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Abstract: We show that spin generalization of elliptic Calogero-Moser system, el-
liptic extension of Gaudin model and their cousins are the degenerations of Hitchin
systems. Applications to the constructions of integrals of motion, angle-action vari-
ables and quantum systems are discussed. The constructions of classical systems
are motivated by Conformal Field Theory, and their quantum counterparts can be
thought of as being the degenerations of the critical level Knizhnik-Zamolodchikov-
Bernard equations.

1. Introduction

Integrable many-body systems attract attention for the following reasons: they are
important in condensed matter physics and they appear quite often in two dimen-
sional gauge theories as well as in conformal field theory. Recently they have been
recognized in four dimensional gauge theories.

Among these systems the following ones will be of special interest for us:

1. Spin generalization of Elliptic Calogero-Moser model - it describes the
system of particles in one (complex) dimension, interacting through the pair-wise
potential. The explicit form of the Hamiltonian is:

H = Σ 4 + Σ Tt(SiSj)p(zi - z j ) ,
1=1 z ίφy

where z, are the positions of the particles, pt - corresponding momenta and Si are
the "spins" - / x / matrices, acting in some auxiliary space. The conditions on Si-
will be specified later. The only point to be mentioned is that the Poisson brackets
between p,z,S are the following:
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2. Gaudίn model and its elliptic counterpart. We describe first the rational case.
Consider a collection of L points on IP1 in generic position: WI, . . . ,M>£, assign to
each wα a spin Ta (an N x N matrix) and define the Hamiltonians [G]:

Ίι(TaTb)

The main goal of this note is to include these two (seemingly) unrelated models
in the universal family of integrable models, naturally related to the moduli spaces of
holomorphic bundles over the curves. It will turn out that the appropriate objects to
study are Hitchin systems. As a by-product we shall invent an elliptic Gaudin model,
which includes both cases as special limits. We shall also obtain a prescription for
construction of integrals of motion and action-angle variables. The paper is organized
as follows. In Sect. 3 we recall the construction of Hitchin systems. Section 4 is
devoted to the explanation of the mapping between the Hitchin systems and the
models, just described. Section 5 deals with action-angle variables and integrals of
motion. We conclude with the remarks on the quantization of our constructions.

2. Acknowledgements. I would like to thank Sasha Gorsky for collaboration in [GN1,
GN2 and GN3], A. Losev and D. Ivanov for useful discussions, V. Fock, I. Frenkel, G. Moore,
A. Polyakov, M. Olshanetsky, A. Rosly, V. Rubtsov and S. Shatashvili for kind advice.

3. Construction of the Systems

We must confess that all the models we are discussing are motivated by the studies
of Knizhnik-Zamolodchikov-Bernard equations [KZ,Be,Lo,FV,I]. Our paper is a
development of [GN1, GN2]. One of the outcomes of our work might be an insight
in the ^-generalizations of them.

3.1. Hitchin Systems. Hitchin has introduced in [H] a family of integrable systems.
The phase space of these systems can be identified with the cotangent bundle ΓVΓ
to the moduli space Jf of stable holomorphic vector bundles of rank N (for the
GZw(<C) case) over the compact smooth Riemann surface Σ of genus g > 1. His
construction can be briefly described as follows. Fix the topological class of the
bundles (i.e. let us consider the bundles $ with c\(β} = k, with A>fixed). Consider
the space sίs of stable complex structures in a given smooth vector bundle V,
whose fiber is isomorphic to C .̂ The notion of stable bundle comes from geometric
invariant theory and implies in this context, that for any proper subbundle U:

deg(U) deg(V)
rk(U) < rk(V) '

The quotient of s/s/<& of the space of all stable complex structures by the gauge
group is the moduli space ΛΛ Its dimension is given by the Riemann-Roch theorem

Now consider a cotangent bundle to stfs . It is the space of pairs:
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where φ is a MatN(<C) valued (l,0)-differential on Σ, d"A is an operator, defining
the complex structure on V\

d"A :Ω\Σ,V)^Ω°>\Σ,V).

The field φ is called a Higgs field and the pair d"A, φ defines what is called a Higgs
bundle. In the framework of conformal field theory the Higgs field is usually referred
to as the holomorphic current, while holomorphic bundle defines a background gauge
field.

The cotangent bundle T*jtfs can be endowed with a holomorphic symplectic
form:

ω = fΎrδφ Λ bd"A ,
Σ

where δd'A can be identified with a (0, 1 )-form with values in TV by TV matrices.
The gauge group ^ acts on ΓW5 by the transformations:

φ->g~lφg,

d'ί^g-ld'ίg,

and preserves the form ω. Therefore, a moment map is defined:

Taking the zero level of the moment map and factorizing it along the orbits of ^
we get the symplectic quotient, which can be identified with ΓVΓ. Now the Hitchin
Hamiltonians are constructed with the help of holomorphic (1 — y, 1 ̂ differentials
Vjtίj, where // labels a basis in the linear space

for j > 1 and <C9 for j = 1. Take a gauge invariant (j, 0)-differential ΎrφJ and
integrate it over Σ with the weight Vjtij:

Obviously, on T*sts these functions Poisson-commute. Since they are gauge in-
variant, they will Poisson-commute after reduction. Also it is obvious that they are
functionally independent and their total number is equal to

9
y=2

Therefore, we have an integrable system.

3.2. Holomorphic Bundles over Degenerate Curves. Now let us consider a degener-
ation of the curve. Recall, that the normalization of the stable curve Σ is a collection
of a smooth curves Σα with possible marked points, such that any component of
genus zero has at least three marked points and every component of genus one has at
least one such point. For each component Σα we have a subset Xa — {x\, . . . ,jφ} of
points. Let us denote the pair (Γα,Jfα) as Cα. The disjoint union of Cα's is mapped
onto Σ by the normalization map π. Let us denote by X^β the set of double points



590 N. Nekrasov

α) Π π(Xβ) for aή=β and as Jfαα the set of double points in π(Jfα) (these appear
due to pinching the handles). The union of all Xaβ we shall denote by X C Σ. We

define jΛ G X^β as π(jc^) Π π(xί). Notice, that it may be empty. A stable bundle $
over Σ is a collection of holomorphic bundles <?α over Zα of rank N (there might
be some generalizations with different ranks of the bundle over different components
- these are unnatural as a degeneration of the bundle over a smooth curve) with

the identifications g1 of the fibers

with the obvious condition: g^g1^ = 1.
The gauge group acts on the complex structure of the bundle <f α for each α

as in the smooth curve case. The new ingredient is the action on <Λ. Fix a gauge

transformation #α for each component of Σ. Then glj» are acted on by #α as follows:

Now we have to introduce a notion of stable bundle. The condition of stability is:
For each collection of proper subbundles J2^ C <ία, such that

and
= N' < N

for each α the following inequality holds:

N'

for any α.
Let jtf denote the space of collections of d"A α operators in each <ία together

with gίjn for each α and β. Let stfs denote the subspace of j^, consisting of stable

objects. The cotangent bundle T*jtfs can be identified with the space of collections
of pairs

(<^,<M,φα e Ωl °(ΣΛ)®End(tΛ)

and

We normalize /Λ: p1^ — —Ad*^*)^. The Higgs fields </>α are allowed to have
singularities at the marked points. As we will see, they could have poles there. Now
we shall proceed as in the previous section. Consider the gauge group action on
r*j/5. Since the gauge group ^ is essentially the product of gauge groups ^α> the
moment map is a collection of the moment maps for each component ΣΛ:

where the sum over / runs from 1 up to La while β and j are determined from the

condition, that π(xί) = π(^). Let us now repeat the procedure of reduction. At the
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first step we should restrict ourselves onto the zero level of the moment map. It
means that φΛ becomes a meromorphic section of the bundle £m/(<ία) <8) ί2l5°(Γα)
with the first order poles at the double points. The residue of (/>α at the point xl

Λ

equals /A for appropriate βj. This condition is compatible with the definition of
the canonical bundle over the stable curve. On the next step we take a quotient with
respect to the gauge group action and get the reduced space ΓVΓ. The space Jf is
the quotient of stfs by 0. The symplectic form on ΓVΓ can be written as:

Let us calculate the dimension of T*Jf. We shall calculate the (complex) dimension
of Ji by means of the following trick. The moduli space Jf can be projected onto
the direct product of moduli spaces </Γα of the stable bundles over Γα's. Actually,
the map is to the product of the moduli of holomorphic bundles, but the open
dense subset, consisting of the stable bundles is covered. The projection simply
takes the collection of <ία's to the product of equivalence classes in Λ^'s. The
fiber of this map can be identified with the quotient G/H9 where G is the set of
collections of glL, while H is the group of automorphisms of XoA This group is
a product over all components Γα of the groups //α. For the genus zero component
//α is GL^(C), while the genus one component provides a maximal torus - (C*)^.
Other components contribute C*. Therefore, at a generic point, we conclude that
the dimension of Jf is

+ dim(G/H)
α

= l+N2E(Σ) + ΣN2(0(Σ,)-l) = N2(g-l)+l, (3.1)

where we have used the Riemann-Roch theorem in the form

dίm(^) - dim(HΛ) = N2(g(Σ«) - 1)

E(Σ) is the total number of double points.

3.3. Hamiltonian Systems on ΓVΓ. Now we shall define the Hamiltonians. For
each α we take vα,/,;t - the kih holomorphic (! — /,!) differential on Σa — X^ and
construct a holomorphic function on T*jtfs:

Obviously, all //«,/,* descend to ΓVF and Poisson-commute there.

4. Gaudin Model, Spin Elliptic Calogero-Moser System and so on ...

4.1. Genus Zero Models. Consider a component of genus zero. Let us describe
explicitly the part of ΓVΓ related to this component as well as the Hamiltonians.
We shall omit the label α in the subsequent formulas to save space. Thus, we have
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Gaudin model. Assume first, that for aή=b: π(xa)ή=π(xι>). Then p^n can be denoted
simply as Ta without any confusion. There are no continuous moduli of stable
holomorphic bundles over the sphere. For simplicity we consider the case when $
is trivial and therefore, we can assume that d"A is just the d operator. The moment
map condition:

is easily solved:
T

Notice, however, that every trivial holomorphic bundle over P1 has an automorphism
group GLN(<C), which acts nontrivially on φ as well as on 7}. In fact, the reduction
with respect to this subgroup is forced by our equation: the sum of residues of
φ must vanish, giving rise to the constraint: ^β Ta = 0, which is nothing but the
moment map for the GLN(<C) action.

Our Hamiltonians in this case boil down to

Hιta,b = ResXa(x - xa)
b~lΎτφl(x) ,

where 1 ̂  b ^ 1,1 ^ a ^ L. These Hamiltonians (essentially #2,0,2) are called
Gaudin Hamiltonians1

Ύτ(TbTa)

etc.

Spin Calogero-Moser and Rational Ruίjsenaars Systems. Now consider the genus
zero component Γα with double points. Let us decompose the set of marked points
XΛ as

XΛ=S\JT\Jσ(T), (4.1)

where t G T and σ(t) E σ(Γ) are mapped to tαα , while the restriction of π on

S is surjective. We denote p f f i = pt, g^(t} = gt. We have: p$* = -Ad*(gt)pt.
Solving the moment map condition as before, we get:

.+* ^ -T TΓ— -T ~ 7—— — v -
s (X—XS) t (X—Xt) (X—Xσ(t))

The sum of the residues vanishes, giving rise to the moment equation:

+ Σ(A - Ad\qt)pt) = 0 . (4.2)
t

1 Historically, these Hamiltonians in the classical context were introduced by R. Gamier [Ga], and L
Schlesinger [Sch] Nowadays, by Gaudin system one understands the quantum counterpart of this model,
when Γα's are replaced by the generators of the Lie algebra, acting in representation, attached to the
point xa.
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This is the moment with respect to the group GZ^(C) of automorphisms which acts
on the data (ps,pt,9t) as follows:

—1 —1 —19t —> g 9t9τ Pt —* g ptQ ) ps —> g p$g

Now let us specialize to the case when #Γ = 1. The moment map condition will
give

pt -Ad*(gt)pt = ~Σps
s

The phase space is the quotient of the manifold of pt, ps,gt, satisfying this condition
by the action of GLN(<C). We have two options: either we parameterize the quotient
by the conjugacy class of gt, or by the one of pt.

Consider the first option. Generically one can diagonalize gt, and there will be
left a group of diagonal matrices, which will act nontrivially on pt and /?/s. Let
us denote the eigenvalues of gt by

gt~diag(ez\...9e
z»).

Then in the basis, where gt is diagonal, pt has a form:

(Pt)ij = Pίδίj + « _^ S

z.l
3

Zj

with the further condition
= 0 (4.3)

s

for any /. This condition has an elliptic nature, as we will see, and has a very
natural origin: the double point on the sphere conies from the pinching the handle.

Explicitly calculating H2,t,2 we get:

TT \-^ Pi - v^ _ V
H2,t,2 = L - + L . zt-z.

with
Σϋ = Σ(Ps)ij(Ps')ji

s,s'

This Hamiltonian describes the particles with spin interaction. In Sect. 4.3 we
shall represent the coupling Σy as TrS/S/, which is the form of spin interaction
we advertised in introduction. This model for #5=1 is the Spin generalization of
Sutherland model [S].

Now let us investigate another option - namely, we diagonalize pt. For simplicity
we shall treat the case #S = I. We have:

pt = diag(θlί...,θN}

and

(9,-)ij(θi ~ θj) = (p,),j ,

where ps = gtps Now we make a further assumption. Suppose, that for some veC*
the matrix ps — vld has rank one.

Then,
PS = vld -f u (8) υ ,

where υ G (<CN)*,u G <CN.
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Therefore, we can solve for gt:

and ύi = (gtu)i. The consistency requires a linear equation:

for any i. The solution is
P(θi + v)

UίVi = -
where P(θ) = Π(0 - 0/).

Finally we introduce the coordinates z, , defined by

- = M; .

The Hamiltonians we can consider in this approach are the characters of gt. We
have:

,N},#I=k

zi = Σ>, % = ft - 0y, * = 1, , # - (4.4)
i€/

The system we get is the classical limit of Rational Macdonald system. If,
instead of taking G = GLN(<C) we would consider SU(N), we will get what is
called a rational Ruijsenaars-Schneider model [R,RS,GN2].

It is clear, that without the simplifying assumption that ps has the form of the
scalar matrix plus the matrix of rank one, we would get the Spin Generalization of
Ruijsenaars-Schneider Model. Conjecturally, our reduction provides a Hamiltonian
description for the spin generalization of Ruijsenaars-Schneider model, considered
in [KrZ] (for its rational limit).

4.2. Elliptic Models. The next interesting example is the genus one component.
Again we omit label α and pίj» gets replaced by pt. Generic holomorphic bundles
over the torus are decomposable into the direct sum of the line bundles:

Therefore, the moduli space ̂  can be identified with the Nih power of the Jacobian
of the curve, divided by the action of the permutation group. Let us introduce the
coordinates zι,...,z# on Λ^α. They are defined up to the elliptic affine Weyl group
action. Let τ be the modular parameter of the elliptic curve. Then there are shifts
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with mi, Hi e Z, induced by the gauge transformations

( j- Λ Γ~ r^i(x - x) + mi(xτ - xτ)\\
exp I diag I 2πγ — 1 - - - 1 1

as well as permutations of z/'s. Up to these equivalencies zz's are the honest coor-
dinates.

No double points. First, we dispose of the case when π doesn't map two points to
one. Now the moment map condition is

θφij + (Zt - Zj)φij +
a

The solution of this equation yields a Lax operator φ:

σ(z. +
= - a i j f / -:T β J σ(zij)σ(x - xa)

i=j: φu(x) - wt + —-Σ(^)πC(^ - to) , (4.5)
2πγ — 1 α

where we have denoted for brevity: z,y = z/ — z7 . In these formulas σ and ζ are
Weierstrass elliptic functions for the curve with periods 1 and τ. Since the sum of
residues of meromorphic form φlt vanishes, we get the following equation:

a

which coincides with the moment for the maximal torus action. When the elliptic
curve degenerates down to the rational one with the double point this equation
becomes just (4.3).

Now we can compute our Hamiltonians. We have:

-4π2Trφ2(x) = Σ ί w/ + Σ(Ta)i£(x ~ xa)

where xab — xa—Xb
Expanding this expression as:

-4π2Ύrφ2(x) = (Σfp(x ~ *α)#2,2,* + ζ(x -Xa^l.a ) +^2,0 ,
\ a /

we obtain:
#2,2,* = TrΓfl

2 , (4.8)

as it could be guessed,

/ bή=a;i
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These Hamiltonians will be called Elliptic Gaudin Hamiltonίans. The next interest-
ing Hamiltonian is:

#2,0= Σ^,2+ Σ (WΓ^jΦyH Σ (Ta

i ϊ'Φy' α ί;aή=b

(4.10)

Higher Hamiltonians provide us with the rest of the integrals of motion of this
model.

Double points. In the case, when there are double points, the formulas for the
Lax operator and Hamiltonians are nearly the same, the only difference is in the
condition on the Γα's. It is easy to see that the condition is: let us decompose the
set of marked points as in (4.1) and introduce the notations pt, ps as before. Then
the elliptic analogue of (4.2) is

-0, i=l,...,N. (4.11)

4.3. Parabolic Structures, Spins and Coadjoint Orbits. In this section we shall
explain the relation of our moduli spaces to the moduli spaces of bundles with
parabolic structures (this is what one usually expects to be considered on the punc-
tured curve). Then we shall map the notations pa for the Lie algebra elements to
the spin notations S/, which were used in the beginning of the paper.

First of all, the integrable systems we have defined have an obvious invariant
subvariety: the conjugacy classes of all Γα's are conserved. Indeed, since φ has a
pole at xa with the residue Γα, then near xa

) ~ ( γ > (4 12)
^Λ — Xa )

where pa,n equals:

hence the trace Tr T% is a constant of motion. Therefore, each Ta will represent a
point on the coadjoint orbit Oa of SLN(<C). This orbit (which is genetically diffeo-
morphic to the cotangent bundle to the compact flag variety) defines a parabolic
structure at the point xa (which is a fixed flag in the fiber over it).

In fact, the flag structure can be decoded from the Ta with the help of the
following construction: For simplicity, we consider the case without double points
on the component Cα. Again for simplicity we assume, that this coadjoint orbit is
of the generic type.

Fix a point xa and denote Ta simply as p. Introduce a sequence of vector spaces

Let di = dimS\ we assume that dl > di+l. Consider the space of operators

jri . e>i
U . <o
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with the canonical symplectic form:

f\δVi .

This form is invariant under the action of the group

H= xr

==

by the changes of bases. Therefore, one can make a Hamiltonian reduction at some
central level of the moment map. Formally it amounts to imposing the constraints:

for / = l,...,r — 1. Here the complex numbers ζi are related to the eigenvalues λt

of the matrix p via:

k - Λ -i = ίU-1 = o ,

the multiplicity of the eigenvalue λl equals dl — dl+l.
Finally, p = V°U0 + ζ°lά^.
The flag

&r c - c J^0 = <f°

is constructed as:

Now for each point xa the orbit of pa can be represented with the help of the
set of matrices Iβ, Vl

a and the numbers CL such that pa = V%U% + ζ°U. Here a is
a multiindex, including the numbers of the components of curves and the numbers
of the points there.

Then for / ή=j we could replace

(Ta)ij(Ta)jt

(4.13)

Hence, for the sphere with one double point and one extra puncture and for
the elliptic curve with one puncture we get precisely the Spin Generalization of
Calogero-Moser-Sutherland Model.

If the number of punctures (#5) is greater than one, then the representation of
the coupling as the product of spins of the type, just described, is not convenient. For
the products papb with αφZ? there is no such interpretation. Therefore, S/ operators
in the Gaudin model as we described it in the Introduction are just the matrices pa.

The global consequence of this presentation is that one can view the moduli
space of bundles over the degenerate curve as a family of products over the set of
components of the curve of the moduli of bundles with parabolic structures. The
restriction on the parabolic structures at the glued points is that the weights ζ* and
dimensions dl should coincide for both components, glued at the point.
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5. Action-Angle Variables

We first recall the construction of Hitchin in the case of the compact curve of genus
g>2.

Given a point in the moduli space of Higgs bundles one can construct a spectral
curve S cP(Γ*Σθ 1):

where λ is a linear coordinate on the fiber of the cotangent bundle T*Σ. This curve
is well-defined, since the equation, which defines it, is gauge invariant.

The curve S is an Λf-sheeted ramified covering of Σ, its genus can be computed
by the adjunction formula or using Riemann-Hurwitz theorem,

which agrees with the dimension of the moduli space of stable bundles over Σ.
Denote by p the projection S — > Σ.

Given a stable bundle δ over Σ we can pull it back onto S. There is a line
subbundle S£ C p*δ, whose fiber at a generic point (x,λ) is an eigenspace of φ(x)
with the eigenvalue λ. Conversely, given a line bundle & on Σ9 one can take its
direct image, which (again at a generic point) is defined as

Therefore, under the flow, generated by the Hitchin Hamiltonians, the & changes.
It can be shown that these flows extend to the linear commuting vector fields on
the Jacobian Jac(S) of S.

Thus, the linear coordinates on Jac(S) are the coordinates of the angle-type,
whereas the integrals of λ over the corresponding cycles in S give the action vari-
ables. The construction of the covering spectral curve and abelianization of the
problem resembles Knizhnik's idea [K] of replacing the correlators of the analytic
fields on the covering of the Riemann surface by the correlators on the underly-
ing Riemann surface with the insertions of additional vertex operators. Let us also
remark that a quite analogous construction was invented by Krichever in [Kr] in
connection to the elliptic Calogero-Moser System.

5.7. Degeneration of the Spectral Curve. We shall adopt the same definition of the
spectral curve in the case of degenerate Σ.

Obviously, the normalization of S can be also decomposed as the disjoint union
of the components SΛ9 labeled as the components Γα and SΛ covers Z"α with some
fixed branching at the points x^. Indeed, the behavior of 0α near the point xl

Λ is
known, since the residue is known. Let us fix the conjugacy class of p1^. Suppose

that it has k\ eigenvalues of multiplicity 1, kl

2 eigenvalues of multiplicity 2, and so
on. Since near the point xl

Λ φ^ behaves like:

Φ*(χ)
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for appropriate j and β, then λ behaves like

1 /„ \ P™λm(x) ~ _ . ,

where pm is the mth eigenvalue of plL. Following [BBKT], we can find

m=l

points P Ί , . . . , Prfj above xL, such that the local parameters Zi . . . . . ZAr// near them
α/J ^αj?

are defined:

Zm =

The discriminant Jα of φα is a meromorphic //(TV — 1 )-differential on Γα. At
each point xl

a it has a pole of the order

The zeroes of Jα determine the branching points of the covering

The number of the branching points equals, therefore,

The genus of Sα can be computed with the help of the Riemann-Hurwitz formula,
which gives:

Now the Hamiltonian flow due to our Hamiltonians produces a motion of the
line bundle over 5α and it covers the Jacobian of the completed curve 5α, therefore,
the coordinates of the particles will be determined by the same equation:

as in the simplest one-punctured case. Here θ is a 0-function on the Jacobian of 5α,
and 0 defines an embedding of the moduli space of the holomorphic bundles over
Σα into the Jacobian, as we have described it.

The details of the reconstruction of all angle-type variables will be published
elsewhere [GN3]. Remark that this problem was solved for a one-punctured elliptic
curve for a specific orbit in [BBKT].
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6. Formulas for General Case-Genus g Curve with L Punctures

In this section we consider only one component Σ of the stable curve. We assume
that it has genus g and L punctures. We also assume, that Σ has no double points.

Using the formulas for the twisted meromorphic forms on the curve, quoted in
[I], we can easily write down the formula for the solution of the main equation

In order to do this, we choose the following coordinatization of the moduli space
Jf of holomoφhic bundles over Σ. Namely, over the open dense subset of Jf one
can parameterize the holomoφhic bundle by choosing a set of g twists: elements of
the complex group G, assigned to the ^4-cycles of Σ. More precisely, let us fix the
representatives 0£, k = !,...,#, of the A -cycles and let Σ be the surface Σ with the
small neighborhoods of α* removed. Topologically Σ is a sphere with 2g holes.

The boundary of the neighborhood of a^ consists of two circles ά^. In order to
glue back the surface Σ one has to attach the projective transformations y^, which
map a^ — > aj~. These transformations generate the Shottky group. On the sphere
one can find such a gauge transformation h that

Obviously,

h(gk(x))\a- = Hk(x)h(x)\a+ ,

where Hk is a holomoφhic G-valued function, defined in the vicinity of ά£. Gener-
ically one can find a constant representative of Hk (this is a Riemann-Hilbert
problem).

Once such a gauge h transformation is chosen, the equation for φ can be re-
stated in words as the following: find a meromoφhic form on Σ, which satisfy the
following requirements:

in the vicinity of ̂  φ
twisting: φ(γk(x))dγk(x) = AdHkφ(x)dx.

The answer can be conveniently written in terms of the Poincare series ([I]):
Introduce

ωk[x0]

Θ[x,x0] G Ωl(Vl)®End(LieG) ,

where X,XQ G P1,

θ[x,Xo]zdz =
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where the sum runs over all elements of the Shottky group (it is a free group with
g generators - loops around ^-cycles. One assigns to the "word"

an element of G:
Hy=I%Hg. .H*).

In these formulas JCG is an auxiliary point on the sphere.
Finally, the solution has the form:

9 L

Φ[χo\ = Σ)ω*(w*)[*o] + Σθ(Pi)[χί>χo\
k=\ i=\

The momenta w* are defined from the condition:

fφ = Wk -
ak

The final remark concerns the vanishing of the residue at the point

This equation we met in the degenerate form in Sect. 4.1. It has the meaning
of the moment map for the action of G on the product of g copies of Γ*G and the
coadjoint orbits of /?/.

An easy computation shows that the reduced symplectic form is the result of the
Hamiltonian reduction with respect to the natural action of the group G with moment
(6.1) of the sum of the symplectic forms on the orbits, attached to the points Xj and
of the g copies of the Liouville form on the Γ*G, where the momentum for /4 is

7. Applications to Quantization

It is straightforward to quantize our models. When the conjugacy classes of pij^
are fixed, their quantum counterparts become simply the generators of the group,
acting in the corresponding representations of G. The condition on the residues of
φα and φβ at the double point gets translated to the fact that the representations,

sitting at the points *£ and xL belonging to one double point, are dual to each
other.

The pinched handle corresponds to the regular representation of the group, and
the corresponding generators /$α and /C are left- and right-invariant vector fields
on the group.

Then the Schrόdinger equations for the wavefunctions coincide with the criti-
cal level Knizhnik-Zamolodchikov-Bernard equations [KZ,Be,Lo,EKl,EFK]. The
result of the quantization should follow from the degeneration of the Beilinson-
Drinfeld construction [Beil].

Also, it would be nice to realize the meaning of the generalized KZ equations
of [Ch] along the lines of our approach. As far as it seems now, these equations
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are inspired by the occasional fact that the Hamiltonians we have written for the

punctured elliptic curve are almost symmetric under the exchange: z, <-* xa.

Finally, note that using the results of [I] one can easily write down the quadratic

Hamiltonians for an arbitrary curve (unfortunately, at the moment only in terms of

the covering of the open dense subset of the actual phase space), while [FV] allows

one to get the expression for the wave-functions of the elliptic Gaudin model in

terms of the solutions of the Bethe Ansatz-like equations.

When the paper was completed we were notified about the recent paper by B.

Enriquez and V. Rubtsov [ER] on a related subject. We would like to thank the

authors of [ER] for their comments.
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