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Abstract: Let G, be the free lattice field measure of mass mg on aZ¢, and : qﬁ,‘: : be
the corresponding fourth Wick power of the lattice field ¢,. Let g € Co(R?Y), g = 0,
be a given function and o’ = a'(a) = a satisfy: lim,_o+ @’ =0 and a’Z% C aZ?.
We prove that if d > 3, or d = 2 and lim,_,o+ @’|loga|? = oo, then {a’ veazd Ox
: ¢ :} satisfies the central limit theorem: there is ¥(a, @’) with lim,_o+ V(a, a’) =
oo such that the distribution of V(a,a’)™'a"? " (.74 gx : ¢} : under G, is conver-
gent to the standard normal distribution, as a — 07,

1. Introduction

Let G, be the free lattice field measure of mass my > 0 and lattice spacing a > 0
on aZ¢ = {ax:x € Z%}, and let ( - )5, denote the expectation with respect to G,.

Let
C(a)(x - y) = (d’xd)y)G,,-
G, is thus the (lattice) Gaussian measure with covariance C@). It is easy to show
that (see [Si, BFS])
-1
d .
CO%—y)=n)™ [ |mi+2a2> (1 —cosak;)| &% " dk,
j=1

-2V
with k = (ky,...,kq). Let : ¢? : be the fourth Wick order of ¢, i.e.
Loy = ¢y — 663836, + 3805, -
Let g(= 0) € Co(RY) be a given function and o’ = a/(a) satisfy: a’Z? C aZ¢ and
lim,_¢+ @’ = 0. From this we can see that @’ = a. For simplicity we also assume
that lim, .o+ ;; exists. The main aim of this paper is to discuss conditions on a
and o’ such that the central limit theorem holds for the system {&(a, a’)}, where

Had)=a' Y g.: ot .

x€a'z4
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The central limit theorem for other systems of statistical mechanics has been
discussed by many authors (see e.g. [Ne] and references therein). A very general
central limit theorem for FKG systems was obtained in [Ne]. However, our system
{&(a, ')}, with underlying probability measure G,, does not seem to be a FKG
system.

1/2

Let 2
Vig,d)={|d? 3 g.:*: :
x€a’'Z4 G,

For d =3 and a = a’ we have lim,_,¢+ V(a, d’) = co. From [P, Theorem 1.1] and
[Fe, Theorem 1] we can see that

. A 22
allg)l+ <exp (— . a)i(a, a)+ 7>> a =1, Vie[0,00). (1.1)

Using this we can easily show that the system {&(a, a)} for d =3 satisfies the
central limit theorem, i.e.

: ¢(a, a) “i2 -2
<x|=
ah_%lJr G, (V(a, ) = x (2n) _j;o e 7dy, Vx€R. (1.2)

For convenience, we will denote the property (1.2) by the following:

{(a, a) 2,

+
V(aa) N(0,1), a—0".

However, the proof of (1.1) given in [P] or [Fe] (based on an idea from [GJ]) is
very complicated. In this paper we will use a different approach to prove a general
result which contains (1.2) as a particular case.

Our main results are as follows (we always assume lim,_,o+ @’ = 0).

Theorem 1.1. Suppose that g(= 0) € Co(R?) and [y, g2dx > 0.
(i) For d =2, if lim, ¢+ a'|logal* = oo, then

da,d) 2
V@ d) —~s N(0,1), a— 0", (1.3)

where V(a, a') satisfies the following property:

. V(a,d')? 5
>t
al—»molJr a'C@(0)? 4.sz gudx
(ii) For d = 3, (1.3) is always true, where V(a, a’) satisfies:

lim V(a,a')241a® 3 g9, COx—y) =1.
a—0 x,y€a'Z4

More precisely, there exists a constant cg € (0,00) such that

V(a,d'y

im ————— =c¢y;.
a0t @'dg—Hd—2) d
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Note. We remark that there is a constant ¢ € (0,00) such that

ca =2, d >3,

Cc@0) = {
~ lcllogal, d=2.

Hence, if d = 3 and @’ = a, or d =2 and lim,_+ a’|logal? = oo, then
Iim V N=o00.
ai,rf)l+ (a,a’)= 0

The proof of Theorem 1.1 will be given in the next section. In Sect.3 below
we will prove the key lemma (i.e. Lemma 2.1 below).

At the end of this section we give a remark on Theorem 1.1 above. For this
purpose we introduce some notations. Let y be the Gaussian measure on %’'(R%)
with the covariance C = (—4 +m3)~!. Let u=!(k) = (|k[* + m3)~! and

-1
d
p (k) = (’”g +2a723 (1 - cos(akj))) s
j=1
where k = (ky,...,ka) and |k|* =k} + - + k2. Let fy.( - ) be the function whose
Fourier transform is

@m)~ ek (k) k), if | < /e, j=1,..d

0, otherwise .

Fralk) = {

It is easy to check that (see e.g. [Si, Sect. VIIL.1])
<¢(fx,a)¢(fy,a)>uo = <¢x¢y>Ga .

In this sense we can realize the Gaussian field ¢, on aZ? by ¢, = @(fx..), which
is defined on &/(R?).

The central limit theorem given in Theorem 1.1 is probably not enough for prov-
ing the existence of the continuum limit of some lattice ¢*-fields with counterterms.
However, it can help us to understand the form of some counterterm, and moreover it
might be used to study some properties of continuum ¢*-fields like the ¢§-quantum
field constructed in [BFS] or [P] and the new continuum ¢3-field constructed in
[AZ). Heuristically, from Theorem 1.1 (ii) above we can see that the continuum
¢3-field with a spatial cutoff constructed in [BFS] or in [P] is singular with respect
to the Gaussian measure o on #'(R?). Likewise, by Theorem 1.1 (i) we believe that
the continuum ¢3-field p; , (see [AZ]) in the case where lim,_,o+ a’|loga|? = oo is
singular with respect to the Gaussian measure gy on &'(R?).

2. Proof of the Main Result

Let us first recall some properties of the Wick powers (see [Si, Sect. 1.1]). If ¢, is
a Gaussian random variable (under a Gaussian measure G), then

s exp(tdy) := exp (td)x — %t2<¢)2¢>G) ,
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which implies
n

i ot = o (1) oo (L £ 020

i=1

—_

=

=! exp (;ti(bx,) :exp( > tftj<¢x.¢x,>c>.

1<i<jsn

We remark that exp( ), ;. <, itj/{¢x,¢x)c) is not random and

< ﬁ s exp(tidy,) :> = exp ( > t,-tj<¢x,¢xj)g) . 2.1)
G

i=1 1<i<jsn

Therefore,

From (2.1) we can see that

V(a, a’)2 = 415’ Z gxgy<¢x¢y>éa
x,yEa/Z”

In this section we always assume that g = 0 is a given function in Cop(R?) and
Jra 93dx > 0. Let #(a) = V(a, a’)""?¢(a, a’). To prove (1.3) we only need to prove
that

lir{)l (n(a)2k>ga =Qk-1D, k=1,2,..., 2.2)
a—0+

llm( (@6 =0, k=1,2,..., (2.3)

where 2k — 1) =2k —-1)+- (2k—3)---3 1 for £k = 1. To do so we need to
compute the quantity (&(a, a’)¢)g,. We remark that

(@ dFig, =a® Y gugul 6t 6t D,
X1, ,xx€a'Z?

Thus, it suffices to compute (: ¢3 :---: ¢;

pare the terms with the coefficient Hl.:l t;' on both sides of (2.1). In general, the

term with the coefficient Hf.;l t} on the right-hand side of (2.1) can be expressed
as a sum of some quantities of the following form:

. 1)G,- For this purpose we need to com-

k
Qa,a’(xl,---,xk) =G I—Iz <¢x[ d’)@)ll/ H (d’nd’n)lu
j=

k .
: H <¢x;(_z¢xJ->IGk;2'/<¢Xk71¢xk>lea‘l’k’
j=k—1
where % is just the coefficient, /; ; € {0,1,2,3,4}, Z o l1,; =4 and
Zl],—l— Z Lij=4 i=2,...k—1.

J=i+1
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We remark that there is a one to one correspondence between the quantity g, ., and
the set of /; ;. For convenience we will use the set of /;; to represent the quantity

9a,a’ -
Let

k
Qa,a’(xla“"xk): ngi Z qa,a'(x19'--’xk)s

=1 1 +4

where the sum is taken over all /;; < 4, in which there exists at least one pair
(i, 7) such that /;; € {1,2,3}. Let

2k
Pa,a’(xla'u,ka) = H 9x, Z qa,a’(xla---aXZk) ’
=1

i=4

where the sum is taken over all /;; with [;; = 4. In this case (i.e. /;; =4 for all
possible pairs (i, j)), the quantity g, o (x1,...,Xx2) can be expressed as follows:

k=1
(4TI ($x, b, )6, »
j=0
which corresponds to the set {/;,.;, = li, i, = = liy_,.in_, = 4}, Where ip = 1, and

{it,-+ sik—1} = {2,...2k}. In fact we can derive the following expression:

2k
Poa(x1,...,X2) = (4" > 9x 9x, (Px, ¢x.1 >‘é‘a > 9x., 9x, <¢x,2 ¢x.3 y&,
i i3€{2, ,2k}\{ir,is}

4
.o gxiZk—z gxizk—l <¢x'2k—2 ¢x12k_1 >Ga’
in—1€{2, ,2k}\{i, ,in_2}

where ip,14,...,ix—2 are defined in the following way:

ip=min{j:j€{2,....2k} \ {i1}},
0% =min{j 1j € {2,...,2k}\{i],...,i21_1}}, 1=2,....k—1.

It is easy to see that there are (2k — 1)!! choices of such kinds of sets: {ip,i1,...,
iok—2,i2k—1}. Thus we obtain that

k
' S Pyo(x1,...,x) = (2k — D! (4!a’2d > gxgy((}bxd’yyg,,)

x1, xu€a’Z4 x,y€a’Z4
= (2k — DNV (a, a')*.
Hence, to prove (2.2) we only need to prove that

ulij)k Via,d )y %*d* S Qua(xt,...,xn)=0, k= 1. (2.4)

x1, sxk€a'Z4
To this end let us first state a lemma.

Lemma 2.1. Under the same assumptions as in Theorem 1.1, the following is
always true

allr([)lJr V(a, a/)_ka/dk E Qa,a’(xla cexg) =0

x1, ,Xx€a'Z?

for any k = 1.
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This lemma will be proven in the next section.
Using Lemma 2.1 we can easily prove Theorem 1.1.

Proof of Theorem 1.1. 1t is clear that (2.4) is an immediate consequence of Lemma
2.1. If k =21+ 1 for some / = 1, then for each quantity q, .(x1,...,X2;4+1) there
exists a pair (7, /) such that /;; € {1,2,3}. From this remark and (2.1) we can see
that there is a constant ¢ = ¢(/) such that

(&a,d' Y™, < D > Oaar (X1, X2141) -

X1, sXup1€a’Z¢
By Lemma 2.1 we then know that

lim ¥ (a, d)y N a,d )G, =0,

which proves (2.3). The proof of (1.3) is then complete.
Finally, let us discuss the asymptotic behaviour of V(a, ') as a — 0. Let

Ii(a, d') = 41a" C(0)* (a’”’ > gi) ,

x€a'z4

h(a,d)=44d" Y g4, (d0))E .
x,y€a'Z4,x+y

By definition and (2.1) we know that

Vg, d ¥ =41a™ Y g.9,C%% ~y)=05+1L,
x,y€a’'Z4

where CW(x — y) = (¢:¢))q,
If d=2 and lim, o+d'|logal®> =00, then limsup, o h(a, a")< oo,

lim,_,o+ @>?C@(0)* = 0o and
Il (a9 a/)

— 41 [ g
Pt 22C@(0)* 4‘Rf2 gydx € (0,00) .

Hence, if d = 2 and lim, ¢+ @’ | loga|?> = co, we have

V(a,a )

. T\ w I ' 2
algf;r a2C@0) 4'Rf2 grdx € (0,00) .

If d = 3 and @ = a with lim,_,o+ @’ = 0, then there is a constant k; € (0,00)
such that

C@(x —
lim ( y)d > = kg .
[x—y|—0,x,y€a’zd (a V |x — y|)_( —2)
Using this we can show that if lim,_,¢+ x, = x € R? with x, € aZ9, then the follow-
ing limit:
lim @Y eazi GyC O — ¥)*
a—0+ alq—4d-2)

exists. We denote this limit by f;. It is easy to see that the function f is positive
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and finite. If lim,_,o+ 7 := o € (0, 1], then we can also show that the limit

a" ZyEa’Z“',y#x,, gyC(a)(xa - }’)4
ad q—4d-2)

lim
a—0+

exists and is equal to f;. In this case (i.e. « > 0), we have

V(a9 a,)2 d 2
m —agad — szg"fxdef‘“szgxdx ,

a—0t

which is positive and finite.
We remark that if d > 3 and @’ = a, then

d Y ¢gCY%x— ) < 0(1)a%a™D, vxedz?.
y€a'Z, y+x

Hence, if o = 0, then

lim a,d ZyEa’Z‘i,y:#xa gyc(a)(xa - y)4 .

Py, a'dg—4d-2) 0.

In this case (i.e. « = 0), we have

V(a,d')?

——= 2 4l [ g
a0+ gig=4d=2) 4'Rf2 gedx

The proof of Theorem 1.1 is then complete, provided Lemma 2.1 has been
proved. [J

3. Proof of Lemma 2.1

The aim of this section is to complete the proof of Lemma 2.1. Let us first prove
two lemmas.

Lemma 3.1. (i) There is a constant ci(d) € (0,00) such that

a* Z gxgyc(a)(x_y)z <
x,y€a’'Z4

ci(d)(@?C@(0)? + 1), d=2d+4,
cl(A)(@*C@(0)? + |logal), d=4.

(i) There is a constant c,(d) € (0,00) such that

d*? Y g.9,CO%x — y) £ c)(d)adCD0), d=2.
x,y€a'Z4

Proof. We only prove (i), since (ii) can be proven by a similar argument. It is
obvious that
¥ Y g2CO0) £ 0(1)a“C@(0) .
x€a'Z4
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Hence, we only need to provide a suitable upper bound for the following quantity:

a Y g, CO%x — ),
x, y€a'Z4,x*y

which is denoted by fi(a, d’). Since a £ a’ and lim,_¢+ @’ = 0, by computation
we show that

fl(aa a/) é 0(1)f1(a? a) .
We recall again that
O(M)|loglx —yl|, d=2,

CO(x —y) <
Oo()x — y|™*2, d =3

for x,y € a’Z% with x+ y. Using this we can show that

Si(a,a) £ O(1), d=23,
and

fi(a, a)<0(1)maxa" > gl -y
€z yeqzd

< O0()a~* < 0(1)d?C@(0), d = 5.
Thus we have proven (i) for d = 2 and d +4. However, for d = 4 we have
fila,a) < O(1)|logal .
Hence, (i) is also true for d =4. O

Let
foad) = max (a’d > gyC“’)(x—y)“) :
xesupp(g) Y ca'zd

As in the proof of Theorem 1.1 given in the last section, we can show that there
are constants c3,cq4 € (0,00) such that

aV(a,d ) £ foa,d) < csV(a,a' ),
and so
esa®cD(0)* £ fa(a, d') £ cedC@(0)* (3.1)

for some constant cs,cs € (0,00).

Lemma 3.2. Suppose that I,; + I ; +Z il S4and bl =0 for j e
[i + 1,k]. Then there is a constant c; € (0 ) such that

k
Y g TICOw —x)e [T CO— xy)

x,€a’Z t=1 J=i+1
k
< e1f(a, a')%(ll,i+lz,x+ Yt b)) (3.2)

17d :
Jor x1,x2,%i11,..., x¢ € d'Z% with x1,x3,Xi11,...,% € supp(g).
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Proof. By the Hoélder inequality we know that the left-hand side of (3.2) is less
than

Jj=1 \ x€a’Z4,x,Esupp(g) Jj=it+l \ x€a'Z4,x;€supp(g)

It by
o(1) ﬁ ( > CO(x; — x,)“) ﬁ ( > CO(x; — xj)4)

1

1=+ l+ ZL,H [
1 k
) < 0(1)f2(a, @'yttt Zmn 1),

(an’Zd,x,Gsupp(g)

where we used the fact: a’ Y oweazi nesppgy | = O(1) to obtain the last inequality.
This completes the proof of Lemma 3.2. [

We now use Lemma 3.1 and Lemma 3.2 to prove Lemma 2.1.

Proof of Lemma 2.1. We will only consider the quantity g, . (x1,...,x;) in which
there is a pair (7, j) such that /; ; € {1, 2,3}. If /; ; = 3, then there must be a new pair
(i, j) or (h,i) such that /; » =1 or I,; = 1. Thus we may always assume that there
is a pair (7, j) in the quantity g, »(x1,...,x;) such that /; ; € {1,2}. Without loss
of generality we may also assume /;» € {1, 2}. Thus, the quantity g, o (x1,...,Xx)
can be expressed as follows:

k
Qoo (X1, x) = CO(x; —x2)12 [T CD(xy — x;)
j=3

k k-1 &k
1 C90 —xp)™ T] T1 C9%x — x;)".

Jj=3 i=3 j=i+l
We remark again that
k=1

Z _Zk: =2k .

Then, by Lemma 3.2 we know that

QDT g, Hc<“><x1—x>’~

x3, ,xk€a’Z? i=3

k k=1 &k
L@ =x)» TT T €0 - )
1

i=3 j=i+1
< 0(1) fo(a, @) it B X iy)
< 0(1)fa(a,d)i~4h2, Vxy,x, € d'Z9,

with x3,x, € supp(g). Therefore,

a/dk Z H gx, qa a’ (xl bR 7 )

xi, ,xq€a’'Zd i=1

< 0()fx(a,d)i"2a2d Y gug,COtn —x)2. (3.3)

x1,X2€a’Z4
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Ifd =4and /,, =2, by Lemma 3.1 and (3.1) we then know that the right-hand
side of (3.3) is less than

0(1)(a/dc(a)(0)2 + |10ga|)f2(a, a/)%—%h)z
< 0(1)(@"C(0)? + | log a])(a C(0)*):
< 0(1)a*(@*C(0)")F + O(1)| log ala’~2a*(a"* C)(0)*)?

< O(1)d' (d*C@0)H)3,

since a’ = a. If l1,2 =2, d = 2 and d =4, then by Lemma 3.1 and (3.1) again we
know that the right-hand side of (3.3) is less than

O(1)a"*(a? C@(0)?%

However, if /;, = 1, by Lemma 3.1 and (3.1) we know that the right-hand side of

(3.3) is less than .
0( 1 )al3d/4(a/dc(a)(0)4)5

for d = 2. Since lim,_,o+ a’ = 0 and there are constants cg,co € (0,00) such that
csa?CO(0)* < V(a,d') < cod®C@(0)*,

we have i
lir{)l V(a,d)2d* Y Il 95900 (x15---sx) =0,
a—0t

x1, X €a'zd i=l1

which proves the desired result. This ends the proof of Lemma 2.1. [
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