 5 [ IEP + V0P + :—1(|<1>|2 — 12| dx=(—-4R)e, ;. (44)
Vv

with F = curl 4.
(i) In the neighbourhood of x,, i = 1,2, we introduce

m; (x! —xDdx? — (x? — x?)dx!

- , with F; ;= curl 4, , (4.5)
e —xil (B3 =x3)+ 5 x — x|

AP (x) =

defined on @V ), and

—m;  (x! — y,-1 Ydx? — (x* — yl-z)dx1
2k =yl (3 = 37) = (1) = il

Wix) = , with G, =curl,, (4.6)

where 175’ ) was defined in (1.10) and y; is the mirror image of x;, see Fig. 2

The connection associated with the mirror-monopole, W,, plays a crucial role for
the estimates in the domain V,. On Bg(x,)\{x;}, we set

?(x) =0,
" | (47)
AD(x) 1= Aff)(x) + Wi(x),
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Bk(xl) 6“)
Xy,-m
A )jl
VI
(3=1/2-2R)
A*
l v, m 52
v (xLx?)
Y2, -m
(3=-1/2+2R}
V2
' [ =]

Xy, m
BR(xZ)U o®

Fig. 2. (Configuration of the anti-monopole-monopole pair). Given / = [y > 0, let x; := (0,0, %),
my = —m and x; = (0,0, —%), my := m, respectively. Denote by {@(f)}j?zl the open cover, as
indicated, and let R > 0 be such that [ — 4R > 0 Then V is the open slab bounded by the planes
o :={x’ = % — 2R}, and IT, := {x? = —% + 2R}, and, V; is the closed domain bounded by the
two-sphere 0Bg(x;) and the plane II;. Finally, y; := (0,0, L_ 4R) and y, := (0,0, —% + 4R) are
mirror images of x; and x, at the planes IT;, II;, respectively

for j =i,i+ 1. Hence (®),4Y) € C®(Br(x;) N 07; C x R?), and the transition
conditions are satisfied. Recall that F; = 2mm;VE(x — x;) and G; = —2mum;VE(x—
¥i), see (1.9). Thus, using (4.7), integrating over Br(x;)\B:(x;) and passing to the
limit ¢ — 0 yields that
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S A B =5 {(lﬁlz—lFf|2>+rVg¢|2+§(r¢|2—1>2 dx

BR(";)\{\'I}
|
— = f IF,“de
2R}\BR(\/I)
| i |
— 3 o feEe -] omPaza. @)
2 Bev) 4 2 R\ Ba(n)

where Cy = Cy(m, 4,R) is a positive constant depending only on m, . and R

(iii) In the following we construct an appropriate interpolation in F; Let
x; be the origin of our coordinate system Denote by 7 a smooth function in
Ce°((—2R,2R), R™) with 7(0) = R, y(t) = y(—t) and y(t) = VR> — 12, for [t| < R
Extend the definition of y by setting

7(1), if t £2R
X(t)::{z() i

. (4.9)
—t+3R, ift=4R,

and by a smooth interpolation between 0 and —R in [2R,4R)]. Since the critical point
(¢p,a) from (i) satisfies (1 6) we define, for j = 1,2,

- ()
P (x) = { P(r = 7(x*)), in ind w10

o(r — 7(Ne™®, in Vi,
where (r, ©,x%) are cylindrical coordinates, and ¢(¢) is required to vanish for 7 < 0
Similarly one defines @/ on V¥, N (7, for j = 2,3 Hence ®/) € C(V;N (", T);
moreover, V&) € L2 (V;n (@), |@| € HIL'CZ(V,,]R+ ), and the transition con-

ditions (1 13) are satisfied Using (4.10), (4.9) and decay property (D1) we obtain
the bound

%f(;q>|2 —1Ydx £ Co(m, /,R) . (411)
v,
Next, we construct A in Vi Let
W(x) = c)alx',x*) — AP 2 —2R) — i (x', X%, —2R)] (4.12)

with G :=curl W, and ¢ is a function in C*°(IR;IR™), with {(¢) =1 if 1t £ —2R,
and &(t) =0 if ¢ = —R Then we define, for j = 1,2,

AP ) = AV (x) + Wi(x) + W(x), in 0, (413)

and similarly in ¥, 1 ¢, for j = 2,3. Hence, A7 € ¢V, n """, R?). We con-
clude this step by proving some important estimates By (4 13) we obtain that

[|FPPdx <4 ( [ FRPdx+ [ |GiPdx+ [ !G]zdx>
" R3\Br(x1) R3\Br(11) "

IIA

S’ 44 [ |G dx
14}



Variational Problem for Magnetic Monopoles and Abrikosov Vortices 471

where we have used the explicit expressions in (4.5) and (4.6). Inserting (4.12) in
the last term on the r.h.s., we get

[1GPdx <2 [ 52< J [lflz+|F1+Gllzld2x> dx’
—2R

141 x3==2R

—2R x*=—2R

_R '2
+ [ ¢ ( [ |a—A§2>—Wl|2d2x) dx3

2
Scemiteate [ |la—4P —wiPdx,
x3=—2R

where we have abbreviated f := curla and 5 denotes the derivative of £. Here and
in the following ¢; denotes a positive constant depending only on m, A and R. We
claim that

[ Ja—dP —mPd* < e, (4.14)
x3=—2R

and hence the above estimates imply

[|F*dx £ C3(m, ,R) . (4.15)
"

Proof of the claim. Expressing (4.5) and (4.6) in cylindrical coordinates yields

5 (cos ) — cos6)dO, if j=1

4.16
md® + F(cos0; —cos6,)doO, if j=2, ( )

Agj) + W = {
where 6, and 6, are given by cosf; := ——— and cos b, := s - respec-

tively, with t = x* > % — 2R. Equation (1.6) and (D1) imply ¢(r) = %, for r = ry,
where ry depends only on m and A. Thus, on one hand we find

[ la —A(lz) — W2 d*x < cs,

r=rg

since a —A(lz) — Wy is smooth for t = —2R. On the other hand, using (1.6) and
(4.16), with t = —2R, leads to

4R |
[la—dA? —wPdix = [ |Ze-1)+2 2

r>r r>r | T 2”vr2+4R2

8 [ |Vu¢*d*x +cs < 16ep,; + c6 .

r>ry

IIA

This proves our claim. Next we show that

1
3 [|V;®|*dx < Ca(m, 1,R) . (4.17)
4
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Expressions (4.10) and (4.13) yield

I
5 [IViolde < [ ([Vaom @ + W[ )dx
14 v

IIA

[ IVaem®@Pdx+ [ |Vaew, @Pdx +c1, (4.18)

Y| <2R 2R<x}

where we have used (4 12) and (4.14). By (4.10) and (4 16), the first term on the
r.hs. of (4 18) reads

2w s 2 0, +0 0, -0
o f dtf (<p’)2<r~x>(1+y:2>+m—z<0<f—%)zsmz( 5 2)“‘12( | ﬂm
—2R / g ’ ?
r e R oo 2 R?
<om [ di [ [[Vad P+ I+ 0)dr+2m [ dt [ = o(r = 1) 5z rdr
—2R 0 &7 TR

where y = y(¢) and 7 = y(t) as defined in (4.9). Due to (D3) and (4.9), the first
term in the expression above is bounded by a constant depending only on m, £ and
R. The same holds for the second term. Indeed, since lim, o a(r) = 0, there exists
7y (depending only on m and 1) such that

m 2|V pl(x), if r =1y
= <
r‘p(r)={¢, itrzr,.
Thus we conclude that
f lVAH-WJ(pIde é (&) (419)
[x}| 2R

Similarly, the second term on the r.h.s. of (4.18) can be bounded by

[ IV ®Pdx = 2n [ dr [ [(¢)(r = 7)1 + 1) rdr
2R 0

2R<x?
+ [ 1A =@ DPAx < e+ [ 4 £ Pax
2R <} 2R <3
(4.20)
where we have used (D3) and (4.9). Finally, we claim that
14" +wPdx < ey, (4.21)

2R <3
which, together with (4.18)—(4.20), yields the desired inequality (4 17)

Proof of the claim From (4 16) it follows that |A(11) + WP < ”%2 sinz(o‘z;oz). In
order to bound the r.h.s, we choose a positive constant ry and find that, for » = rg

and t = 2R,
2 0, — 0 2 4R
mon? (2 gﬂ ik
r? 2 r2 2412
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For r £ rp and ¢t = 2R, however, we find that
I’I’l2 . 01 02 2m2 ) 01 .2 02
r—zsm ( 3 ) b 7 [sm (7) + sin <?>]

1 1
2
" [r2—|—t2 +r2+(t+4R)2] )

IIA

Using these bounds in the integration of |A(11) + Wi|* over {x:2R < x*} our
claim follows. All estimates derived in V; can equally be derived in V,. Thus
from (4.11), (4.15) and (4.17) it follows that

.. 1 . A
S(P,4;V;) = Ef |F|> +|V; ) + Z('¢|2 — 1)2] dx £ Cs(m,L,R). (4.22)
v,

(iv) On the open cover {0V}, &) and 4/) are locally given by the expressions
in (4.3), (4.7), (4.10) and (4.13). Thus, @ is a section of E, , and 4 is a connection

on Py .. With respect to the open cover {0} in Fig. 1, let 4 := A1) — 45, where
A(()j ) is the reference connection defined in (1.12). Then

(|9, 4) € HE2(R3; RT x R?), |V, 40| € L2 (R?;RY).
From (4.4), (4.8) and (4.22) it follows that

1 2
3 [ |]eurl4 + Fol* — 21 IFil> 4 |Viapra @) + (|<I>|2 2ldx < 5o+ lems, (4.23)
M, i=

where sy is a positive constant depending only on m, A and R. Since Ag(j ) =

A(xj) _,_A;i)’ by (1.10) and (4.5), we have that

2
lcurl 4 + Fo|> — S |Fif? = |curl A? + 2curl 4 - Fy + |Fo|* — |[FE> +2F; - F, .
i=1

(4.24)
Let MR := Bp(0)\ U}, Bs(x;), for & > 0 small and R > 0 large. Integrating (4.24)
over M)_f’R and passing to the limits 6 — 0 and R — oo yields

i=1

Ik [|curlA + Fol2 — Z |Fi|*|dx = f[lcurlAl2 +2curl4 - Foldx
My

+ [ R — |FoP dx + 2n 2

(4.25)
R3\Q x1 — xa|

Equations (4.25) and (4.23) imply that S(@,4) < so + lem 4. Finally, by Lemma 1.1,
(ii), curl4 - Fy € L! (My; R), and therefore (®,4) € &, as desired. [

The proof of Theorem 4.2 is similar, but more delicate. We again construct
some @ and 4 = Ay + A according to the heuristic picture sketched at the beginning
of this section. We need an appropriate multi-vortex configuration in the domain ¥
for the repulsive case. The following tool proves to be useful.
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Lemma 4.1. Let (¢p,a) be a smooth critical point of the energy functional E de-
Sined in (13) with ¢ = Q(r)e’@, a = o(r)d®, und with energy e, ‘= E(¢,a) < o0
Let ry be such that |¢|(x) = %, Jfor |x| = ry, and let L = ro+ 1 Then there ex-
ist some constants M', y and ¢ and a smooth, rotationally symmetric 1-vortex
configuration (¢,a) with the properties:

(1) ¢ = @(r)exp(i®), with

p(r) ifrsL—1
p(r)y=<"

1 ifr 2L,

such that o(r) = @(r) = 1 and |@'(r)] < M'e™", for all r = 0
(i1) a = a(r)d O, with

W) =L
WEG s

such that |1 —oa(r)] £ M're " and |2/ (r)] £ M're™, for all r = 1y
(iii) |E(p,a) — e;| < cLe™*

Proof  Let & be a function in C°(IR;R™) with &(z)=1, if 1 <0 and &(r)=0,
if t z 1 Define 1 —q(r) =<(r—L+1)(1—¢(r)) and 1 —a(r) =<&(r—L+1)
(I —a(r)) Then ¢ .= @(r)e'® and a .= a(r)d@ defines a smooth 1-vortex config-
uration Using deccay propertics (D1)—(D3) the properties stated in the lemma are
easily cstablished. O

Proof (Theorem 42) Let 0 > 0 be arbitrarily small, and consider the situation

in Fig 2. On the slab ¥ we choose @ and 4 such that (®,4) is an m-vortex
configuration with its zeros located along the x?-axis at distance 2(/° + 1), in every
{x* = const }-plane On the ball Bg(x,) we choose @ and 4 as in the previous proof,
and on the domain ¥}, we again construct appropriate interpolations.

(i) Given 4 > 1, there exists a smooth critical point (¢,a) of E with vorticity 1

and ¢, .= E(Q,g) < oo. Let ry be as in Lemma 4 1 and assume that /; > ré”/() We

denote by zy, ..,z, m points on the x2-axis at distance 2L, where L = /° + 1 More
precisely, z;, ,z, are given by

0,—(m — 1)2L), ,(0,(m —1)2L), if m is odd and
(0,— (m—3)2L), ,(0,(m—2)2L), if m is even (4.26)

Let (¢,a) be the 1-vortex configuration of Lemma 4 1 We introduce

m

&n;ﬁﬁm)mdﬂn:me, (427)

k=1

where (¢, a) is given by ¢p(x) .= ¢(x —z;) and ax(x) := a(x — z;). Then (,d)
is a smooth m-vortex configuration with zeros zy,...,z, Moreover, by Lemma 4 1,

|E($,d) — me,| = m|E(¢,a) — e;| < meLe . (428)
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Thus, on the slab ¥V we set

O(x!,x%,x%) = (Z)(xl,xz) ,

A, 22 x3) = a(x',x?), (4.29)
where we identify the 1-form a with the vector 4 = (di,4d,0). Hence we obtain that
(@,4) € C°(V; € x R?), and (4.28) yields, as in (4.4),

S(9,4,V) < C + CoLe ™ + C31Le™ + Ime; . (4.30)

Here and in the sequel, C; or ¢; denote positive constants depending only on m, 4
and R.
(i1) On Br(x;)\{x;}, i = 1,2, we set, as in (4.7),

oV(x) := 0,
AD(x) = 4@ + W), (4.31)
for j =i, i+ 1. This yields the estimate in (4.8), namely
8(®,4; Br(x))) < C. (4.32)

(ii1) Let x; be the origin of our coordinate system. To get an appropriate interpolation
between (4.29) and (4.31) in V;, we have to tie together all “vortices” of (¢,d) on
the x*-axis. For this purpose we introduce smooth functions

&) = zi&(t), fork=1,...,m, (4.33)
where z; = (z},22) is given by (4.26) and ¢ is a function in C°°(R;R") with
E)=1,ift £ —2R and &(t) =0, if t = —37R. Further, on V;, let

| 1 A+ W7 = &), )
POy =~ | A+ W - GG (4.34)
—&ONAY + W 3P = E®), x)
fork=1,...,mand j = 1,2, and let

H(x) == &%) {ﬁ(xl,xz) - S HP (', %%, —2R)| . (4.35)
k=1
Then we define, for j = 1,2,
o m o AP + Wi(x) in ¥, N OW
A0y = S B+ Hay = 77 ] (4.36)
k=1 S HP(x)+H(x) in 1N 0@,

and similarly in ¥, 0 0\, for j = 2,3. Hence A € C=(V; N 0V;R?). Let Vg :=
{xeR3: 2R < —37R} and let R := %. From (4.36) we obtain that

. 47m? m
[|FPdx < % +c1 Y [ |eurl HyPdx +2 [ |curl H|*dx, (4.37)
Vi k=1Vg Vr

where we have used the explicit expressions in (4.5) and (4.6). The second term
on the r.h.s. in (4.37) can be estimated further by (4.34), (4.33) and (4.26). This
leads to

2 2
f |curl H 2dx < J W(ék + D|(Fy 4+ G x? = &, x3)Pdx < e,
VR VR
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where & = & (x*), with derivative ék = g;k(x3). For the third term on the r.h.s.
in (4.37) one finds, using (4 35), (4.34), (4 33) and (4.27), that

2
1
fielx',x?) — ;(Fl + G)(x',x? — 2}, -2R)

2
>dx

[ leurl H*dx < ¢ ]zn:f (
Ve k

=1Vp

+cq

S|
+ f

O==2R

1
ap(x',x%) — E(Aﬁ” + W))(x' x* — 22, —2R)

2
d’x

2
dzx} R

where we identify the 1-forms @; and a with vectors in R with f; .= curla; and
f = curla On one hand, using the explicit expressions in (4 5), (4.6) and applying
Lemma 4 1, we find that

IIA

S = l(Fl +Gy)
m

1
AP +w)

a— —
m

1 2
= ;(F, + G| d’)x < cole; +cLe ) + ¢ .

J

=—2R

On the other hand, one proves with the help of Lemma 4.1 that

J

Y’=—2R

1 2
a——AP + W) d*x < (4.38)
m

The proof is analogous to the one of (4.14). Thus, the estimates from (4 37)
to (4 38) imply

[|FPPdx < Cs+ CoL* + C7Le - (4.39)
v,
In order to define @ on V| we introduce smooth functions Y,k = 1,. .,m,
(x) .= o(x',x* = &(x)), (4.40)

where ¢ is given by (4.33) and ¢ by Lemma 4.1 in step (i). Furthermore, we
reintroduce the smooth function y defined in (4.9), replacing 2R by R = %R. We
extend the definition of y by setting

(1), ift <R
y(1) = . (4.41)
—t+2R, ift = 3R,

and by a smooth interpolation between 0 and —R on [R,3R] Then, for j = 1,2, we
set

o(r =7y i 0 d®
P(x) =< @(r — 7(*))"e™® in ¥, NP, with x°

> —R (4.42)
fet Vi () in ;N ¢D, with x¥* < -R,
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where ¢(t) is required to vanish for ¢ < 0. Similarly one defines @) on ¥, N ),
for j = 2,3. Hence ¢) € C(¥; N O0V; C); moreover VO € L2 (V; N OWD; C3), | d)

e HY 2(V,, R™), and the transition conditions (1.13) are satisfied. We claim that

loc

0| >

J(@f —1)’dx < Cg. (4.43)
Vi

Proof of the claim. Lemma 4.1 implies 1 — ¢*™ < m(1 — ¢?), for all 2 0, and
therefore

J Q=¢™r—yx)dx <S¢,

Vl,x3 > —R~

where we have inserted (4.41) and used (D1). Next, we choose 7p=ry so large
that, by Lemma 4.1 and (D1), ¢*(r) = Qz(r) =2 1—-Me™# >0, forr = 7.

Let 7y 1= 1/(x1)2 + (x2 — &(x3))2. With y defined in (4.40), we then obtain that

m ) 2 1, if vy < 7y, for some k € {1,...,m}
<1 = 1 W)l ) < n .
k=1 C2y p e %, otherwise .

Using these bounds, it follows that

J [Tx) —1)dx <cs3.
Vi, x3<R k=1
This proves our claim. Next we show that
1
f |V;02dx < Co + CioL?. (4.44)

Recalling (4.36), the Lh.s. of (4.44) can be bounded from above by
VoD Z H(2><p<2> dx+ [ VU — i + w)dDPdx
Vi, |X3|<R

+ [ VoD —idD + w)eOPdx + [ |HPdx = I+ 1, + Iy + 1, . (445)
4

=R

J

Vr

(a) By (4.35), (4.34), (4.33), (4.27) and (4.38) it follows that

2
m m 1
> ar(x!, x*) — > E(Agz) + W), x? —z,%,—ZR) dx Z ¢y .
=1 k=1

<

Vr

(b) From (4.42) and (4.41) it follows that

I <27 [ dx’ f Rm (@' Y(r — lrdr + [ |40+ wPdx < ¢y,
R

B=R



478 J Frohlich, M Leupp, UM Studer

where we have used Lemma 4.1 and the same argumentation as for (4 21).
(c) Using (4.16), (4.42) and (4.41), it follows that

R oo
I < ¢ [dt [ (@'Y (r—y)rdr
—-R 1

R 00 1302 0, — 6
+2n [ dt [ m—zq)z(r—)()sin2 <¥> rdr
ML 2

lIA

€4,

where we have used Lemma 4.1 and the same argumentation as above (4 19).
(d) By (442), (4.40) and (4.34) it follows that

m

Iy < cs Z [ 1V — il Py dx
=1V
m —R i @) _ 2 )
< ¢ Z [odx [ ‘Vqﬁ(xl,xz)— ;;(AI FWDPG )| (1 + &) | dPx
=1 —2R R2

and, using (4 33), (4 26), (4 16) and Lemma 4.1, one shows, as above (4 19), that

< (L2 + 1) j dtf {(q) )y + 2qo sin (#)}rdr < eL?.

—2R

Thus, combining (a)—(d) with (4 45), we obtain (4.44). Finally, combining (4 39),
(4.43) and (4.44), one finds, as in (4.22), that

S(®,4; V) £ Cyy + Cppl? + CizLe 2 (4.46)

(iv) On the open cover {@)}, @) and A/ are locally given by the expressions
in (4.29), (4.31), (436) and (4 42) Following (iv) in the proof of Theorem 4.1,
let A=A — A, then (4.30), (4.32), (4.46) imply that S(®,4) < so + O(1*) +
mle;, for Iy < | — oo, where L = [° + 1, and 50 is a positive constant depending
only on m, / and R Hence (®,4) € #, as desired. [

Theorem 4.3. Let 4 > 0 Consider tvo monopoles of integer magnetic charge —m
and m located at positions xy,x,, respectively, with |x; — x3| =: 1 Let (®,A) denote
the minimizer of the functional S(®,4) on F, with V as in Eq (3.1) Then, given
lo > 0, there exists some constant sy such that S(®,4) is bounded below by

S(,4) = s}, + ley, ;, forl =1y, (4.47)

where e, ; is the infimum over all m-vortex configurations of the energy functional
E deﬁned in Eg (13)

Proof We consider the situation in Fig. 2. Then in any cross-section of V/, @ and
A = Ay + A describe a m-vortex configuration The energy of this configuration is

bounded from below by e, ;.
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More precisely, for ¢ fixed, with —% +2R <t £ % — 2R, we define
di(x',x?) = B(x', X2, 1)
a(x',x?) = (A1 (" x2 1), Ao (x5 1)) (4.48)

By Theorem 3.1, we have that (¢,,a;) € C°(R? € x R?). Theorem 3.3 im-
plies (1.4) and ensures that (¢;,a,) is a vortex configuration in the homotopy class
given by the vorticity of a,. Since i /. 5 curldg - ndo = —m, where 2 is any hemi-
sphere enclosing x;, but not x,, it follows from the exponential decay of curl4
(Theorem 3.3) that ﬁ f]RZ curl a,dx = m. Thus, (¢;,a;) is a m-vortex configuration.
Moreover, we have that

E(¢r,a;) Z inf{E(¢,a): (¢p,a) a m-vortex configuration} =: e, ; . (4.49)
Next, inserting (4.25) in (1.14), we obtain that

~ 1 A
5@4) 2 3 [Jewl A+l +[Vagaf+ {0122 17
14

2 12
> [ IFoildx+ ) [ leurld + Fol? - |F|*] dx
i=1 R3\Bg(x,) 2 i=1 Br(x )\ {x}

N —

+ [ [|eurl4 + Fo|*] dx}
7,

2 1 2
> (I-4R),, — 2 4 [ [lourld + Fo2 — |F,P1dx, (4.50)
TR 2 e\ )

where we have used (4.49) and (4.5). Since we may assume that Bg(x;) C £, (1.10)
and (4.5) imply that 45" = 49 + 4 in Bg(x;))N @D, for j=ii+ 1. Thus we
find

[ lleurld+ Fo)* — |Filldx =22 [ [eurld+F;_]- Fidx=0,
Br(xi)\{x.} Bpx)\{x}

where the last step follows, by an integration by parts, from curl ;=0 in Br(x;)\{x:},
and the fact that F; is parallel to the normal on 0Bg(x;) and 0Bs(x;), for 6 — 0,
respectively. Inserting the above inequality into (4.50) completes the proof of the
theorem. [

Remark. In the Bogomol’nyi limit A = 1 the infimum e,’n, , equals ey, ; = mm. Thus,
to leading order in the distance /, the upper and lower bound on the action S(®,4)
coincide. For 4 < 1 or 4 > 1, it has not been rigorously established, yet, that e;n) 1=
€m,) Of ejn, , = me,, respectively. See [7].

The results we have proven so far provide a fairly detailed picture of the prop-
erties of a minimizer. Let us consider the following two situations in Fig. 3 where
d > 1> 1 and (x;,m;) denotes a monopole of magnetic charge m; located at the
position x;.
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a) xz,"m 1 xl,m b)
Xy, -M l Xy, m
1
!
d d
X3, m ! X4, -m
X3, m l X4, -m

Fig. 3.

In situation a) (Fig. 3) the minimizer is expected to be unigue. Its vortex tubes
should join the anti-monopole-monopole pairs separated by the distance / and carry
vorticity m. The reasoning is as follows A minimizer in situation a) describes
vortices joining the four monopoles. There can be a cluster of vortices joining x,
to x, with total vorticity given by m —k, k = 0,1, ..,m, and a cluster of vortices
joining x; to x4 with total vorticity given by k. There must then be a cluster of
vortices joining x3 to x, of total vorticity £ and one joining x3 to x4 of total vorticity
m — k. For d > [ > 1, the total action of the putative minimizer described here is
expected to be given by L .

S =S84+ 85@ 4 const ,

where SO < const(m — k)/, and S > constkd (see inequality (3 25) and Theo-
rems 4.1 and 4.2) Thus if d >> [, then the total action is minimized by setting £ = 0.
Since d >> 1, the minimizer is then obtained by gluing together two minimizers for
the subsystems ({x1,x,}, {m, —m}) and ({x3,x4},{m, —m}), respectively.

In situation b) (Fig 3) and for m an odd integer, we expect that there are at
least two distinct minimizers (of equal total action) corresponding to two distinct
configurations of vortices joining the four monopoles, whereas if m is an even
integer and equally oriented vortices joining one pair of monopoles repel each other
the minimizer is expected to be unigue.

Although we have not attempted to establish this picture rigorously, we expect
that situation a) and the first part of situation b) could be proven

The arguments above can be extended to more general situations. If all mono-
poles have magnetic charges +1 the problem of minimizing the action functional
appears to reduce to a problem of connecting monopoles of opposite charges with
a family of curves of minimal total length
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A. Appendix

We first prove Lemma 1.1 of the introduction. Then we derive uniform estimates
on the monopole harmonics, required for the regularity results near the monopoles.

Proof of Lemma 1.1. (i) Let us write F := curl 4. Then divF = 0 in &', the space
of distributions.

According to [4, Theorem A.1], there exists a unique vector field 4 with 4 €
LS(R*;R?), curld = F, divA = 0 in 9’ and 0;4; L*-functions satisfying (1.16). We
claim that 4 = 4 + Vi, for an appropriate € Hlf;cz(]R3 ; R).

Let o :=A — A. Then « € L} (R* R?) and curla =0, a.e. on R>. Let ji(x)
be an approximate identity, i.e., let j,(x) := ¢~2j(x/¢), where j € C°(R3; R") and
J j(x)dx = 1. Let a; := j, * o, the convolution of j, with a. It is easy to see that
a, € C°(R3*R3), curla, =0 and o, — a in L>(U), as ¢ — 0, for any U € R3,
By {Qk}ren we denote a sequence of closed balls exhausting IR3. Let K be a set
with Lebesgue measure |[K| > 0 and with K C @, for all £ € N. Since curla, = 0,
there exists , € C*®°(IR*;IR) with Vi, = a, and fK Y.dx =0, for any ¢ > 0. By
Poincaré’s inequality,

”'//s - '//6’“12‘11,2({2,() = C”Vl//a - v%’“é(%) = CHae - O‘E’”iz({)k) :

Thus, Y, — ¥ in H>2(2), as ¢ — 0, for any k € N. Hence, ¥ € H"*(R3;R) and

loc

V{ = o, ae. on R>. Since 4 € HY2(R*; R?), we conclude that o € HY2(RY; R?)

and hence ¥ € H22(R*; R) as claimed.
(ii) According to (1.12) and (1.9) we may decompose Fy as follows:

n
Fo =S Fy, with Fo; € C°(Q0; R?),  Foi(x) = 2nm;VE(x —x;) on Q. (A.1)
i=1
Let §y := %min{|x,~ —xj|:1 £ i<j < n}and Ry :=inf{R : Qy C Bg_5,(0)}. Then,
for 6 < 8y and R > Ry, let Mf’R = Br(0O)\ U, Bs(x:), Bf’R := Br(0)\Bs(x;) and
bf := U}y, Bs(x;). Since A € HXX(R3; R?) we infer that A A Fy; € HY?(B*®) and
that 4, with F := curl 4, satisfies the identity

F - Fo=A - curl Fy; + div(4 A Fy;) (A2)
a.c. on Bf’R. Thus, using (A.1) and (A.2) we find that

fﬁ-FodX = Zn:
=1

MR i

( fﬁ -Fo,dx—fﬁ 'Fol'dx>
by

BR

-~ n ~ A
= [ A-culFodx -3 < | AANFy)-ndo+ [F - FOidx>,
2\2 i=1 \oj(x,) 5

(A3)

where n; = *5* and do is the scalar surface element on 0Bs(x;). Note that, the
boundary term in (A.3) is well-defined, due to the imbedding H'?(U) — L?(0U)



482 J Frohlich, M Leupp, UM Studer

for any bounded domain U of class C', [12, Theorem A.8]. But it vanishes since
(/f/\ Fo;) - n; =0, on 0B;s(x,). Thus, using F and Fy, € Lz(bf’), we infer from (A.3)
that

lim [ F . Fdx= | A - curl Fodx . O
0.R=0.50 one

Theorem A.1. Given a monopole of integer charge 2q, ¢ =0, with monopole har-
monics Y (0,0) 1= O un(0)e ™00 (1 =|q|,|g| + 1,. . and m = ~1, =1 +1,....1)

the following addition formula holds:

Z |Yyim(0, <p)1 = ——;1, for all 0 and ¢ . (A4)

m=-—1

Proof. We ﬁrst prove that the Lh.s. in (A.4) is constant in 0 and .

For [ =0,} 2 1,.. , let D; denote the representation space of a representation
of SU(2) of spin . (When [ is an integer, the usual spherical harmonics Y,—q,
form an orthonormal basis of D;.) Given a rotation of three dimensional Euclidean
space mapping the unit vector with spherical coordinates (6, ¢’) in the one with
coordinates (0, ), let {tmm } denote the matrix elements of a unitary matrix repre-
senting that rotation. For the monopole harmonics (¢=#0) one then has the formula

(see [13]).

Y420, ) x phase factor = Z Yo (0, o)

qlm qlm’ m'm *
m'=—

Hence, for a (fixed) (0, ¢’) € ¢ and (0,¢) € ¢*,(0,p)#+(n, - ), we obtain that

/ /
YVa (0l AN n
Z lYfﬂ’"(Oa (,0)|2 Z qlm (0/ @ ) qlm”(el ¢ ) Z tl(ﬂ )m fn)m

m=—1 m' m' =—1

/
Z | zjl/lrl’(el’(p/)lz'

m'=—1

Therefore the 1h.s. in (A 4) is constant for all (0,¢) € ¢**. Exploiting this fact,
we conclude that

n 20+ 1
J
0

!
m; l q[m(e (P)| d(p sin 0d) = ? 5

! 1
3 Wam(0.0)F = o

m=—1 T

s
J
0
where we have used that (Y., Yorm )s: = 0117 0pm, see (3.6). O
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