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Abstract: An action functional, related to the Higgs model to field theory, depending
on a complex scalar field and a (/(I) connection is defined. The complex scalar field
is a section of a line bundle associated to a principal £/(l)-bundle with base space
R3\{xi,...,JCW}. The points x\,...9xn are the positions of n magnetic monopoles
of magnetic charges m\,...,mn, with Σ"=ι mi — 0. The existence of minimizers of
the action functional is proven using direct methods of the calculus of variation.
Regularity and decay properties of the minimizers are obtained. By constructing ex-
plicit comparison field configurations, we establish accurate upper and lower bounds
for the action of the minimizers in a variety of special situations, e.g. n = 2 and
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1. Introduction

The variational problem studied in this paper arises in the description of the quantum
counterparts of classical vortex configurations in the U( 1 )-Higgs model in 2 + 1
space-time dimensions. Using Euclidean functional integral methods to construct
the Green functions of the £/(l)-Higgs model one is led to study the classical
variational problem described in the abstract: In attempting to calculate these Green
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functions within a semi-classical approximation one finds that the leading terms can
be expressed in terms of the solutions to that variational problem [5]

In the following we first review some results about the £/(l)-Higgs model and
its classical vortex configurations Then we introduce the notions required to state
the variational problem in a mathematically precise manner.

The Lagrange density of the U{ 1 )-Higgs model in 2 + 1 space-time dimensions
is given by

1
= —jdA Λ +dA + -DAΦ Λ +DAΦ - * F ( | Φ | ) ,

2e 2

where A = (Aμdxμ) is a U( 1 )-connection (the gauge field) on a complex line bundle
over three-dimensional Minkowski space, and Φ (the Higgs field) denotes a section
of this bundle. The symbol * denotes the Hodge star operation on forms, d is
the exterior derivative, and DA = d - iA denotes the covariant derivative. Finally,
F(|Φ|) (the Higgs potential) is a polynomial in \Φ\ bounded from below. It is given,
for example, by

V(\Φ\) = ~(\Φ\2 - P2)2,
o

where λ (the coupling parameter) is a positive constant. Since we are using units
in which the velocity of light and Planck's constant are unity, we are left with only
one basic unit, that of length. The action JJ£(Φ,A), is dimensionless. Thus p2,e2

and / have dimension (length)"1. Passing to dimensionless variables,

-Φ^>Φ, —Aμ -• Aμ, (pe)xμ -* xμ, — λ -> λ ,
p pe e2

and choosing suitable units, we end up with

dA/+dA +) = -dA A +dA + -DAΦ Λ +DAΦ - * K ( | Φ | ) (1 1)

and

8

Time-independent configurations (Φ,A) with the property that the time-
component of A vanishes are called static The energy of a static configuration
is given by

E(φ,a)= f \l-\da\2 + l-\Daφ\2 + V(\φ\) dx, (1.3)

where a,(x) = At(t9x) (z = l,2), φ(x) = Φ(t,x) and \Daφ\2 .= +(Daφ Λ +Daφ).
This energy functional has been studied in the mathematical literature, see e g. [7,1 ]
and references therein We summarize some key results.

Let a be a continuous connection and φ a C1-section Assume that

lim sup 11 — 1011 = 0 ,

\λ+δ\Daφ\ S const, for some δ > 0 (1.4)
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Then the configuration (φ,a) defines a homotopy class given by the winding number
of the map

φ(x)

\φ(x)\

provided r is large enough. This winding number, m, coincides with the vorticity
of the gauge field a which is defined by

m= lim Y J daeZ. (1.5)

It is expected (conjecture by Schoen and Yau'79) that the homotopy class of(φ,a) is
well defined under the only assumption of finite energy. Thus the space of classical
field configurations (φ, a) of finite energy very likely decomposes into infinitely
many, topologically distinct classes labeled by their vorticity. We call a finite-energy
configuration with properties (1.4) and (1.5) a m-υortex configuration.

Further, existence of finite-energy solutions to the variational equations derived
from (1.3), i.e., static solutions to the classical Euler-Lagrange equations derived
from (1.1), have been established in [7] and [1]. More precisely, let m G Έ and
λ > 0. Then there exists a smooth, finite-energy critical point (φ,a) of the energy
functional E(φ,a) defined in (1.3), with φ(0) = 0. (φ,a) is rotationally symmetric
in the sense that

a = ma(r)dθ ,

φ = φ(r)eimθ, (1.6)

where <x(r), φ(r) G C°°(0, oo), and (r, θ) are polar coordinates in 3R2. Moreover,
φ and α are strictly increasing from 0 to 1 on (0, oo), and we have the following
decay properties for r ^ 0:

(Dl) 1 - \φ\2 g Me~μr ,

(D2) \da\ ̂  Me~μr,

(D3) \Daφ\ ^ Me~μr ,

where μ and M denote positive constants depending only on λ and m. For this
reason we can think of these solutions as describing "extended classical" objects
(vortices). In the BogomoΓnyi limit, λ = 1, the solutions satisfy first order, "self-
dual" equations, and one has a rather detailed picture of all finite-energy solutions.
For Aφl, however, only the existence of rotationally symmetric solutions has been
established. One has the heuristic picture that vortices (of vorticity \m\ = 1) attract
or repel one another, for λ < 1 or λ > 1, respectively.

An attempt to understand the quantum counterparts of these classical solutions
(or, more generally, of the different homotopy classes of vortex configurations)
within a functional integral formalism leads to the variational problem which is the
subject of this paper. This is described in [5]. In order to state the problem in a
mathematically precise manner, we require some definitions:

We choose a set of n distinct points in IR3, x := {JCI,...,JCΠ}, and define

Mx_:=ΊR3\{xu...,xn}
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equipped with the Euclidean metric. U( 1 )-bundles over Mx are classified by the

second cohomology group H2(MX,Έ),

H2{MX_,Έ) = ZΘ Θ Z O summands) . (17)

Let m .= {m\, , m j be a set of « non-vanishing integers We then denote by
PXim the £/(l)-bundle over Mx specified by m according to (1.7). The n integers
m\, ,mn can be inteφreted as magnetic charges of n magnetic (Dirac) monopoles
located at the points x\,...,xn of R 3 .

Let AQ be a connection on Px^n and FQ ' = dAo its corresponding curvature or

field strength Then every other connection A on PXJ]1 is of the form

A=Ao+A, (1.8)

where A is a globally defined 1-form on ML. We choose an explicit reference con-
nection AQ\ On a ball containing the punctures x\, ..,xn we choose AQ to be given
by AQ, such that its curvature, FQ, is harmonic on Mx_, i e., given by

Fh

0(x) = 2π £ mΊ * dE(x - Xj), (19)
7 = 1

where E(x) = ̂ r |x |~ ! is the fundamental solution of the Laplacian in three-

dimensional Euclidean space Let {G^j)}^\ be the open cover of Mχ9 as indicated

in Fig 1 below Then AQ is locally given as a family of 1-forms {A0

J\x) ' j —

1, . ,n + 1, and s u p p ^ 0 ) C ff(/)}5 where

Ah(j)(x) •= V m / (x1 - ^ ^ - ( x 2 - ^ , 2 ) ^ 1

with

- 1 for 1 < /

X - X/

Furthermore, on the intersections Θ{j) Γ) (9(j+ι\j = 1,. ,«, ^ Q 0 ) and Ah

o

ij+l) are
related by the transition conditions

AQU+1\X)=AQU\X) - dxjj{j\x\ where

This corresponds to transition functions #/,y + i : &^ fλΘ^+λ^ —> t/( 1) given by

:= exp(/^(/)(x)), for y = 1, ,n .

Similarly, we have transition functions # u Θ(ι) ΓΊ (^(/:) —> ί/(l), for A: = 3,..., n + 1,
given by
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Fig. 1. (Choice of the open cover {Θ^}n^\ of Mχ\ Let ε > 0 be small and denote by (ru Θi9Zi)

cylindrical coordinates centered at the point jtj = ( x ) , X p ^ ) , / = 1,...,Λ, with z -axis parallel to

the x3-axis. In the neighbourhood of each puncture x; of Mx = IR3\{jq, ,xn} we take two

(smooth) surfaces Πι

± such that, for rt < ε, Πι

±= {rt = ±z z }, and, for rt > 3ε, Πι

± = {x3 =

x? ± 2ε}. Thus we obtain a pair of surfaces meeting each other only in the point jtz . In the exterior

of a sphere containing x\ and X2, but not jt;, i ^ 3, we deform the pairs of surfaces associated with

jq and x-χ in an axially symmetric way, as indicated in the figure Thus we obtain a closed surface

and a new pair of surfaces, which in turn is combined in a similar manner with the pair of surfaces

associated with #3, and so on G^\ .9Θ^ denote the domains bounded by the closed surfaces

constructed in the process above Θ^ι>} and tfXw+1) denote the remaining unbounded domains, which

overlap each other outside some sphere containing all punctures jq, ,xn

One easily checks that on the intersections 0 ( 1 ) Π Θ^j) Π Θ^J'+ι\j — 2,...,«, the co-
cycle conditions g\j(x)gjj+\(x) = g\j+\(x) are satisfied. Henceforth we require neu-
trality in the sense that

ί>/ = 0. (1.11)
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Let Ω C IR3 be a closed ball containing the punctures x\, . ,xn in its interior, and
let ΩQ '= {x G IR3 dist(x, Ω) ^ 1} Then we can choose the reference connection
such that

' on Ω, Ao is given by AQ, defined in (1.10) ,

Ao vanishes outside Ωo , (1 12)

AQ smoothly interpolates between A\ and 0 on ΩQ\Ω .

Note that all information about the topology of the £/( 1 )-bundle PhU1 is encoded in
the curvature FQ of the reference connection AQ.

Next, we consider sections of the complex line bundle EXtm, the bundle associated

to PXfm With respect to the open cover {C^^}"^, a section Φ of Ex%m is given by a

family of complex-valued functions {Φ ( / ) . $ ( / ) —> C|y = 1, . ,/7 + 1}. On all non-

empty intersections (^^ Π 0 ^ , 1 ^ y, A: ^ « + 1, the transition conditions

Φ('\x) = guk(x)Φ{k\x) (1.13)

are satisfied. Finally, for a fixed connection^ on PXiί1u the covariant derivative on

Ex^m restricted to (Γ^ reads

= dΦu\x) - zi°')(x)Φ°')(x)

On all non-empty intersections transition conditions analogous to (1 13) hold.
As a consequence, \Φ\ and DAΦ\ are globally defined, non-negative functions
on Mx

in the following we identify forms and vectors by the canonical isomorphism

provided by the Euclidean metric, i e., if cc(x) = Σ / = 1 al(x)dxl is a one-form

and β= j Σi j=\ βij{x)dxι Λ dx1 is a two-form we identify a(x) with the vector

(αiOO, 0C2OO, 0C3CO) a n ( ^ /^(x) w ^ m the axial vector (feCOίβsiCOjjδnOO)- Further-
more, Jx stands for the Lebesgue volume element on IR3 or IR2, respectively.

In the following we consider the renormalized action functional

+1 \c\xτ\A\2(x) + (cuvlA F0)(x)
1

Mx_

+ \\VA<s+AΦ\\x)+V{\Φ\){x)\dx, (1 14)

which arises in the description of the quantum counterparts of classical vortex con-
figurations This action functional is well defined (Lemma 1 1 (ii)) on a space,
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# , of pairs, (Φ,A), where Φ is a Sobolev section of E^m and^4=^4o+^ are the

components of a connection of Pxm. The space 3F is defined as follows:

§F := {(Φ,A), Φ a section of Eh!R with the properties (1.13),

AQ -\- A a connection on Pxm with AQ defined in (1.12) :

( |Φ|,Λ)e// 1 | ; c

2 (R 3 ;R + xR 3 ),curlΛ e L 2 ( R 3 ; R 3 ) ,

\VAO+AΦ\ eL\Έ?^+\V{\Φ\) eL\^,W.+)} . (1.15)

We remark that the action functional (1.14) defined on the space # is invariant
under gauge transformations

A-^A + Vψ, Φ-> Φeiφ ,

The subject of this paper is to minimize the action functional S{Φ,A) on #"
and prove regularity and other properties of the minimizers. Unfortunately, this
variational problem is not well posed, since the term proportional to |curl^l|2 in
S(Φ,A) is not coercive. This difficulty can be avoided by choosing a fixed gauge.

Lemma 1.1. (i) Assume that A eH^(TR?;WL3) and cuήA e L 2 ( R 3 ; R 3 ) . Then

there exists a gauge transformation A —> A := A + Vφ with φ e / / ^ ( R 3 ; R), such

that V Ά = 0 a.e., and the following identity holds:

J | cur l i | 2 Λ= / \VA\2dx, (1.16)
R3 R3

where |Vi | 2 = Σ-j=ι M\2-

(ii) Let AQ be the reference connection defined in (1.12). Assume that A

^ ' C

2
()

^ ' C

2 ( R 3 ; R 3 ) . Then the following identity holds:

J cuήA Fodx= J A cuήFodx. (1.17)
Mx_ Ω0\Ω

The proof of Lemma 1.1 will be given in the Appendix.
Now, for any (Φ,A) G #", we may assume that A satisfies the Coulomb gauge

condition V Ά = 0 and (1.16); as guaranteed by Lemma 1.1, (i). Then the varia-
tional problem above reduces to a variational problem with the following coercive
action functional

^ + \ J [\F0\
2(x)-\F*\2(x)]dx + S(Φ,A),

z R3\β

where

S(Φ,A) := / \\\VA\2(x) + A-cuήFo(x)+hvAo+AΦ\2(x)+V(\Φ\)(x)] dx .
Mx Yl λ J

(1.18)
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The functional S(Φ,A) is invariant under gauge transformations

A^A + Vψ, Φ->Φe1^,

where Vxjj is constant For the second term on the r.h s. in (1.18) this follows by
Lemma 1.1, (ii) Thus we may impose the condition JκAdx = 0, where K c ΩQ is
a compact set with Lebesgue measure \K\ > 0. This additional gauge condition is
important in our analysis as it permits us to apply the Poincare inequality. Then we
enlarge the space of admissible sections and 1-forms by setting

#" •= l(Φ9A), Φ a section of EL!R with the properties (1 13),

Ao -\- A a connection on Px^m with A$ defined in (1.12) .

(\φ\>A) e //io' c

2(R3,R + x R 3 ) > \VAO+AΦ\ e 4 c ( l R 3 ) ,

fAdx = 0 for the compact set K C Ωo, with \K\ > 0 1 . (119)
K J

A minimizer for the functional S(Φ9A) on the enlarged space $F turns out to be
a minimίzer for S(Φ,A) on #"

We briefly summarize our main results* In Sect 2 we prove the existence of
minimizers, (Φ,A), for S(Φ,A) on #" under very general hypotheses concerning the
potential V (Theorem 2 1) In Sect 3, we study regularity and decay properties of
the minimizers: The section Φ(x) and the form A(x) are smooth on 1R3\{JCI,...,XM}
(Theorem 3 1) The function \Φ\ is bounded above by 1, and, in the neighbour-
hood of any puncture xl9 A is Holder continuous (Lemma 3 1), and Φ possesses a
Holder continuous extension to xt (Theorem 3.2) with a zero at xt The functions
1 — |Φ| 2

5 |curl(^o +4)1 and |ΦVΆ0+AΦ\ decay to zero exponentially fast, as |x| tends
to infinity (Theorem 3 3). In the last section, we derive accurate upper (Theorems
4.1, 4 2) and lower bounds (Theorem 4 3) on the action S of the minimizers in the
special situation M^ = IR3\{xi,x2}, i.e., for two magnetic monopoles of opposite
magnetic charges The action essentially grows linearly with the distance \x\ — x^ \
and in the monopole charge.

Independently, T. Riviere [10] worked on the same minimization problem He
gives a direct and short proof of the existence of minimizers and then focusses on
an asymptotic analysis of the minimizers when the coupling parameter λ tends to
infinity.

2. Existence Results

Our main result in this section is the existence of minimizers for S on 3F (where
S and 3F are defined in (1.18), (1.19)), under very general hypotheses concerning
the potential V

Theorem 2.1. Suppose V IR —> IR is continuous, non-negative and coercive in the
sense that

V(x) ^ C" ] | x | 2 - C, for some constant C > 0 and all x e IR (2.1)

Also suppose that there exists an element (Φ1\A') G ̂  such that s1 .— S(Φf,Af) <
oo Then there exists an element (Φ,A) G J^ which minimizes S on ^
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Remark. For a choice of Mx, with x = {xi,X2} and m = {—m,m}, the existence
of (Φ\A') e ^ follows from Theorems 4.1, 4.2 and Lemma 1.1. The proofs can
easily be generalized to the general situation.

The proof of Theorem 2.1 is based on the techniques presented in [5]. We
remark that, if the bundles PXtm and Ehΐn are trivial (i.e. AQ = 0) and if the term
JM A-cuήFodx in (1.18) is replaced by - f^3 curl A-HQXtdx, where Hext e L2 Π

H^2, this minimization problem has already been solved [14]. In our proof we fill

in the details how to handle the difficulties arising from the fact that A\j\x) —

O(\x — x/|~ ι), for x —>xz , and that Φ is only a local section.

Proof. Let {Ωk}k<EN be a sequence of compact, smooth domains (balls, for in-
stance) exhausting R 3 , with K c Ωo c Ωk. The proof comprises three steps: (i)
First we investigate the coercivity properties of S restricted to the compact sets Ωk.
(ii) Then, we study the convergence behaviour of a minimizing sequence in 3F and
extract a subsequence, which converges, in a sufficiently strong sense, to an element
(Φ,A) e # \ (iii) By weak lower semi-continuity of S and a monotone convergence
argument, we show that (Φ,A) minimizes S on 3F.

Step (ί). Let {Ωk}ken be given, and denote by S(Φ,A;Ωk) the functional in (1.18),
but with integration over Ωk instead of MX9 then

/ A - cuήFodx -r || vA0+Av\\L2iΩk)

Ω0\Ω

+ fV(\Φ\)dx\.
Ωk J

For the second term we have used that, due to our choice of AQ, suppcurlFo C
ΩQ\Ω9 and we can further estimate it by

/ A-cuήFodx
Ω0\Ω

^ c'\\A\\LHOo\Ω) S

^ C(K;Ω0)\\VA\\L2{Ωk), (2.2)

where we have used Poincare's inequality and the hypothesis that JκAdx = 0 in # \
With the coercivity hypothesis (2.1) for the potential V we can estimate the last
term and get

^ c[\\VA\\2

L2 - C(^;ί20)| |V^||L2 + | |V^ 0 +^Φ|| 2

2 + C-ι\\Φ\\2

L2 - C\Ωk\]

where we have used Kato's inequality for the third term. Splitting the first term and
applying Poincare's inequality again, we obtain:

^ (2.3)

where cl9 i = 1,2,3, are positive constants.
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Step (ίi) We have that inί^A)E^S(Φ,A) > —oo, due to inequality (2.2) and
the non-negativity of the potential V. Let ((Φm,Am)) be a minimizing sequence
for S in #", i e , S(Φm,Am) —> inf(φ^)G^^(Φ,^), as m-^ oo. We may assume
that S(Φm,Am) ^ sf < oo, uniformly in w G N. By (2.3) and since suppcurlFo C
Ω0\Ω C Ωk,\/k G JN, we have that

\Φm\ |βu (β*) =

' ^ Ω * ) < oo,

uniformly in m G N. Hence (Λ«) is bounded in Hλ'2(Ωk, 1R3), and (|ΦW |) in
Hι>2(Ωk; R 4 ) , for any £. Since //12-spaces are reflexive, we may assume - if
necessary extracting a diagonal sequence - that for any k

Am — A weakly in Hh2(Ωk; IR3) and \Φm\ — φ weakly in Hl2(Ωk; IR + ) , (2.4)

hence (φ,A) G //^(IR 3 ; R + x IR3). Using Rellich's theorem, we conclude that

Am ->A in Z2(ί2^;R3) and | Φ m | -> 0 in Z2(ί2 / blR+), for all J t e N . Furthermore,

we may assume - if necessary again by extracting a diagonal sequence - that

Φm| —> Φ pointwise, a.e. on Ωk, for all k . (2 5)

Next, we show that we may assume the sequence of sections (Φm) to be such

that Φ(J] -> Φ ( / ) in L 2 ( ^ y ) , C ) , for all j = 1,...,/?+ 1 and k G N, where <^/} :=

6π(/) Π Ω ,̂ and that Φ is also a section of the complex line bundle E^m
Let y, k be an arbitrary but fixed pair. (We note, that our construction of the

cover {&(^} in Fig. 1, is such that the bounded set Θk has Lipschitz boundary, for
every j and k) Then we have that

(a) (ΦL7)) is bounded in Z^(<^y );C), 1 S P ύ 6, because of the boundedness

of (\Φm\) in Hh2(Ωk;ΊR+) and the Sobolev imbedding on Θ{

k

j)'. By extracting a

subsequence, if necessary, we may assume that

φ(y) _, φU) weakly in L^(^ 7 ) ; (C), 1 ^ ^ 6 . (2 6)

(b) Since λ[j) G L2(Θ{

k

j)\ Holder's inequality and (2.6) yield that

M^^m^lL^^^c^) i s u n i fo r m ly bounded in m G N, for 1 ^ ^ ^ - .

(c) We claim that ^ w Φ i / } — A Φω weakly in U{βψ\ C 3), for 1 g ^ ^ | This
implies that

^j).^, is uniformly bounded in m G N, for 1 ^ ^ - .
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Indeed, for τ G L«'(Θ(

k

J) <E3), q' :== £ r ^ 3, we derive the bound

457

-AΦU)).τdx

< \\A _ A\\ M P)\\

A(Φ^ — φ^'^). τdx

I (4*

for r G [1,6), p G [1,6] and A τ e L2(Θ{

k

j); C). By the compact imbedding H^2(Θ(

k

j))

-̂> Lr(Θ[j)) of Rellich-Kondrachov, we conclude that \\Am - A\\Lt(&ω.κ3) -+ 0. Using

(2.6) the claim follows.

(d) Due to (2.2) and the non-negativity of the potential V, we conclude that the

sequence (SAω+A Φ\P) is bounded in L2(&[^; (C3), and again - if necessary passing

to a subsequence we have that

n L 2 ( & Ϊ J ) ' <C3) (2-7)

Next, using (2.6) and Am -> A in L2(Ωk; R 3 ) we find that, for any τ € C0°°(^Λ; (C3),

<° = / [ (-V τ)Φ</} - ^ Λ τΦ<,Λ - Um • τΦ(J}] dx

where we have used that ( - V τ) and A{

o

j) - τ are in L2(Θ{

k

j); C ) . Since C^{θψ\ C 3 )

is dense in L2(Θ[^;(C3), we conclude, by the uniqueness of weak limits, that

χθ"> = VAω,AΦ
u\ a.e. on

Note that, because of the imbedding L2(Θ[j)) [J)

χ } )quence
that, for 1 ^ q S | ,

LP(Θ[J)), for 1 <, P S 2, the se-

) is bounded in LP(Θ[J); C 3 ) . Statements (b), (c) and (d) together imply

+
is uniformly bounded in m G N . Together with (2.4), this shows that the sequence

(ΦL7 )) is bounded in / / ^ ( ί ^ C ) , for 1 g # g | , and, by appealing to Rellich-

Kondrachov imbedding, we get that (φ\P) is relatively compact in Lr(Θ^;<C),

for 1 ^ r < 3. In particular, (φ\P) is relatively compact in L2(Θ[J^;<E)9 and we
conclude (passing to a subsequence and comparing with (2.6)) that

ΦU) eL2(Θ[J);<C). (2.8)
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The chain of arguments from (a) to (d) is valid for any C[J'\j = 1,.. , n + 1, and
k G N Thus, by applying a double-diagonal sequence process in j — 1,..., n + 1 and
k = 1,2,..., we may assume that (Φm) actually possesses properties (2.5), (2.7) and
(2 8). The section property (1.13) of Φ follows from (2 8) and the section properties
of the Φw 's

We conclude this step by showing that (Φ,4) G #", see (1.19). The regularity
properties of (Φ,4) are already established. That the gauge condition JkAdx = 0
is satisfied follows from the L2(Ωk, IR3)-convergence of Am —»A and the fact that
K C Ωk, for any k.
Step (Hi) By weak lower semi-continuity of the Z2-norm and (2.4), we have that

/ \VA\2dx g liminf / \VAm\2dx .

Since curlFo G (^(ΏcΛΏ; IR3), we conclude from the L2-convergence of Am —>• A
that

Γ A curl Fo dx = lim / Am curl F o Jx ,
Λ w—>ocn
" * " A

for all ί2^ We denote by {/z(/)} a locally finite partition of unity subordinate to the
open cover {C{ny]t\, i.e., Mz) G Co°°(^(/)), for some j = j(i\ 0 ^ /z(/) ^ 1 and
Σ/>i ^^^ ~ ^ Again using the weak lower semi-continuity of the L2-norm, we get
thaf

J\vAo+AΦ\2dx = Σ I \v^

= liminf/ |

for all Ωk Finally, since V is continuous and non-negative, we obtain, by using
(2 5) and Fatou's lemma, that

/ V{\Φ\)dx ^ liminf f V(\Φm\)dx ,

for all Ωk. These facts imply that, for any k,

S(Φ,A,Ωk) ύ liminf S(Φm,Am,Ωk) ^ liminf S(Φm,Am) = inf
m>oc moc (ΦA)E

By the Monotone Convergence theorem, and letting k —> oo, we see that (Φ,4)
minimizes iS on .#". D

Corollary 2.2. L^ί (Φ,4) be a minimίzer of S on ZF Then (Φ,4) minimizes S on
$F and A satisfies the Coulomb gauge condition V A = 0, a e on IR3

Remark. For special configurations of the punctures x\,...,xn, we expect the
minimizers to be unique (up to gauge tranformations) In general, however, the
minimizers will not be unique. This is described at the end of Sect 4
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Proof. Since S(Φ,A) < oo, suppcurlF0 C ΩQ\Ω and V is non-negative, we con-
clude that \VΛ\ e L2(ΊR.3). Then one easily derives that

+ || V 4Hi2(R3) = ||V4||i2(R3) (2.9)

On the one hand, S(Φ,A) < oo, and (2.9) imply that (Φ,A) e «#", and, moreover,

where So := π Σ / < y . ^ + £ J ^ j W W - |F*|2(x)]ώr, by Lemma 1.1, (ii).

On the other hand, we infer by construction of S (see Introduction) that

inf S{Φ,A) ^ SO + inf S(Φ, A) = So + S(Φ,A).
β (ΦA)ef

Thus, inserting (Φ,A), we conclude that (Φ,A) minimizes S on #", and by
Lemma 1.1, (ii), that

2 i (2.10)

Finally, (2.9) and (2.10) show that V 4 = 0, a.e. on 1R3. D

3. Regularity Results and Exponential Decay

In this section we study the regularity of the minimizers (Φ,A). This is done in
two steps: First, the regularity is discussed in a domain excluding the singularities
x\,...,xn of Ao, i.e., on ΩC

R = R 3\Ω#, where

n

ΩR := U BR{XΪ), for some arbitrarily small R > 0 .
i=\

Second, regularity properties in the neighbourhoods of these singularities, i.e. on
ΩR, are established. We recall that the integers mi9 for / = !,...,«, are non-zero.

3.1. Regularity away from the singularities.

Theorem 3.1. For a potential V : R —> R + , given by

V(x) := Ux2 - I) 2 , (3.1)
O

α minimizer (Φ,A) of S on ^ has the regularity properties:
A e C°°(Ω^;1R3), and Φ restricted to ΩC

R is a C°°-section, i.e., on any chart

j = I,.. .,Λ + l, Φω e c

Remark. For deίiniteness we have chosen the potential V(x) as in (3.1). But the
following proof can easily be generalized (with the help of Lemma 3.1) to other
potentials sharing the qualitative properties of the potential in (3.1). These properties
are: V is non-negative, V(x) — 0 if and only if |x| = 1 and V(x) — V(x2) for some
smooth V.
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Proof. Set 0 := CoU\ and Φ •= Φ ( / ) , Λo .= Λ^, A .= A and i .= Ao +A on C.
From Corollary 2.2 we recall that V A = 0. Thus, minimality of (Φ,^) implies
that (Φ,A) is a weak solution of the variational equations

0 = -ΔΦ + liA V Φ + | i | 2 Φ + /(V - ^ 0 ) Φ + ^ ( l ^ l 2 - 1)Φ, (VI)

0 = -ΔA + |Φ|2Λ + curlFo - Im [(VAoΦ)Φ] (V2)

on £r. In (VI) and (V2) the explicit potential (3 1) has been inserted
By standard regularity theory of elliptic equations (see for instance [6]) and by

using the iterative bootstrap argument the regularity results stated in the theorem
are established. •

3 2 Regularity in the neighbourhood of the singularities In this subsection we
discuss the regularity of the minimizers (Φ,A) in neighbourhoods BR(XJ) C Ω of the
singularities xι of AQ For definiteness we again consider the potential

V(x) = -Ax1 - I ) 2 .

Lemma 3.1. Let (Φ,4) be a minimizer of' S on <¥ Then, for any i = 1,. ,n and
R>0 with BR(xj) C Ω, we have that

(i) \Φ\ g 1, ae on IR3,

(ii) A e C ° ' α ( 5 ^ ) ; R 3 ) , with α ^ \

Proof Let Φ ( / ) - Φ ( / ) and A •= 4.
(i) We define a comparison section Φ by

\Φ{i\χ\ if

\ ^ ( x ) , if |Φ|(x) ^ 1 .

Then, (Φ,A) 6 ^ , see (1.19). By minimality of (Φ,A) we infer that

0 ^ ^ ( Φ , ^ ) - ^ ^ , ^ )

/ [ ^ 2 ^ 2 l dx

where we have used that on {x \Φ\(x) > 1} Π Cc{j\j = 1 , . . ,n + 1,

= | V , 0 + , Φ | 2 ( | Φ | 2 - l )

> 0
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Since V(x) is positive for \Φ\ > 1, it follows that {x : \Φ\(x) > 1} is of measure
zero.
(ii) Recall that suppcurlFo C Ωo\Ω due to our choice of Ao, see (1.12). Thus,
similarly as in (V2), we find that A weakly solves the variational equation

on BR(xi). Note that |Φ|(JC) and (\/AoΦ)Φ(x) are well-defined, a.e. on BR(xi\
due to (1.13). Using the regularity result in (i) standard elliptic regularity theory
(see for instance [6]) yields that A G H2>2(BR(xi);WL3) <-+ C°'α(£* (xz); R 3 ) , for
0 < α S i Π

The next step is to improve the regularity properties of the section Φ in the balls
BR(Xi). This can be accomplished by studying the variational equation (VI), i.e.,

where ^Aω+A = V^ ω . Equation (3.2) raises hopes that one can develop a "covari-

ant" Z^-theory. However, this is a rather delicate business, since X( is a boundary

point of Θu\j = i,i + 1) and A(

0

J\x) = O(\x - X/I"1), for x -> JC, . The approach we

present here is based on an expansion in monopole harmonics.
Let Xi be the origin of our coordinate system and let Θa := BR(X() Π Θ^\Θb :=

BR(xi) Π Θ{ί+X) and Φab := φ(^^ / + 1 \ Extracting the part of Eq. (1.10) singular in xt

we rewrite the connection in the form

A«UM)+A=:A + aS*b

9 (3.3)

where a$b := ̂ ^ ^ j ^ f , with ^ : = f e i^\{0}, and A comprises the terms

of AQ^1+1>} +A regular on BR{xt). The form A is Holder continuous, due to
Lemma 3.1, and Corollary 2.2 implies that V A — 0, a.e. on BR(xi). Hence,
Eq. (3.2) reads

-Δ<bΦ
a'b = -2iA Vaa,bΦ

a>b - \A\2Φa>b - - ( | Φ | 2 - \)Φa>b = : H^b .

Clearly we have that |//0| £ L2(BR(xi)), as a consequence of Lemma 3.1 and the
fact that |VαoΦ| G L2(BR(xi)). For technical reasons we introduce a cut-off function,
χ e C0°°(Z?*(x;)),0 ^ χ(χ) ̂  1, and χ(x) = 1, for |x| S | Λ Hence «fl'* := χΦa b

weakly solves the equation

- A<hΦ
b - χH£b - (Aχ)Φa>b - 2Vχ V ^ Φ a b =: H*>b , (3.4)

on Θa>b, where |w| G H^2(BR(xi)) ΠL°° and |//| G L2(BR(Xi)).
We introduce spherical coordinates (r, θ, φ), with (dr,dθ, rsinθdφ) the corre-

sponding orthonormal frame of 1-forms. In these coordinates we have that

2 - cosθ)rsinθdφ
rsmθ



462 J Frohlich, M Leupp, U M Studer

and

ao r2 r2smθ r2sm2θ

2 ( ± 1 -cosfl) 2

ψ

rι sin θ rι sin θ

Next, we recall a result of [13] (Wu and Yang): Let q e \Έ\{Q}. The monopole

harmonics Yqjm,

{Yqΐm(θ><P):= ® q i m ( θ ) e i ( m ± q ) φ : / = \q\, \q\ + 1 , . . . a n d m = - / , - / + 1 , . . , / } ,

are real analytic sections of the complex line bundle (restricted to S2) around a
monopole of charge 2q. They form a complete and orthonormal set with respect to
the scalar product

π 2π

(Yqim,Yqi'm')s* -= f J (ΫqimYqi>m>)(θ, φ)dφ sinθdθ = δwδmm. . (3.6)
0 0

The functions Θq\m satisfy the ordinary differential equations

- - ^ ^ s i n ^ + - ^ - ( ^ + #cos6>)2 Θgim = [/(/+ Ό-q2]Θqlm . (3.7)
I sin u sin θ J

We remark that the scalar product in (3.6) is well-defined, since

on the intersection (9a Π (9b.
We expand ua'b and Ha>b in monopole harmonics:

oo /

ua'b(r,θ,φ)= Σ Σ uqim(r)Yqi*{β,φ) (3.8)

and
oc /

where uqhn{r) := (Yqlm,u(r, , . ))52 and ^/ m (r) := (Yqlm,H{r, , ))52 are com-
plex-valued functions. Both sums converge in the norm || ||^2, induced by the scalar
product in (3.6), and ParsevaΓs identity yields that

oo / oo /

Σ Σ \uqlm(r)\2 = \\u\\Ur), Σ Σ \hqlm(r)\2 = \\H\\2

sl(r), (3.10)
l=\q\ m= — l l=\q\ m= — l

for a.e. r e [0,R]. Moreover, we conclude that the functions uqιm(r) and hqjm(r) are
in L2([0,R],r2dr), since

/ \hqιm(r)\2r2dr < j
o o

\hqlm(r)\2r2dr ^ J \\H\\2

s2{r)r

2dr = \\H\\2

L2(BRM) .
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Let / € C0°°([0,#]). Using (3.5), (3.7) and V a$b = 0, we obtain that

463

where Lql := -^drr
2δr + £[/(/ + 1) - q2]. Thus, testing (3.4) with / ( r ) T ^ ( θ , φ )

on BR(XJ), we conclude, using (3.8)—(3.11), that uqιm (or more precisely, the real-
and imaginary parts of uqιm) weakly (in L2([0,R],r2dr)) solves the following (sin-
gular) Sturm-Liouville problem

Lqιuqιm(r) = hqιm(r) ,

Uglm(R) = 0 .

In order to exploit this fact, we consider

ύqim(r) := uqιm(r)r and hqιm(r) := hqlm(r)r . (3.12)

The function ύqιm is a weak solution of the (singular) Sturm-Liouville problem

Lqiύqimir) = hqιm(r),

UqlmiR) = 0 (3.13)

in L2([0,Rldr) with Lql := - 5 ^ + ^[/(/ + 1) - q2\ The homogeneous (real) dif-

ferential equation Lqιv{r) = 0 is an Euler equation and has the two solutions

where ocqι := \ +

\q\ > L it follows that v[

Since α ± i i -i i and

(3.14)

> f, for all / ^

fΓ L\[09K\9dr)9 but ^ φ Z2([0,7?], J r) , for all

/ ^ |̂ r| > \. By general Sturm-Liouville theory [3, 11], Z ± n is said to be of the

limit-circle type, Lqί (I ^ \q\ > \) of the limit-point type at the singular endpoint
r — 0. In the limit-circle case, one has to impose a boundary condition at r = 0
to make (3.13) well-defined. This is achieved by Lemma 3.1, which, by (3.10),
rules out that u±ιιm(r) diverges, as r —• 0. Thus, for a C-valued function he
L2([0,R],dr) we define the Green's operator Gqι by

with the kernel

It is easy to show that

\ < ί| ̂  <

Gqlh(r) := / Gql{r,p)h{p)dp ,
o

_ i ) — i

(3.15)

3 „

)-i ||Λ||
if

(3.16)
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and, that Gqlh G C°([0, # ] ;€ ) . Hence Gqϊ L2([0,Rldr) -+ L2([0,i?], dr) Π C° is a
bounded, self-adjoint operator. The solution of problem (3.13) is continuous and
given by

ΰqlm(r) = Gq,hqlm{r) + R-a"'Gq,hqUR)r^' (3 17)

We prove regularity properties for ua>b — χΦab in two steps:
(i) By the smooth gauge transformation

A->A + Vιl/, Φ—>Φeiιί/, (3.18)

with ιj/(x) .— A(0) x, we may impose (besides the Coulomb gauge) the additional
gauge condition A(0) = 0 Since A is Holder continuous with Holder exponent ^,
we conclude from Lemma 3 1 and from the fact that |Vfl0Φ| G L2(BR) that

x\-l2Ha>b(x) G L2(BR(xi)) . (3.19)

Thus, Eqs (3 9), (3 10) and (3.12) imply that r ~ 5 ^ / w ( r ) e L2([0, 7?],dr) Exploit-
ing this fact one can improve inequality (3.16), i e.,

C(q,R)\\r-l2hqhn\\L2mRlώ) rV, if aql < 2

GqIhqIm(r)\ ^ { C(q9R9ε)\\r-2hqlm\\L2 . r

2~& if aql = 2 (3 20)

2
if α̂ / > 2

for 0 ^ r ^ R, where ε is some arbitrarily small positive constant
(ii) We prove that the sum in (3 8), i e.,

χ Φ ^ ( r , 0, Ψ) = ua>b(r, θ9 φ) = Σ Σ uqlm(r)Y^(θ9 φ) ,
l=\q\m=-l

converges unifoπnly (on natural domains specified below) Inequality (3.20) is use-
ful in reaching this goal. In addition, suitable uniform estimates on the monopole
harmonics are required, which we derive in the Appendix; see Theorem A 1.

Let Ia := {0 ^ θ ^ f + ^ e ί } and Ib := {f - ε ^ θ ^ π,φ G S1}, such
that (05Λ] x /α '6 C 6̂ α 6, and let 0 ^ δ < (50 := ^o(l^l). We define an auxiliary
section

Φg) (r,θ,ψ)-= Σ —TTΓY

qίm(e>^>
m— — l r

for r e (0,R] and (0,φ) e Ia>b From (3.17) and (3.20) we infer that if \q\ ^ 2

f i

(,] ( , φ )
then φa

q

b is continuous on [0,R] x /fli/? for (5 < <5o = α |̂̂ | - 1, and if \q\ > 2 then
af is continuous on [0,R] x 7α'^ for δ < δo = 1 Moreover, since ocqj > 2, for

1̂ + 1, one finds that

U\uqlm{r)\ S C(δ,q,R)\\r-lihqIJL2(mιώ) rι+δ , (3 21)

for 0 ^ r ^ R From (3 21) and Theorem A 1 it follows that

^ C(δ,q,R)H (l^λΊ Σ \\^ hqlm\\2

L2([OR]ώ } ) =' Mql

\ *π \ J
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Since Σt\g\ ΣL-/ iMV-fep),*],*) = HM~^llW)) 0>Y (3-12), (3.10),
(3.19) and the Lebesgue Convergence theorem), we conclude that

Thus, we have a majorizing series for φq)
b(r9 θ, φ), and, by the Weierstrass theorem,

(3.12) and (3.8), it follows that

tf>b(r9θ9φ) = rδφ%b(r9θ,φ)9 (3.22)

with ΦΫ := Σϊί\q\ φa

q)
b a continuous section on [0,7?] x Ia>b.

This regularity result also holds for the original section Φ (before the smooth
gauge transformation (3.18) is applied) in the neighbourhood of any singularity xit

We summarize these results in the following theorem:

Theorem 3.2. Let (Φ,A) be a minίmizer of S on ^ with V as in Eq. (3.1). Then,
for any monopole located at xi9 with integer magnetic charge πii =: 2q + 0, and
R > 0, with B2R(XΪ) C Ω, the section φ ^ z + 1 ) has a Holder continuous extension

where φf'{i+ι) is a continuous section on [09R] x Ia>b, Ia := {0 ^ θ ^ f + ε9q> G
S1} and Ib := {f - ε 5Ξ θ ^ π,φ G S1}. 7%e Holder exponent δ depends on \q\,
i.e. δ < oiq\q\ - 1, if \q\ g 2, α«rf (5 < 1, //1^ | > 2.

Remark. These regularity results are not optimal. However, they give good support
to the conjecture that the statement above holds for δ < oίq\q\ — 1, for all q, where

3.3. Exponential Decay. In order to arrive at a better picture of the properties
of minimizers, (Φ,A), we propose to study their decay properties. Let ΩQ := ΩQ
denote the exterior of Ωo. The neutrality condition in (1.11) and the choice of Ao
in (1.12), Ao = 0 on Ωg, imply that Φ := Φ and A := A=A0+A are well-defined
on Ωg. From Theorem 3.1, (VI), (V2) and V A = 0, by Corollary 2.2, we infer
that (Φ,A) smoothly solves the variational equations

0 = -ΛΦ + 2ίA VΦ + \A\2Φ + z(V A)Φ + ^

0 = -Λ4 + V(V v4)

on Ωg. Further, we recall from Lemma 3.1 that \Φ\ ̂  1 on Ωg. In the follow-
ing theorem we state the resulting exponential decay for 1 — |Φ| 2 , |curl^| and
|ΦV^Φ|, whenever (Φ,A) is a smooth, finite-action solution to (VI") and (V2/;)
with \Φ\ ̂  1.
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Theorem 3.3. Assume that (Φ,A) e & is a smooth solution to (VI"), (V2") on
Ωe

0 Further assume that \Φ\ ̂  1 on ΩQ Then either \Φ\ = \ {and V / Ξ O ,
curlv4 Ξ O ) , or else \Φ\ < 1 on ΩC

Q For every λ > 0, given ε > 0, there exists
M =M(ε,λ) < oo such that

1 - |Φ| 2 , |Re(ΦV^Φ)| S Me~(l~ίήmM , (3.23)

curlΛ|, \lm(ΦVAΦ)\ ^ Mβ~ ( 1 ~ ε ) | x | (3.24)

on ΩQ, where mi := min(/ι2?2)

The proof to establish exponential decay is based on the method presented in
[7, Sects. IΠ.7-IΠ.9]. A detailed proof can be found in [8].

Assume that a (neutral) system of n magnetic monopoles, given by (x, m),
can be decomposed into K (neutral) subsystems, given by (x1, m 2),.. .,(xκ,mκ). Let
Ωk denote a closed ball with center ω^ containing all punctures of the set xk. If
ΩQ .= {x : dist(x, Ωk) ^ 1}, we further assume that the subsystems are separated
by

inf dist(Ωg,Ω£)» 1 .

The theorem above implies that the action Sx,m of a minimizer (Φ,A) for the

system (x,m) is bounded from above by the actions Sx^mk of minimizers (Φk,Ak)

for the subsystems (xk,mk), i e ->

X^(Φ,A) ^ Σ Sχk^(Φk,Ak) + Cd\e-Cd^- , (3.25)

where dx := inf^φ/ |ω^ — ω/| and C,c are some positive constants.

Indeed, Theorem 3.3 implies that 1 - |Φ*(x)|2 ^ Mke-{\-ΦιL\χ-ojk\^ o n

Thus, for Rk sufficiently large, we can choose a gauge such that Φk(x) > 0
3

y g

on ΩRk, where ΩRk \— IR3\{x *

implies exponential decay for \A

x-ωk\ ^ Rk} cΈL3\Ωk. In this gauge (3.24)

. Hence, for R > Rk, we modify (Φk,Ah) on ΩRk

by

\-Φk

R:=(\-Φk)χR and Ak

R := AkχR ,

where χR is a smooth cut-off function, with χR{x) = 1, if \x - ω^| ^ R and χR = 0,
if |JC — COAI 2ϊ R+ 1. This defines an admissible comparison configuration (Φk

R,Ak

R)
"localized" in BR+X(ωk). By (3.23) and (3.24) it follows that

0 S Sέ^(Φk

R,Ak

R)-Sέ^{Φk,Ak) 2 2 ( X ) m

for R > R/(, where m — min(/2? 1)
Take R = \{dχ_ - 2) ^ max{^ ' I ^ k ^ K} If Ak

0 denote the reference con-
nections for the subsystems (xk,mk), then AQ := Σ Λ = I ^o ^s' m addition to AQ, a
reference connection on the bundle PXyrR w.r.t. the system (x, m). Define

k=\ k=\
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Then Φ is a section of Ehϋl and Ao + A a connection on PhUL. Let 4̂ := ̂ 0 + ^ — A$.

Since the configurations (Φk

R,Ak

R) are localized in 2?Λ+i(ω#) one easily derives that

k=\

where R = ^(d* - 2), which implies (3.25).
Note that the accuracy of the upper bound in (3.25) depends essentially on the

choice of the subsystems. A lower bound for SXitn(Φ,A) of the type of (3.25) will
only exist for an appropriate choice of the subsystems. This is discussed at the end
of Sect. 4.

4. Bounds on the Action of the Minimizers

In this section we focus on the special situation Mx, where

x = {x\,X2} and m = {~m,m}, for m a positive integer ,

i.e. an anti-monopole-monopole pair located at positions xi and xι, respectively.
We establish accurate upper and lower bounds for the action S of the minimizer
(Φ>4) As a consequence, the action essentially grows linearly with the distance
x\ — X21 and the monopole charge m. Thus, in addition to the exponential decay,

this confirms the heuristic picture, that the action is concentrated in m vortex tubes
joining both monopoles. That means, in any plane orthogonal to the symmetry-
axis, the minimizer describes a vortex configuration consisting of m vortices. Since
vortices exhibit different types of behaviour for λ < 1 and λ > 1, respectively, the
following arrangements of the vortex tubes will occur: For λ < 1, all vortex tubes
are concentrated on the symmetry-axis, whereas, for λ > 1, they repel each other,
forming a spindle. For λ — 1, there is no interaction between the vortex tubes. Thus
they are concentrated on the symmetry-axis.

For λ 5Ξ 1 we have the following upper bound:

Theorem 4.1. Let 0 < λ ^ 1. Consider two monopoles of integer magnetic charge
-m and m located at positions x\,X2, respectively, with \x\ — xι\ =: /. Let (Φ,A)
denote the minimizer of the functional S(Φ,A) on #", with V as in Eq. (3.1). Then,
given /o > 0, there exists some constant s$ such that S(Φ,A) is bounded above by

S(ΦA) ύ so + lem,λ, for I ^ l0 , (4.1)

where em,χ is the energy of a rotatίonally symmetric, critical point with vorticity
m of the energy functional E defined in Eq. (1.3).

For repelling vortex tubes we have a slightly weaker result.

Theorem 4.2. Let λ > 1. Consider two monopoles of integer magnetic charge —m
and m located at positions x\,X2, respectively, with \x\ — X2I = ' /. Let (Φ,A) denote
the minimizer of the functional S{Φ,A) on £F, with V as in Eq. (3.1), and let δ
be an arbitrarily small positive constant. Then there exists a constant SQ such that

S(Φ,A) is bounded above by

S(Φ,A) ύso + O(l2δ) + mleλ, as I -> 00 . (4.2)
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where eA is the energy of a rotatίonally symmetric, critical point with vorticity 1
of the energy functional E

Proof (Theorem 4 1) Let us consider the situation in Fig. 2. Since any (Φ,A) G ^
yields an upper bound on S(Φ,A) we construct some Φ and A := A$ + A according
to the heuristic picture sketched at the beginning of this section. That is, on the slab
V we choose Φ and A such that (Φ,A) is, in any {x3=const.}-plane, a rotationally
symmetric ciritical point centered on the x3-axis. In the ball BR{XΪ), we set Φ Ξ O

and A to be approximately equal to the connection describing a magnetic monopole
located in xι with charge mt. Finally, on the domains Fz, appropriate interpolations
are constructed.

We now present the details of our construction.

(i) Given m and λ, there exists a smooth critical point, (φ,a), of E with em?; :=
E(φ,a) < oc (φ,a) is rotationally symmetric in the sense of (1 6). On the slab V
we set

Φ(x\x2

9x
3) := φ(x\x2),

iCx1,*2,*3) .= a(x\x2), (4.3)

where we identify the 1-form a with the vector a = (a\,a2,0). Hence we obtain that
(Φj) G C°°(Ύ,C x IR3), and, furthermore that

S(Φj;V).= l-
z

F\2 + | V ^ | 2 + '-{\Φ\2 - I ) 2 ] dx = ( l - 4R)em,λ , ( 4 . 4 )

with F '— curl̂ f.
(ii) In the neighbourhood of xn i — 1,2, we introduce

(ι) mi (x1 - x] )dx2 - (x2 - x2 )dxλ

A[>\x):=—L-K—-^—-4n ιJ—> with Ft := curlAt , (4.5)
2 x — xλ x -x,\

defined on (9 3 , and

-nti (xι - yj )dx2 - (x2 - y2)dxι

O \γ ΛJ (V*3 -it-J ^ / 1 \ϊ -v it.

where η/ was defined in (1.10) and yz is the mirror image of xz, see Fig. 2
The connection associated with the mirror-monopole, Wl9 plays a crucial role for

the estimates in the domain Vt. On ^(xz)\{xz}, we set

Φu\x) •= 0 ,
(4 7)
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δ(l)

Fig. 2. (Configuration of the anti-monopole-monopole pair). Given / ^ /Q > 0, let JCJ : = (0,0, | ) ,

mγ := —m and X2 : = (0,0, — ̂ ) , πi2 : = m, respectively. Denote by {^^}? = 1 the open cover, as

indicated, and let R > 0 be such that /Q — 4R > 0 Then V is the open slab bounded by the planes

Πx := {χ3 = I - 2R}, and IΊ2 : = {x3 = - | + 2Λ}, and, Fz is the closed domain bounded by the

two-sphere δBR(xi) and the plane 77/. Finally, y\ : = (0,0, | - 4ft) and >>2 : = (0,0, - 1 + AR) are

mirror images of jq and x 2

 a t the planes 77!, 772, respectively

for j = i,i + 1. Hence (φU\AU)) e C°°(BR(xi) Π (P ( i ); C x R 3 ) , and the transition
conditions are satisfied. Recall that Fz = 2nrriiVE{x — x/) and Gz — — 2πmiVE(x—
yt\ see (1.9). Thus, using (4.7), integrating over BR{xi)\Bε{xi) and passing to the
limit ε —> 0 yields that
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S(Φ,A,BR(x,)):=- J (\F\2-\Fί\
2)+\VAΦ\2-±--(\Φ\2-l)2\dx

1

TP "5 \

ψtfdx

1
(4.8)

where C\ = C](m, /,/?) is a positive constant depending only on m, λ and R
(iii) In the following we construct an appropriate interpolation in V\ Let

x\ be the origin of our coordinate system Denote by χ a smooth function in
C0°°((-27?,27?),IR+) with χ(0) = R,χ(t) = χ(-t) and χ(t) k VR2 - t2, for \t\ ^ R

Extend the definition of χ by setting

iϊ t ^2R

t + 3R, if t ^ 4R ,
(4.9)

and by a smooth inteφolation between 0 and —R in [2R,4R]. Since the critical point
(φ,a) from (i) satisfies (1 6) we define, for j — 1,2,

Λ(/)/ x I ^ ( r ~ / ( χ 3 ) ) ' i n 1̂ Π (

Φu)(χ) '= <>

{ φ(r-χ(x3))eimΘ, in V\ Π ι

(4 10)

where (r, (9,x3) are cylindrical coordinates, and φ(/) is required to vanish for t < 0
Similarly one defines Φ ( / ) on F2 Π ί ( / ), for j = 2,3 Hence Φ ( / ) G C(F/ Π (Γ(/), <C);
moreover, VΦ ( / ) G I2

0 C(F/Π ί ( / ); (C3), |Φ| G H^W, 1R+), and the transition con-
ditions (1 13) are satisfied Using (4.10), (4.9) and decay property (Dl) we obtain
the bound

^ C2(m,λ9R). (4 11)

Next, we construct A in Kj Let

W(x) •= ξ(x3)[a(x\x2)-A{2\x\x2,-2R)- W{(x\x2,-2R)] , (4.12)

with G := curl W, and ξ is a function in C°°(IR;IR+), with ζ(t) = 1 if ί ^ - 2
and ξ(ί) = 0 if t ^ -R Then we define, for j = 1,2,

j , in Fi Π C W J , (4 13)

and similarly in V2 ΓΊ Cr(;'\ for y = 2,3. Hence, i ( / ) G C°°(FZ Π (T(/),IR3). We con-
clude this step by proving some important estimates By (4 13) we obtain that

J\F\2dx ^ F]\
2dx+ J \Gx\

2dx + J\G\2dx
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where we have used the explicit expressions in (4.5) and (4.6). Inserting (4.12) in
the last term on the r.h.s., we get

-R

J \G\2dx U[
Vλ -2R \χi=-2R

-R

-2R

Π / la-AV-WtfJx
χi=-2R

J \a-A{2) -Wx\
2d2x,

where we have abbreviated / := curlα and ξ denotes the derivative of ξ. Here and
in the following Q denotes a positive constant depending only on m, λ and R. We
claim that

/ \a- A{2) - Wx \
2d2x ^ c4 , (4.14)

and hence the above estimates imply

J\F\2dx ^ C3(m,λ,R). (4.15)
Vι

Proof of the claim. Expressing (4.5) and (4.6) in cylindrical coordinates yields

U) J f (cosθi -cosθ2)dΘ, if 7 = 1

where 0i and θ2 are given by cos#i := Λ—τ and cos θ2 := . 4R+t ==, respec-

tively, with ί = x3 ^ I — 2/?. Equation (1.6) and (Dl) imply φ(r) ^ ^, for r ^ ΓQ,

where r0 depends only on m and λ. Thus, on one hand we find

J \a-Aψ-Wx\
2d2x^c,,

\since a — A\ — W\ is smooth for t = — 2R. On the other hand, using (1.6) and
(4.16), with t = -2R, leads to

a-A{2) -Wx\
2d2x = J

m 4R
d2x

S 8 / \Vaφ\2d2x + c6 ί \6emΛ
r>r0

This proves our claim. Next we show that

- / \VAΦ\2dx ί C4(m, λ,R). (4.17)
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Expressions (4.10) and (4.13) yield

\j\VAΦ\2dx S f(\VAι+WιΦ\2 + \W\2)dx

S J \VAχ+WχΦ\2dx + f \VAι+WιΦ\2dx + cl9 (4.18)
\x3\^2R 2R<x3

where we have used (4 12) and (4.14). By (4.10) and (4 16), the first term on the
r.hs. of (4 18) reads

2R oo

2π / dtj
-2R /

sm
2 ' rdr

2

dtf[\Vaφ\2(l+χ2)](r + χ)dr + 2π J dtj ^ φ ( r - χ ) 2

 2™ 2 "fr ,
2R oc 2R oc

, ,2

-2R 0 -2R χ

where χ = χ(t) and χ = χ(t) as defined in (4.9). Due to (D3) and (4.9), the first
term in the expression above is bounded by a constant depending only on m, λ and
R. The same holds for the second term. Indeed, since lim,_>ofl(Ό — 0, there exists
rα (depending only on m and λ) such that

m f2|Vfl0|(x), if r S r,

Thus we conclude that

/ \VA]+W]Φ\2dxύc2 (4.19)

Similarly, the second term on the r.h.s. of (4.18) can be bounded by

oo oo
/ |V,1+W,,Φ|2Λ = 2πfdtf [(ψ')2(r - χ)(l + f)]rdr

2R<x3 2R 0

Γ i ί l ) /1 \ . 2 Γ i Γ l ) ι2 /

2i?<τ3 2/?<τ3

(4.20)

where we have used (D3) and (4.9). Finally, we claim that

/ \A\l) + Wι\2dx ^ c4 , (4.21)

which, together with (4.18)-(4.20), yields the desired inequality (4 17)

Proof of the claim From (4 16) it follows that \A^ + W\\2 g JT sm2(0]^°2). In
order to bound the r.h.s, we choose a positive constant ΓQ and find that, for r ^ ΓQ
and ί ^ 2Λ,

m2

 2 fθ\ -ΘΛ m2 4R2

—r sm
r 2
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For r ^ ro and t ^ 2R, however, we find that

Using these bounds in the integration of \A\ -f W\\2 over {x : 2R < x3} our
claim follows. All estimates derived in V\ can equally be derived in V2. Thus
from (4.11), (4.15) and (4.17) it follows that

S(Φj; Vt) :=l-f \\F\2 + \VAΦ\2 + ^( |Φ| 2 - I)2] dx g C5(m,λ,R). (4.22)

(iv) On the open cover {ffljty, Φ ^ and A^ are locally given by the expressions

in (4.3), (4.7), (4.10) and (4.13). Thus, Φ is a section of Ehm and A is a connection

on P^rn With respect to the open cover {Θ(J)} in Fig. 1, let A := i ^ - Λ^λ where

A^ is the reference connection defined in (1.12). Then

From (4.4), (4.8) and (4.22) it follows that

\ f \\cuv\A +F0\
2 - Σ \Ft\

2 + |V^0^Φ|2 + ^( |Φ| 2 - l ) 2 ] ^ ^so + lem,λ , (4.23)
ZMX_ L ί=l 4 J

where 5Ό is a positive constant depending only on m, λ and R. Since ^ ( 7 ) =

^ ( / } +A{

2

j\ by (1.10) and (4.5), we have that

|curU +7^o|2 - Σ \H2 = |curU| 2 + 2cuήA . F o 4- | F 0 | 2 - \F*\2 + 2Fi F2 .

(4.24)

Let M^R := BR(0)\ \J"=ι Bδ(Xi), for δ > 0 small and Λ > 0 large. Integrating (4.24)

over M^R and passing to the limits δ —> 0 and R —> oo yields

= J[ |curlΛ| 2+2curlΛ

. (4.25)

Equations (4.25) and (4.23) imply that S(Φ,A) ^ so + /̂ w,A Finally, by Lemma 1.1,

(ii), cuήA - Fo e L^M^ IR), and therefore (Φ,A) e # , as desired. D

The proof of Theorem 4.2 is similar, but more delicate. We again construct
some Φ and A =A0-\-A according to the heuristic picture sketched at the beginning
of this section. We need an appropriate multi-vortex configuration in the domain V
for the repulsive case. The following tool proves to be useful.
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Lemma 4.1. Let (φ9a) be a smooth critical point of the energy functional E de-

fined in (13) with φ = φ(r)elΘ, a = (x(r)dΘ, and with energy eA •= E(φ,a) < oo

Let ΓQ be such that \φ\(x) ^ \, for \x\ ^ ΓQ, and let L ^ ΓQ + 1 Then there ex-

ist some constants M\ μ and c and a smooth, rotationally symmetric l-vortex

configuration (φ,a) with the properties'

(i) φ = (p(r)exp(iΘ), with

U(r) ifr^L-l
φ(r) = <

such that φ(r) ^ φ{r) <L 1 and \φ'{r)\ ^ M1 e~μ\ for all r ^ 0
(ii) a = (x(r)dΘ, with

(a(r) ifr^L-l
() ^

such that |1 - α(r)| ^ Wre'^ and |α'(r)l ^ M're~μ\for all r t r0

(iii) |^(0,α)-β;. | ^ cLe~2μL

Proof Let ξ be a function in C°°(IR;R+) with c(/)=l , if ί ^ 0 and c(O = 0,
if t ^ 1 Define 1 - φ(r) = ξ(r - L + 1)(1 - φ(r)) and 1 - α(r) = c(r - L + 1)

(1 - α(r)) Then 0 .= φ{r)eιΘ and α .= oc(r)dΘ defines a smooth l-vortex config-
uration Using decay properties (D1)-(D3) the properties stated in the lemma are
easily established. D

Proof (Theorem 4 2) Let δ > 0 be arbitrarily small, and consider the situation
in Fig 2. On the slab V we choose Φ and A such that (Φ,A) is an w-vortex
configuration with its zeros located along the x2-axis at distance 2(lδ + 1), in every
{x3 — const [-plane On the ball BR(x,) we choose Φ and A as in the previous proof,
and on the domain F,, we again construct appropriate interpolations,
(i) Given / > 1, there exists a smooth critical point (φ,a) of E with vorticity 1

and eχ .= E(φ,g:) < oo. Let r0 be as in Lemma 4 1 and assume that /0 ^ r\;d We

denote by zi, .. ,zm m points on the x2-axis at distance 2L, where L '= Is + 1 More

precisely, z\, ,zm are given by

(0, -(/w - 1 )2L), , (0, [m - 1 )2L), if m is odd and

(0, -{m-\) 21), , (0, (m - | ) 2Z), if m is even (4.26)

Let (φ,a) be the l-vortex configuration of Lemma 4 1 We introduce

φ(x) .= ft Φkix) and α(x) •= £ ak{x) , (4 27)
k^\ k=\

where (φk,ak) is given by ^ ( x ) . = ^(x - zk) and β^(x) : = α(x - zk). Then ( 0 , 5 )

is a smooth m-vortex configuration with zeros z i , . . . , z m Moreover, by Lemma 4 1,

\E(φ, a) -me,\= m\E(φ, a) - e} \ ^ mcLe~2μL . (4 28)
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Thus, on the slab V we set

Φ(x\x\x3):=φ(x\x2),

A(x\x2,x3) := a(x\x2) , (4.29)

where we identify the 1-form a with the vector a — (ά\,a2,0). Hence we obtain that
(Φ,i) e C°°(V'X x R 3 ) , and (4.28) yields, as in (4.4),

S(ΦJ; V) S Cx + C2Le~2μL + C3lLe~2μL + lmeλ . (4.30)

Here and in the sequel, Q or ct denote positive constants depending only on ra, λ
and R.
(ii) On BR(xi)\{xi}9 ί = 1,2, we set, as in (4.7),

φ(j\x) := 0 ,

: = ^ y ) ( j t ) + «^ (JC) , (4.31)

for j = /, / + 1. This yields the estimate in (4.8), namely

S(Φj;BR(Xi))SC4. (4.32)

(iii) Let x\ be the origin of our coordinate system. To get an appropriate interpolation
between (4.29) and (4.31) in V\, we have to tie together all "vortices" of (φ,d) on
the x3-axis. For this purpose we introduce smooth functions

ξk(t) := z2ξ(t), f o r £ = l , . . . , m , (4.33)

where z* = (zι

k,zj;) is given by (4.26) and ξ is a function in C°°(]R;]R+) with

ξ(t) = 1, if t ^ -2R and £(ί) = 0, if t ^ -ψ. Further, on F,, let

+ W,Ux\x2-ξk{x'),x') \

+ f F l ) 2 ( χ l ' ; c 2 " < ^ * V 3 ) . (4-34)

A\J) + Wx)2{x\x2 - ξk(x3),x3) I

for k = 1,..., m and j = 1,2, and let

H{x) := ξ(x3) ίαίx'.x2) - f i / f )(x1,x2,-2i?)l . (4.35)
L i=l J

Then we define, for 7 = 1,2,

ω O ) J (4.3 6)

*=« I Σ ? ί2 ) #2)I Σ£=i # * ( * ) + # ( * ) inKiΠ

and similarly in V2 Π 0< /), for 7 = 2,3. Hence A^ e C°°{Vi Π ΘU); R 3 ) . Let VR :=
{ x e R 3 : -2Λ ^ x3 ^ - f } and let R := f . From (4.36) we obtain that

+ cx Σ I \cuv\Hk\
2dx + 2 / |curl//|2ί/x , (4.37)

vx

 1V k=\vR vR

where we have used the explicit expressions in (4.5) and (4.6). The second term
on the r.h.s. in (4.37) can be estimated further by (4.34), (4.33) and (4.26). This
leads to

/ |curl/4|2Λ ^ / \{ξ\ + \)\{Fχ + Gχ)(x\x2 - ξk,x*)\2dx ^ c2L
2 ,

VR VR

 m
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where ξk = ζk(x3), with derivative ξk = ζk(x3). For the third term on the r.h.s.
in (4.37) one finds, using (4 35), (4.34), (4 33) and (4.27), that

k=WR

fa(x\x2) - -(F, + Gx){x\x2-zl-2R)
m

< c5 I

1

m

m

Wλ){x\xλ -zl -2R) dx

1

m
dλx

where we identify the 1-forms a^ and a with vectors in R 3 with fa .= curlα^ and
/ •= curlβ On one hand, using the explicit expressions in (4 5), (4.6) and applying
Lemma 4 1, we find that

1

m
d2x S

On the other hand, one proves with the help of Lemma 4.1 that

2

I
1

m
d2x ^ c8 (4.38)

The proof is analogous to the one of (4.14). Thus, the estimates from (4 37)
to (4 38) imply

/ \F\2dx ^ C5 + C6L
2 + CΊLe~2μL . (4.39)

In order to define Φ on V\ we introduce smooth functions ψk,k = I,. .,m,

(4.40)

where ξk is given by (4.33) and φ by Lemma 4.1 in step (i). Furthermore, we
reintroduce the smooth function χ defined in (4.9), replacing 2R by R = ψ. We
extend the definition of χ by setting

(4.41)
ift^R

-t + 2R, if t ^ 3E

and by a smooth interpolation between 0 and ~R on [R,3R] Then, for j = 1,2, we
set

{ ψ{r ~χ{x3))m in Vλ (ΛΘ{1)

φ(r - χ(x3))meιmΘ in Vx Π C{2\ with x3 > -R (4.42)
ΠΓ=i ^ ( x ) i n Ki n 6 ? ( 2 ) ' w i t h χ 3 = - ^ '
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where φ(t) is required to vanish for t < 0. Similarly one defines Φ ^ on V2 Π Θ^\
for j = 2,3. Hence Φ< » G C(F, Π 0< />; C); moreover V Φ 0 ) G L 2

0 C(^ Π 0< >>; C 3), \Φ\
G //1|)'C

2(F/;IR+), and the transition conditions (1.13) are satisfied. We claim that

(4.43)

Proof of the claim. Lemma 4.1 implies 1 — φ2m ^ m(l — φ 2 ), for all r ^ 0, and
therefore

where we have inserted (4.41) and used (Dl). Next, we choose ro^^o so large
that, by Lemma 4.1 and (Dl), φ2(r) ^ φ2(r) ^ 1 -Me~μr > 0, for r ^ r0.

Let rjt := Λ/(X1)2 + (X2 - ξk(x3))2. With ^ defined in (4.40), we then obtain that

m \2 fl,

- π i Λ w ι 2 ^ _2
Using these bounds, it follows that

if rk < r0, for some k G

otherwise.

Π

This proves our claim. Next we show that

1

- 1 ) dx ^ c3 .

- / \VAΦ\2dx ^ C9 + Cl0L
2 . (4.44)

'Vι

Recalling (4.36), the l.h.s. of (4.44) can be bounded from above by

2

VΦ(2) — / V W^Φ(2) Jχ-h f

4- / | V Φ ( 1 ) - / ( 4 1 ) + ^ i ) Φ ( 1 ) | 2 ^ + / | ^ | 2 ^ = : ^ + J

(a) By (4.35), (4.34), (4.33), (4.27) and (4.38) it follows that

{)Φu)\2dx

. (4.45)

VR k=\ k=\ m
dx ^ c\ .

(b) From (4.42) and (4.41) it follows that

00 00

h ^ 2π J dx3 j [2rn2{φf)2(r - χ)] rdr + / \A[1) + Wx \
2dx ^ c2 ,
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where we have used Lemma 4.1 and the same argumentation as for (4 21).
(c) Using (4.16), (4.42) and (4.41), it follows that

R oo

h ύ c3 f dtf(φ')2(r-χ)rdr
-R I

R 0 0 m2

+2π / dt f —φ2(r-χ) sin2

-R X V

rdr ^ C4 ,

where we have used Lemma 4.1 and the same argumentation as above (4 19).
(d) By (4 42), (4.40) and (4.34) it follows that

h ύ c5ΣJ\Vψk-iH{2)φk\
2dx

k=\vR

m -R

•> Σ / dJ f V(/)(x',x2)- -(^ ( , 2 ) +» r i )0(x 1 ,x 2 )

and, using (4 33), (4 26), (4 16) and Lemma 4.1, one shows, as above (4 19), that

-7? o c

* / * /
-2/? 0

— φ 2 sin2 -θ2 rdr rg cηL2 .

Thus, combining (a)-(d) with (4 45), we obtain (4.44). Finally, combining (4 39),
(4.43) and (4.44), one finds, as in (4.22), that

S(Φ,A; Vi) ^ Cu + CX2L
2 + CuLe -2μL (4.46)

(iv) On the open cover {^(/)}, Φ ( / ) and f̂(/) are locally given by the expressions
in (4.29), (4.31), (4 36) and (4 42) Following (iv) in the proof of Theorem 4.1,
let A =i<'> -A{

0

J\ then (4.30), (4.32), (4.46) imply that S(Φ9A) ^ s0 + O(l2δ) +
mle;, for /0 ^ / —» oo, where L = lδ + 1, and so is a positive constant depending
only on m, λ and R Hence (Φ,A) G ̂ , as desired. D

Theorem 4.3. Let λ > 0 Consider two monopoles of integer magnetic charge —m
and m located at positions x\,X2, respectively, with \x\ — x2\ =: I Let (Φ9A) denote
the minimizer of the functional S(Φ,A) on #", with V as in Eq (3.1) Then, given
/o > 0, there exists some constant s'o such that S(Φ,A) is bounded below by

S(Φ,A) ^ sf

0 + / < „ for / ^ (4.47)

where e'm } is the infimum over all m-υortex configurations of the energy functional
E defined in Eq (13)

Proof We consider the situation in Fig. 2. Then in any cross-section of F, Φ and
A — AQ + A describe a m-vortex configuration The energy of this configuration is
bounded from below by e'm }.
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M o r e p r e c i s e l y , for t fixed, w i t h — | + 2 7 ? ^ ί ^ | — 2R, w e def ine

φt(x\x2) :=Φ(χ\x2,t)

at(x\x2) :=(Ax(x\x\t)Mx\x\t)). (4.48)

By Theorem 3.1, we have that (φt9at) e C°°(R 2 ;C x R 2 ) . Theorem 3.3 im-
plies (1.4) and ensures that (φt,at) is a vortex configuration in the homotopy class
given by the vorticity of at. Since ^ JΣ curl^o ndσ = —m, where Σ is any hemi-
sphere enclosing x\9 but not X2, it follows from the exponential decay of curl A
(Theorem 3.3) that ^ J R 2 curlα^x = m. Thus, (φt,at) is a m-vortex configuration.
Moreover, we have that

E{φt,at) ^ mf{E(φ,a) : (φ,a) a m-vortex configuration} =: e'mλ . (4.49)

Next, inserting (4.25) in (1.14), we obtain that

S(Φ,A) gt

+ f[\cuήA+Fo\2]dx\v> J

^ (l-4R)ef

mA-^f+l-J2 J [IcurU+Fol 2 -^! 2 ]^, (4.50)

where we have used (4.49) and (4.5). Since we may assume that BR(xi) c Ω, (1.10)
and (4.5) imply that A[j) = A[J) +A(

2

j) in BR(xi) Π Θu\ for y = /,/ + 1. Thus we
find

/ [ I curl 4 + Fo| 2 - |F, |2] dx ^ 2 / [curl 4 + F 3 _, ] Fz Jx = 0 ,
BRW\{X,} BR(XI)\{X,}

where the last step follows, by an integration by parts, from curlFz Ξ O in BR(xi)\{xi},
and the fact that Fj is parallel to the normal on dBR{xt) and dB$(xi), for δ —> 0,
respectively. Inserting the above inequality into (4.50) completes the proof of the
theorem. D

Remark. In the BogomoΓnyi limit λ = 1 the infimum e'm λ equals em^ = mπ. Thus,

to leading order in the distance /, the upper and lower bound on the action S(Φ,A)
coincide. For λ < 1 or λ > 1, it has not been rigorously established, yet, that e'm λ =
em,λ or e'mλ = meλ, respectively. See [7].

The results we have proven so far provide a fairly detailed picture of the prop-
erties of a minimizer. Let us consider the following two situations in Fig. 3 where
d ^> / ̂ > 1 and (x/,mz) denotes a monopole of magnetic charge rrij located at the
position xim
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x2, -m Xj,m
b)

x2, -m

x3, m

X], m

x4) m

x4, -m

Fig. 3.

In situation a) (Fig. 3) the minimizer is expected to be unique. Its vortex tubes
should join the anti-monopole-monopole pairs separated by the distance / and carry
vorticity m. The reasoning is as follows A minimizer in situation a) describes
vortices joining the four monopoles. There can be a cluster of vortices joining x\
to X2 with total vorticity given by m — k, k = 0,1, ..,m9 and a cluster of vortices
joining JCI to x4 with total vorticity given by k. There must then be a cluster of
vortices joining X3 to X2 of total vorticity k and one joining X3 to X4 of total vorticity
m - k. For d > / > 1, the total action of the putative minimizer described here is
expected to be given by

S = S(l) + S^ + const ,

where £ ^ ^ const(m — k)l, and S^ ) ^ constkd (see inequality (3 25) and Theo-
rems 4.1 and 4.2) Thus if d ^> /, then the total action is minimized by setting k = 0.
Since d ^> 1, the minimizer is then obtained by gluing together two minimizers for
the subsystems ({x\,x2},{m,-m}) and ({x3,x4}, {m,-m}), respectively.

In situation b) (Fig 3) and for m an odd integer, we expect that there are at
least two distinct minimizers (of equal total action) corresponding to two distinct
configurations of vortices joining the four monopoles, whereas if m is an even
integer and equally oriented vortices joining one pair of monopoles repel each other
the minimizer is expected to be unique.

Although we have not attempted to establish this picture rigorously, we expect
that situation a) and the first part of situation b) could be proven

The arguments above can be extended to more general situations. If all mono-
poles have magnetic charges ± 1 the problem of minimizing the action functional
appears to reduce to a problem of connecting monopoles of opposite charges with
a family of curves of minimal total length
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A. Appendix

We first prove Lemma 1.1 of the introduction. Then we derive uniform estimates
on the monopole harmonics, required for the regularity results near the monopoles.

Proof of Lemma 1.1. (i) Let us write F := curl A. Then άi\F = 0 in &\ the space
of distributions.

According to [4, Theorem A.I], there exists a unique vector field A with A G

L 6 (R 3 ; R 3 ) , cur l i = F, d i v i = 0 in & and 3/i,- Z2-functions satisfying (1.16). We

claim that A = A + Vψ, for an appropriate φ G //£C

2(R3; R) .
Let (x:=A-A. Then α G Z 2

O C (R 3 ;R 3 ) and cur lα^O, a.e. on R 3 . Let ye(jt)
be an approximate identity, i.e., let jε(x) := ε~3j(x/ε), where 7 G C£°(R3; R + ) and
f j(x)dx = 1. Let αε :=y ε * α, the convolution of yε with α. It is easy to see that
αε G C°°(R 3 ;R 3 ) , curlαε = 0 and αε -> α in £2(£/), as ε -> 0, for any U € R3.
By {O^l^eN we denote a sequence of closed balls exhausting R3. Let K be a set
with Lebesgue measure \K\ > 0 and with K c Ωk, for all & e N. Since curlαε = 0,
there exists φε G C°°(R3; R ) with Vφε = αε and Jκ φεdx = 0, for any ε > 0. By
Poincare's inequality,

ll̂ β - ^β ' | | ^ i .2 ( 0 0 S C\\Vφε - Vφε>\\2

L2{Ωk) = C | |α ε - t*er\\2

L2iΩk)

Thus, φε -> φ in Hh2(Ωkχ as ε -> 0, for any A: G N. Hence, ιA ^ H^(R3; R ) and

ViA = α, a.e. on R 3 . Since A G //,^ 2 (R 3 ;R 3 ) , we conclude that α G i/,

and hence ^ G # 2 ' C

2 ( R 3 ; R ) as claimed.
(ii) According to (1.12) and (1.9) we may decompose Fo as follows:

OO with FOi G Co°°(Ωo;IR3), Fφ) = 2πm, V^(x — jcf) on Ω . (A.I)
i=\

Let 0̂ := 5 min{|jc/ - xj\ : 1 ^ i <j ^ w} and ^ 0 := inf {R : Ωo c 5Λ_δo(O)}. Then,

for δ < δ0 and R > Ro, let M*>R := BR(0)\[fi=ι Bd{xt\ BγR := BR(0)\Bδ(Xi) and

bf := U" φ l Bδ(Xj). Since A G ̂ C

2 ( R 3 ; R 3 ) we infer that AΛFOi G Hh2(B*'R) and

that A, with F := curl A, satisfies the identity

F FOi = i curlF0/ + div(i Λ FO l ) , (A.2)

a.e. on B*'R. Thus, using (A.I) and (A.2) we find that

/ F Fodx = Σ ( I F FOidx - fF FOidx)
Mδ,R i=\ \Bδ,R bδ J

— J A ouήF^dx — Σ ( / (A A FOi) ntdσ + f F FOidx j ,
Ω0\Ω i=l KdBsM bf '

(A.3)

where «/ = ^ ^ and Jσ is the scalar surface element on dBs(xi). Note that, the

boundary term in (A.3) is well-defined, due to the imbedding Hι>2(U)c-^ L2(dU)
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for any bounded domain U of class C1, [12, Theorem A.8]. But it vanishes since
(A ΛFoi) Hi = 0, on dBs(xt). Thus, using F and F 0 / G L2(tf), we infer from (A.3)
that

lim J F Fodx = J A cmlFodx . D
M > o o o

Theorem A.I. Given a monopole of integer charge 2q, g + O, with monopole har-

monics Y°£(0,φ) : = Θ(l,m(θ)ei(m±q)φ (I = \q\,M + 1, . and m =-1,-1 + l,...,l)

the following addition formula holds:

i 2 7 + 1
Σ \Yqim(θ,φ)\2 = , for all θ and φ . (A.4)

m=-ι 4 π

Proof We first prove that the l.h.s. in (A.4) is constant in θ and φ.

For 7 = 0,^,1,.. , let Dι denote the representation space of a representation
of SU(2) of spin 7. (When 7 is an integer, the usual spherical harmonics Yq=oιm

form an orthonormal basis of D/.) Given a rotation of three dimensional Euclidean
space mapping the unit vector with spherical coordinates (θf,φf) in the one with
coordinates (θ,φ), let {tmm,} denote the matrix elements of a unitary matrix repre-
senting that rotation. For the monopole harmonics (gφO) one then has the formula
(see [13]).

/
YφΊ(θ, φ) x phase factor = ^ YφΛ®'^'^m'm

Hence, for a (fixed) (θ\φf) e tta and (θ,φ) G (9a>b

9(θ9φ)*(π9 ), we obtain that

\Yφ,(0,φ)\2 = Σ Ya

qM(&,φ')Y«)mll{θ>,φ') Σ ' M m
' m' ,m" = — l m— — l

I

Therefore the 1 h.s. in (A 4) is constant for all (θ,φ) G Θa'b. Exploiting this fact,
we conclude that

77—/ 4 π 0 0 m==_ι

where we have used that {Yqιm,Yqι>m>)s2 — διi'δmm', see (3.6). D
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