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Abstract: Using a numerical implementation of the ADHMN construction, we com-
pute the fields and energy densities of a charge three monopole with tetrahedral
symmetry and a charge four monopole with octahedral symmetry. We then con-
struct a one parameter family of spectral curves and Nahm data which represent
charge four monopoles with tetrahedral symmetry, which includes the monopole
with octahedral symmetry as a special case. In the moduli space approximation, this
family describes a novel kind of four monopole scattering and we use our numerical
scheme to construct the energy density at various times during the motion

1. Introduction

BPS monopoles are topological solitons in a Yang-Mills-Higgs gauge theory in
three space dimensions The equation for static monopoles is integrable, so that
a variety of techniques are available for studying monopoles and constructing
solutions Monopoles of charge one and two are well-understood, with explicit
solutions known, but for higher charges the situation is not so clear Despite
the integrability of the equation, explicit solutions for charge three and above are
known only in the axisymmetric case, which corresponds to coincident monopoles
Very recently, some progress has been made in this area [4] with existence
proofs for a charge three monopole with tetrahedral symmetry and a charge four
monopole with octahedral symmetry In this paper, we compute these monopoles
using a numerical implementation of the Atiyah-Drinfeld-Hitchin-Manin-Nahm
(ADHMN) construction and display their energy densities.

When time dependence is introduced, the monopole equation of motion is not
integrable However, analytical progress can still be made, via the moduli space
approximation [7, 9], from knowledge of the static monopoles. This has been
extensively studied for the case of charge two monopole scattering [1], but the
extension to higher charges has proved a less tractable problem We have made
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some progress in this area and present our results on a particularly symmetric ex-
ample of charge four monopole scattering The charge four monopole has tetrahedral
symmetry throughout the motion, which is the key to our construction of the rele-
vant spectral curves and Nahm data We use our numerical scheme to display the
energy density at various times

2. Monopoles, Spectral Curves and Nahm Data

In this paper, we study solutions of the Bogomolny equation

D,Φ =-l-ειlkF/k (2 1)

for SU(2) BPS monopoles in IR3 Here Dt = -^ -f [Aj is the covariant derivative
with A[ the 5 w(2)-valued gauge potential and Fβ the gauge field Φ is the Higgs
field, which is an su(2)-va\ucd scalar field satisfying the boundary condition

||Φ|| = 1 - k~ + O (y\ as r -> oo , (2 2)

where r = |JC|, | |Φ | | 2 = — \irΦ2 and k is a positive integer, known as the magnetic
charge. We shall refer to a monopole with magnetic charge k as a ^-monopole. The
energy density, <f, of a monopole is given by

« = -^ t r (AΦXAΦ) - ^KFijFij) (2 3)

The energy is the integral of $ over all space and is equal to 8π£
Equation (2.1) may be obtained by dimensional reduction of the self-dual Yang-

Mills equation in IR4, for which there is a well-known twistor correspondence,
namely that solutions of the self-duality equations correspond to certain holomor-
phic vector bundles over the standard complex 3-dimensional twistor space. This
correspondence may be reduced [10, 2, 3] to give that monopoles correspond to
particular holomorphic vector bundles over a mini-twistor space 77, which is a 2-
dimensional complex manifold isomorphie to the holomorphic tangent bundle to the
Riemann sphere, i.e., 77 = ΓCF 1 . Moreover, the bundle (and hence the monopole)
is determined by an algebraic curve in 77, called the spectral curve, which must
satisfy certain reality and non-singularity conditions

The space 77 is a fibre bundle over CP 1 with each fibre being a copy of C Let
ζ be the standard coordinate on the base space and η the fibre coordinate, then the
three spectral curves of interest in this paper are

+ B6aκ3ηζ(ζ4 - 1) + 3/c4(ζ8 + 14ς4 + 1) = 0 . (2.6)
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In [4] it is proved that (2 4) is the spectral curve of a 3-monopole with tetra-
hedral symmetry and that (2 5)1 is the spectral curve of a 4-monopole with
octahedral symmetry It is the monopole fields and energy densities which cor-
respond to these two spectral curves that we shall compute numerically in Sect 3 In
Sect 4 we shall prove that (2 6) is the spectral curve of a 4-monopole with tetra-
hedral symmetry for all a £ (—3~5/4\/2,3~5 4\/2), where 2κ is the real period of
the elliptic curve

If a = 0 then (2 6) becomes (2 5), so that at this point the 4-monopole has octahedral
symmetry.

Although the spectral curve approach to monopoles is a very useful and powerful
technique, its main drawback is that the non-singularity constraint, which an alge-
braic curve must satisfy to be the spectral curve of a monopole, is rather formidable
to check However, there is an alternative approach to the construction of monopoles
which nicely complements the spectral curve formulation, in the sense that the non-
singularity of the monopole is automatic. The ADHMN construction [8, 3] is an
equivalence between k-monopoles and Nahm data (T\, T2,13), which are three k x k
matrices which depend on a real parameter s G [0,2] and satisfy the following

(i) Nahm's equation

g = ^[Γ,,7i], (2 8)

(ii) Tj(s) is regular for s G (0,2) and has simple poles at s = 0 and s = 2,
(iii) the matrix residues of (Γi, 72,73) at each pole form the irreducible k-

dimensional representation of SU(2),
(iv) Us) = -T?(s),
(v) ;

Equation (i) is equivalent to a Lax pair and hence there is an associated algebraic
curve, which is in fact the spectral curve. Explicitly, the spectral curve may be read
off from the Nahm data as the equation

άQt(η + (Tx + iT2) - 2iT3ζ + (Γi - iT2)ζ2) = 0 (2.9)

In Sect 3, we review how to obtain the monopole fields from the Nahm data
and explain our numerical implementation of this procedure

3. Numerical ADHMN Construction

Finding the Nahm data effectively solves the nonlinear pail of the monopole con-
struction but in order to calculate the fields themselves the linear part of the ADHMN
construction must also be implemented [8, 3] Given Nahm data (Γi,Γ2,Γ3) for a
^-monopole we must solve the ordinary differential equation (ODE)

+h ® + ίT ® ) 0 (3.1)

for the complex 2A>vector v(s), where Ĥ  denotes the k x k identity matrix, σ7 are
the Pauli matrices and x = (xi,X2,*3) is the point in space at which the monopole

1 Theie is a factoi of 16 en or in [4]
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fields are to be calculated Introducing the inner product

2

(vi,v2) = /vjv2 ds, (3 2)
0

then the solutions of (3.1) which we require are those which are normalizable with
respect to (3 2) It can be shown that the space of normalizable solutions to (3 1)
has (complex) dimension 2 If ?i,?2 is an orthonormal basis for this space then the
Higgs field Φ is given by

Φ = (3.3)

There is a similar expression for the gauge potential but we shall not need this here.
In some cases this procedure, which goes from Nahm data to the Higgs field, may
be completed analytically to give an explicit closed form for Φ. However, the Nahm
data which we consider in this paper is sufficiently complicated that to calculate a
closed form expression for Φ appears not to be a tractable problem. We therefore
turn to a numerical implementation of the above procedure, which we now describe

The first issue we confront in a numerical approach is to calculate numerical
values for the Nahm data on the interval s £ [0,2] Although we shall have explicit
expressions for the Nahm data this is still not quite a trivial issue, since the ex-
pressions involve the Weierstrass elliptic function p and its derivative However,
we can keep the number of calculations of T;(s) to a minimum by noting that if a
fixed step ODE solver is used to integrate (3 1) then the Nahm data is required at the
same s values for every integration of (3 1) for all initial conditions and x positions
Therefore we compute, once and for all, Tj(s) at IP equidistant points for s £ [0,2]
and store these values, which are then used as a look-up table when integrating
(3 1) by a fourth order Runge-Kutta method with fixed steplength ds = 2P~] The
values in the look-up table are computed from the closed form expressions using
MATHΠMΛTICA

Let Ω(I) denote the space of solutions to (3.1) which are normalizable for s in
the interval /. Then we require a basis for the 2-dimensional space Ώ([0,2]) The
question we now address is how to obtain this basis from solutions of the initial
value problem (IVP) associated with the ODE (3.1) Consider the IVP of (3.1) at the
pole s = 0, which has the form

^=Bsy9 (3.4)
as

where Bs is a regular 2k x 2k matrix function of s £ [0,2). This is a regular-singular
problem so that Ω([0,2)) has dimension N, where N is the number of positive
eigenvalues (counted with multiplicity) of Bo If N was equal to 2 then we could
easily compute a basis for Ώ([0,2]) since it would (almost) be given by a basis
for Ω([0,2)), which can be found by integrating (3 1), as described above, with
two different initial conditions However, for all the cases considered in this paper
we find N > 2, so that the problem requires a little more work. By symmetry of
the Nahm data, if we consider the IVP of (3 1) at the pole s = 2 (with ds < 0)
then we have a similar regular-singular problem involving a matrix which again has
N positive eigenvalues By integrating this IVP we can compute a basis for the TV-
dimensional space Ω((0,2]) The 2-dimensional space we require is the intersection
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of the above two iV-dimensional spaces, i e.,

Ω([0,2]) = Ω([0,2))nΩ((0,2]). (3.5)

To find the intersection of these two spaces is a shooting problem but because the
ODE (3 1) is linear this shooting problem can be reduced to linear algebra as follows.
Let u\(s),U2(s\ .,UΛ/(S) denote TV 2k-vectors which form a basis for ί2([0,2))
and UW+ICOJUAH^C?), >U2M(S) a basis for Ω((0,2]) Explicitly these vectors are
computed by solving the IVP at s = 0 and s = 2 with TV different initial conditions
each Define the 2k x 2N matrix

U = u 2 ( l) (3 6)

then we need to find a basis for the 2-dimensional kernel of £/, i e , to solve the
matrix equation

C/w = 0 (3 7)

for w = (w\, . ,W2Λ/)Φ0 Numerically this is performed by row reduction of the
matrix U followed by back substitution Let w(1) and w(2) denote two independent
solutions to (3 7), then a basis for Ώ([0,2]) is given by

U
\ι(s) = (3 8)

if

for / = 1,2 To summarize, the above procedure consists in integrating (3 1) TV
times from each end of the interval [0,2] to the centre and then finding linear
combinations of these solutions such that these combinations, which start at each
end of the interval, match at the centre.

Given \\ and v2 we use the Gram-Schmidt orthonormalization algorithm, with
inner product (3 2) (and the integral calculated from the P data values via a simple
Simpsons rule), to obtain two orthonormal vectors ?i,v2 The Higgs field Φ is then
computed according to (3.3) and to calculate the energy density we make use of
the formula

S = A\\Φ\\2, (3 9)

where Δ denotes the laplacian on 1R3. Numerically we use the above scheme to
calculate | |Φ | | 2 on a spatial lattice of M x M x M points and approximate the
laplacian in (3.9) using a finite difference method with a 7-point stencil This com-
pletes our numerical ADHMN algorithm.

Although every stage of our algorithm is a relatively inexpensive computing
task, each must be executed many times to build up a detailed picture of the energy
density. To produce each of the energy density plots appearing later in the paper we
used the values P = 50 and M = 31, with (x\,x2,X3) G [-5,5] x [-5,5] x [-5,5]
This means that the ODE (3.1) must be solved to the order of 105 times to produce
one energy density plot Implementing our scheme on a workstation gave a run time
of approximately 30 minutes to produce the data for each plot.
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The Nahm data which correspond to the spectral curves (2.4) and (2 5), of a
3-monopole with tetrahedral symmetry and a 4-monopole with octahedral symmetry
respectively, is given in [4] and we shall make use of it now The method used to
obtain these data is reviewed in Sect. 4 when we shall use it to calculate the Nahm
data for the spectral curve (2 6) Not all the Nahm data given in [4] explicitly
satisfies conditions (iv) and (v) given earlier However the properties of the
associated spectral curves implies that there exists a constant k x k matrix in each
case such that conjugation of the Nahm data by this matrix produces equivalent
Nahm data which does satisfy the conditions, and this is enough Conjugation by
a matrix is equivalent to a change of basis for the /r-dimensional representation
of SU(2) formed by the matrix residues of (7Ί,Γ2, Γ3) at the s = 0 pole For our
puiposes it is convenient if this is a real representation and so (if necessary) we
make a transformation to achieve this. In the case k = 3 the Nahm data from [4] is
equivalent to

where

0 0 0
0 0 -z
0 z 0

0 0 -z
0 0 0
z 0 0

ωp'(ωs) \/3ι

2p{cos) ω = e

0 z 0
-z 0 0
0 0 0

/7l6Γ(l/6)Γ(l/3)

(3 10)

(3 11)

and φ is the Weierstrass function satisfying

(3 12)

V2 —

where ' denotes differentiation with respect to the argument.
With this Nahm data Eq (3 1) is equivalent to the set of coupled ODE'S

ϋ\ + x^v\ + (x\ + ix2)v2 + izv3 - zv6 = 0 ,

+ (*i — ixi)v\ — IZV4 + zυ$ = 0 ,

(x\ + ix2)v4 - izv\ - izvβ = 0 ,

V4 — X3V4 -\r (X\ — ^2)^3 + ίzV'2 — ίzVs = 0 ,

5̂ + ^3^5 + (-̂ 1 + iXl )Vβ + ZV2 + IZV4 = 0 ,

+ (̂ 1 - ^2)^5 - zυ\ + izυ^ = 0 ,

(3.13)

where ύ\ = ^ , etc In terms of the notation introduced earlier we find that the
matrix i?o has eigenvalues {1,1,1,1, —2, —2} so that N — 4

Figure 1 displays the output of our algorithm for this case. The plot shows a sur-
face of constant energy density $ — 0 20 The tetrahedral symmetry of this surface
is clearly evident and plots for other values of $ close to this one are qualitatively
similar For large values of $ the surface breaks up into four disconnected pieces
centered on the vertices of a regular tetrahedron.
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Fig. 1. Tetrahedral 3-monopole; surface of constant energy density 8 = 0 20

We now turn to the 4-monopole with octahedral symmetry. The Nahm data from
[4] (after a change of basis) is

7Ί =i

T2 =

0 \/3(2y-x) 0 -lOv
\/3(2v-x) 0 -6v-2x 0

0 -6y-2x 0 v/3(2v-x)
-\Oy 0 y/3(2y-x) 0

0 \β{2y-x) 0 10 y

-\/3(2y-x) 0 -6j-2x 0

0 6j> + 2x 0 y/3(2y-x)

-lOy 0 -y/3(2y-x) 0

-4;;-3x 0 0 0
0 \2y-x 0 0
0 0 -12j;+x 0
0 0 0 4v + 3x

where

x = ωe
,iπ 4

v =
/π 4(5p\sωeiπ'4/2)-3)

10p'(sωeιπι>4/2) '

Γ(l/4)2

OJ = τ = -

2Λ/8^

and p is the Weierstrass function satisfying

Then Eq (3 1) is equivalent to

ύ\ + x^V] + (xi + ix2)v2 + (4j; + 3x)^i + 20j^s — 0 ,

1̂2 — -̂ 3^2 ̂ ~ (-̂ 1 — ̂ 2)^1 — \^y ~̂  3x)l^2

(3.14)

(3 15)

(3 16)

= 0 ,

;3 = 0 ,
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Fig. 2. Cubic 4-monopole. sin face ol conslani energy density S — 0 14

ί)4 - X3V4 -f (x\ -

v5+x3v5 + (xi +

-f (12v - x 4(3 v ±x)v5 = 0

(12v-x)ι;5 = 0

vη

-ix2)υ5 + (-12y + x)v6 + 2V3(-2y + x)v7 = 0,

+ /X2)̂ 8 + 2\/3(-2v + x)v6 - {Ay + ?>x)υη = 0 ,

+ {Ay + 3x> 8 = 0 (3 17)

§}, so that Λ̂  = 5.We find that the matrix £ 0 has eigenvalues {|, | , | , | , | , - § , - § , - §
Figure 2 displays the output of our algorithm in this case. The plot shows

a surface of constant energy density S = 0 14 Note that for the monopole with
octahedral symmetry a constant energy density surface could have resembled an
octahedron or a cube; clearly it is the latter It is therefore more natural to refer to
this monopole not as an octahedral monopole but as a cubic monopole For large
values of S the surface breaks up into eight disconnected pieces on the vertices of
a cube

4. Four Monopole Scattering

In this section we shall use the method of [4] to construct a one parameter family
of Nahm data, which represent four monopoles with tetrahedral symmetry The
imposition of tetrahedral symmetry facilitates the solving of Nahm's equations, since
we will only have to consider Nahm data which are invariant under the action of
the tetrahedral group T C SO(3).

The Nahm data are an IR3 0 sl(k, C) valued function of 51, which transform under
the rotation group SO{3) as

l®sl(k), (4.1)

where r_ denotes the unique irreducible r dimensional representation of su(2) Since
gl{k) = k_ 0 k_ Clebsh-Gordon decomposition gives

gl{k) ^ 2k- 1 θ 2 k - 3 ® 0 3 φ l
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and so
sl(k) ^ 2 i J - l ® 2 έ - 3 θ 0 3 . (4 2)

Substituting into (4 1)

3 & .?/(£) = 3 (8) (2fc- 1 θ 2 £ - 3 θ θ 3)

^(2A:+ 1 Θ2k- 1 0 2 £ - 3 ) Θ Θ (5 Θ 3 θ 1) (4.3)

Thus the Nahm data corresponding to four monopoles are in the carrier space
(9 θ 7 θ 5) θ (7 θ 5 θ 3) θ (5 θ 3 θ I ) . The I representation is, of course, invari-
ant under all of SO(3) We will calculate this and the other tetrahedral invariants

Write X, Y and H for the basis of su{2) satisfying the commutation relations

[X, Y] = H, [H,X] = 2X\ [//, Y] = - 2 7 (4 4)

These may be represented by the principal su(2) subalgebra of sl{k_) which in turn
acts on the algebra by the adjoint action. In this representation X is a rank k — 1
nilpotent element and a basis of sl(k) can be generated by acting with Y o n l ' ,
for r= 1,2, ,A - 1. Thus

Xk~] (adY)X/(-] (adY)2Xk~ι . . {adY)2k-2Xk-χ

X1 (adY)X1 (adY)2X' (adY)2} X1

X (adY)X (adYfX

is a basis of sl(k) The element X1 of the abelian nilpotent subalgebra
{X,X2, ,Xk~~ι) is the highest weight vector for the su(2) representation 2r + 1
lying in the decomposition (4 2) of sl(k).

It is convenient to exploit the representations of su{2) on homogeneous poly-
nomials over CP 1 , since the invariant homogeneous polynomials are known [6],
and also it connects with the spectral curve approach. The r + 1 dimensional su{2)
representation r + 1 is defined on degree r homogeneous polynomials by the iden-
tification

d d d d
vίo oζ\ cζ0 cc,i

In the case of degree r homogeneous polynomials we can identify highest weight

vector ζ\ and basis {ζ\,(ζo-£-)ζ\, ,(ζojr)}ζ\} Thus we can relate a degree 2r

homogeneous polynomial q2>(ζo,ζi) and a matrix S in the 2r + 1 representation

of the decomposition of sl{k) by rewriting #2/(Co>ίi) a s ^2/(Co^~)Cf a n ( i then

letting

S = q2f(adY)X> (4.6)

The lowest degree Γ-invariant polynomial is of degree 6 It is

CiCo-CiCo (4.7)

There is a degree 8 Γ-invariant polynomial

Ci + HCίCo + Co (4 8)
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which is also invariant under the octahedral group Thus, in addition to the SO(3)
invariant there are Γ-invariant Nahm triplets lying in the 9 representation and in
both the 7 representations It is convenient to write (9M Θ Ί_m θ 5/) θ (7W θ 5_m 0
1/) O (lu θ lm ® I/) so that we may distinguish l_m and Ί_u.

We can now construct the Γ-invariant Nahm triplets in 9U and Ί_u by (4 6) and
the inclusion

2r+ 1 ^ 3 0 2r - 1 = 2r + 1 0 2r - 1 0 2r - 3

(4 9)

We choose matrices

0
0
0

0
2

0
0

7 =

0 0 0 0

V3 0 0 0
0 2 0 0

0 0 \/3 0

JT

3 0 0
0 1 0
0 0 - 1
0 0

0
0
0

0 - 3

Polarizing (4 7) yields

£i®(20Cfo)

which we put into the form

Ci ξ0 (

" 6 i ς ° "

and convert to k x k matrices

X ® 5adYX2 + adYX 5 - --(adY):

6

(4 10)

(4 11)

(4 12)

These matrices were calculated explicitly using MΛPLE and are proportional

/3 0

(4.13)
to

Z, =

0
0
0
0

0

Λ/3

0
0

2V3
0
0
0

0
0
0
0

0
0
0 -
0

0
0
0

-V3

0
0

-2>
0

0
0
0
0

Z7 =

0 0
0 0

-y/ϊ 0
0 -Λ/3

0 V3
0 0
0 0

(4.14)
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Similarly polarizing (4.8) yields

ξ] 0 (56ςf + 168ςfCo) + 2Ci ίo 0 (224ζ^C^) + ξ2

0 0 (168ζ?ζg + 5 6 $ ) ,

which becomes

4"

353

(4 15)

15

28

yielding the invariant Nahm triplet

0 0 0 -20

4\/3 0 0 0
0 -12 0 0

0 0 Λy/Ϊ 0

0 - 2 Λ / 3 0 0
0 0 6 0

0 0 0 - 2 ^
10 0 0 0

Y? =

7

90

p

/

- 4
0
0
0

0
12

0
0

6"

\

)

0
0

- 1 2
0

0
0
0
4

(4 16)

(4.17)

We calculate the Γ-invariant in Ί_m by constructing an isomorphism between it
and Ί_u We observe that X ® X} is a highest weight vector of the representation
2r + 3u and a basis can be generated by successive application of (adY 0 1 + 1 ^
adY) Thus, for example, the invariant (4 13) can be written

5(adY (8) 1 + 1 (8) adY) (adY
24

%adY)5 \X(g)X2 . (4 18)

The highest weight vector for 2r_+_3/w is easily calculated by noting that it is anni-
hilated by (adX 0 1 + 1 0 adX) It is (adYX ®Xl + ] - y^X 0 adYX1 + λ ) . W e can
then map

2r + 3If - ^ 2r + 3m

by

adYX
r + 1

(4 19)

(4 20)

Thus the 2m invariant is

5(adY 0 1 + 1 0α</7) (αJ7 0 1 + 1 ®adY)A (adYX®X3 - -X 0 αί/7X3 J

= X 0 f-

5

72
(4.21)
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with corresponding matrices

Ί —

0
0

0
6

- 2 Λ/3

0

0
0

0
6

0
0

0
0

-2\/3
0

ίr3 =

0

χ/3
0
0

w2 =

0
0

- 3
0 Λ

2

-

0
0
0

/3

0
0

Λ/3

0

3 '

0
0
0

0
0
0

-2 Λ/3

2X/3

0
0
0

0
- 2 \

0
0

(4 22)

The easiest way of calculating the SO(3) invariant is to observe that it is anni-
hilated by both (adX <g) 1 + 1 0 adX) and (adY (g) 1 + 1 ® αoΎ). It is

(4.23)

0 {adYfX - adYX

= X 0 (-2Y) - adYX 0 // +

We now change basis so that the SO(3) invariant is given by (pi,/?2,P3)? the
sιι(2) basis satisfying [p\,p2] = 2^3, etc

Y), P3 = (4 24)

Thus

(4 25)

We drop the primes on the trans-and similarly for (Zj,Z2,Z3) and (W\^W2^
formed quantities.

With a view to calculating the Nahm equations the commutation relations satis-
fied by the invariant Nahm vectors were calculated using MAPLE

ι,p2] = - 4 Z 3

Writing

= x(s)pι + y{s)Y, + z(s)Zi + w(s)Wi

(4 26)

(4 27)
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the Nahm equation ^ = [T\,T2J reduces under the requirement of Γ-symmetry to
the set of coupled nonlinear equations

ύfa 5 5

/ = - 8 y 2 + - z 2 + -H' 2 - 6xy , (4.29)
ds 5 5

— = -4xz - 32yz, (4 30)
ds

— = 2xw+ Iβwv (4 31)
ds

Calculation of the polynomial det(>/ + (T\ + iT2) - 2zT3ς + (T\ - iT2)ζ2) gives the
spectral curve

if + cληζ(ζA - 1) + C!C2(ς8 + 14C4 + 1) = 0 , (4.32)

where

c i = 288z(x2 + 4v2 + 3w2 - 4xj;) Ξ 288/cί (4.33)

and

c 2 = (60v2 + 3z2 - 3w2 + 20xj;) = ic'2 (4.34)
2ooz 28o

are constants
To solve these equations, we observe that w can be set to zero, so we do so.

We let u = x - 2y and v = x + $y to get

fs=2uv, (4 35)

z = A (4 36)
ir

and

Define κ4 = —\6c\c'2 and a = 8cj//c3 to obtain

4— = - v W * - 4/c4 + 3a2κβu~2 (4 38)
ds

Let / — /C5 and u(s) = —κy/p(t)/2 giving

(4 39)
p(0,

Thus p(/) is the Weierstrass function satisfying

p12 = 4pi _ 4 ^ + \2a2 (4 40)
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Hence (4 28)-(4 31) are solved by

W W " ' C ' (4 41)

(4 42)

icικ
z(s)=—-— (4.43)

2p(κs)

w(s) = 0 (4 44)

In order to determine that these Nahm data correspond to a monopole we need
to examine the boundary conditions As t —» 0, p(t) ~ t~2 and so

x ~ , y~0, z - 0 (4 45)

Therefore at s = 0 the residue of T, is —\pt and so it forms an irreducible repre-
sentation of SU(2) As t —> 2(01 (the real period of the elliptic function p(/))

x - ^ , y~—τz, z - 0 , (446)

where ϊ = 2coi /c"1 - .v, and so the residue of Tι is Rj — — ^ p , + J Q ^ The eigen-
values of 2/7̂ 3 are {3,1,-1,-3} demonstrating that the Rj's are an irreducible
representation of SU(2) Furthermore the functions x,y and z are analytic for
t £ (0,2(0}) We set K — o)\, so that the poles occur at s = 0 and ^ = 2 This demon-
strates the existence of a one parameter family of monopoles with spectral curves

η4 + i36aκ3ηζ(ζ4 - 1) + 3κ4(ς8 + 14ς4 + 1) = 0 . (4 47)

A single monopole with position (JC 1,^2^3) n a s spectral cm*ve

η - (x\ + ix2) + 2x3ζ + (x] - ix2)ζ2 = 0 (4 48)

The product of four spectral curves corresponding to four monopoles positioned at
the vertices

b, +b, +b\(+fe5 -b, -b),(-b, -b, +b),(-b, +6, -b)} (4 49)

of a regular tetrahedron (where b > 0) is

?4 - \6ib3η(ζ5 - 0 + 464(ς8 + 14ς4 + 1) - 0 . (4.50)

The spectral curve (4 47) has this form when

a = -3~5'4\/2 (4 51)

Examination of the integral expression for /c,

κ = ]-?== 4

X

 2 6 > (4 52)
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where X is the first positive real root of 0 = 1 - x4 + 3a2x6, shows that K —> oo as
a -> ±3~5AV2 but it is finite for a G (-3~ 5 4 \/2,3- 5 4\/2). We conclude that as
a approaches — 3~54\/2 (4.47) describes the supeφosition of four well-separated
monopoles on the vertices (4 49) of a tetrahedron, with the distance between
monopoles equal to 3V4κ The tetrahedron dual to the one above has vertices

{(-/>, -b, -bl(-b, +6, +b\(+Z>, +b, -b),(+fc, -6, +£)} (4 53)

with a corresponding product of spectral curves given by

η4 + \6ib3η(ζ5 - ς) + 464(C8 + 14ζ4 + 1) = 0 (4 54)

Clearly this is the form of the spectral curve (4 47) when a — 3"~5 4\/ϊ
If a = 0 then z = 0 and /c is given by

Γ(l/4)2

V ' } (4 55)
2\/8π

so that the spectral curve becomes that of the cubic 4-monopole given by (2 5).
We have derived a one parameter family of 4-monopoles with tetrahedral sym-

metry They correspond to a one parameter family of spectral curves. We can use
this one parameter family to discuss low energy scattering of 4-monopoles because
it is a geodesic in the 4-monopole moduli space. In order to prove that the one
parameter family is a geodesic in the 4-monopole moduli space we must allow
for the possibility that the function w is non-zero We will find that solutions to
the tetrahedral Nahm equations (4 28)-(4.31) correspond to the same one parame-
ter family of spectral curves irrespective of whether or not w is set to zero This
means that the fixed point set of the tetrahedral symmetry in the 4-monopole mod-
uli space is one dimensional and since the fixed point set of a group action on
the moduli space is totally geodesic this means that this one parameter family is a
geodesic

If w is not set to zero, we find that

dw
= 2wv

ds

and that the equation for ^ , (4.35) is unchanged Thus

τ()° (456)

ds \uJ

which implies that w oc u For convenience we choose the constant to be 4= sinh θ

Furthermore if we set
a2 = u2 + 3 w 2 ,

then ύ satisfies exactly the same equations as were formerly satisfied by u and
replaces u in the expressions for the two constants, c[ and c'2i i e ,

Ts= 2ύv' ( 4 5 7 )

(4 58)
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and

The solutions w, v are identical to the earlier solutions w, y in the w = 0 case so

that now

ΛύsQchθ + v , A ^ x

, (4 60)

v =

5

v — u sech θ

Ίo

utanhθ , „ x

w = — ^ - (4 61)
v3

It can be seen by explicit calculation that the matrix residues at both ends of the
intervals are irreducible representations irrespective of the value of 0. Thus the
Nahm data always corresponds to a monopole However, it is clear from the above
construction that the constants c\ and c'2 are independent of θ. Hence changing the
value of 0 does not change the spectral curve. There is a one-to-one correspondence
(up to gauge transformations) between monopoles and spectral curves, so changing
the value of 0 simply corresponds to a gauge transformation of the Nahm data. So,
by a suitable choice of gauge we can set 0 = 0 without loss of generality. This
means that we have arrived at a one parameter family of monopoles by forcing the
4-monopole to admit tetrahedral symmetry. This proves that the family of monopoles
is a geodesic in the 4-monopole moduli space

In the moduli space approximation [7, 9] the dynamics of k monopoles is ap-
proximated by geodesic motion on the ^-monopole moduli space . Φik In this section
we have identified a totally geodesic one-dimensional submanifold of ,#4 and so
we can use the moduli space approximation to convert this into a result on four-
monopole scattering Since our submanifold is one-dimensional the explicit form of
the metric is not important The information we lose by not knowing the metric is
how physical time is related to the parameter a, but this is not serious. The above
results, therefore, have the following interpretation in terms of monopole scattering
Four monopoles approach from infinity on the vertices of a contracting regular tetra-
hedron, coalesce to form a configuration with instantaneous octahedral symmetry,
and emerge on the vertices of an expanding tetrahedron dual to the incoming one.

To make the above scattering process a little clearer we give a schematic repre-
sentation in Fig. 3 We draw a cube whose centre is at the origin and whose edges
are parallel to the coordinate axes, it is to be associated with the cubic 4-monopole
(compare Fig 2) The incoming monopoles are represented by black spheres and
the outgoing monopoles by white spheres, with an arrow indicating the direction
of motion for each Note that if one tried to extend this asymptotic interpretation
to the region in which the monopoles are close together then one would conclude
that the monopoles suffer no deflection and simply pass through each other But
this is misleading, since each of the outgoing monopoles cannot be identified with
a single incoming monopole but is a composition of all the incoming ones. (A sim-
ilar misleading interpretation exists for the scattering of three topological solitons in
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Fig. 3. Schematic representation of 4-monopole scattering

the plane. For k solitons in the plane with cyclic Q- symmetry the solitons scatter
through an angle π/k, which for k = 3 could mistakenly be taken for zero scattering
angle )

To obtain a true picture of the scattering process, one needs to examine
the energy density during the motion Using our numerical scheme we can do
this Fig 4 shows a surface of constant energy density 3 — 0 06 for the five
values a = -0.25, - 0 18,0.00, +0 18, +0 25 We see that, indeed the energy den-
sity is initially localized in four regions roughly centered on the vertices of
a tetrahedron Let us think of these vertices as being opposite comers of a
cube as in Fig 3 On any one face of the cube the incoming energy density
is concentrated on two opposite comers of the face (black spheres in Fig 3)
and it flows around the edges of the face until it is localized on the two remaining
corners (white spheres in Fig 3) as the monopoles separate. This suggests that a
useful way to view this scattering process is as pairs of 90° scatterings occurring
simultaneously.

5. Conclusion

Using a numerical scheme we have computed the energy densities of a 3-monopole
with tetrahedral symmetry and a cubic 4-monopole with octahedral symmetry whose
existence was recently proved [4] We then proved the existence of a one parameter
family of deformations of the cubic 4-monopole which has tetrahedral symmetry In
the moduli space approximation this describes a 4-monopole scattering process and
we used our numerical scheme to analyse this further.

There are a number of interesting aspects which remain in the study of
monopoles with the symmetries of regular solids One obvious task is to construct
a family of 3-monopole solutions which describes the scattering process in which
the tetrahedral 3-monopole is formed. This problem is currently under investigation
but is more difficult than the scattering considered in this paper, since the family
has only C3 symmetry which is not as useful as the tetrahedral symmetry which al-
lowed us to solve the corresponding problem in the 4-monopole case Another issue
is that of a monopole with icosahedral symmetry A monopole with icosahedral
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Fig. 4. Four monopole scattering; smface of constant energy density
a = - 0 25, (2) a = - 0 18, (3) a = 0 00, (4) a = 0 18, (5) a = 0 25

" = 0 06 for values (1)

symmetry has to have charge at least six, but in [4] it was proved that no such
monopole of charge six exists We have proved that an icosahedral monopole of
charge seven exists and are currently investigating its properties These results and
others on symmetric monopoles will be presented elsewhere [5]
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