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Abstract: The dynamical behaviour of an incompressible viscous fluid flow on a two-
dimensional torus externally excited by a spatially periodic force is investigated. The
flow field, described by Navier-Stokes equations, is found to possess a sequence of
time-periodic solutions which bifurcate from a single steady state solution (i.e. Hopf
bifurcations). This result is based on a combination of analysis and computations, and
each provides corroborative evidence to the findings of the other.

1. Introduction

The Hopf bifurcation plays an important role in describing the behaviour of nonlinear
phenomena occurring in the theory of dynamical systems (see for example, Marsden
and McCracken (1976), Guckenheimer and Holmes (1983), Thompson and Stewart
(1986)). In the flow of a viscous fluid, for example, it is commonly supposed to
appear in transition from a steady state to a time dependent periodic flow. Landau
(1944), Ruelle and Takens (1971), Newhouse et al. (1978) considered Hopf bifurcation
to occur in the initial stage of transition from laminar to turbulent flows. However,
from a strictly rigorous analytical viewpoint detailed studies of the existence of Hopf
bifurcations in fluid motions are rather limited. The reason for this lies in the lack of
efficient analysis methods to solve the problem, partly because the dynamical system
modelling the fluid flow has an infinite number of degrees of freedom.

The Hopf bifurcation is central to the theme of this paper and through a combi-
nation of analysis with computation, we discuss its occurrence in an incompressible
viscous fluid flow on a two-dimensional torus externally excited by a sinusoidal force.
To do so, let k > 1 be a positive integer and ̂ 2 the two-dimensional torus S^1 x S^1

with ̂ ?1 the unit circle ^%/(2π&). Thus, in an incompressible viscous fluid, we ex-
amine the behaviour of time dependent periodic Navier-Stokes flows excited by a
spatially sinusoidal external body force (4A:2sin2A;y,0).

The dynamical behaviour of this fluid flow system defined in terms of velocity
u = (u\, U2) and pressure p is described by the Navier-Stokes equations
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dtu - Δu + λu Vu + Vp = (4 k2 sin 2ky, 0),
V t* = 0,

u(t,0,y) = u(ί,2π,2/), y G [0, 2ττ), t > 0, u;

w(ί, x, 0) = ifc(ί, x, 2π), x G [0, 2π), ί > 0.

Here Z\ and V denote the Laplacian and gradient operators respectively, ds = d/ds
for s = t, x and y, and λ > 0 represents the Reynolds number defining the viscous
fluid motion.

To ensure the uniqueness of the solution to Eq. (1), we require the additional
condition

= 0, t e(0,oo).

The flow problem defined by these equations was first formulated by Kolmogorov
(see, Arnold and Meshalkin (I960)), and is commonly referred to as the Kolmogorov
problem (see, for example, Okamoto and Shoji (1991)).

Meshalkin and Sinai (1961) investigated the global stability of an incompress-
ible fluid motion in a two-dimensional torus generated by an external sinusoidal
force. From their study it follows that the global attractor of Eq. (1) with the
force (4/c2sin2/q/,0) replaced by (siny,0) consists of the only steady state solu-
tion (sinτ/,0). Moreover, if we consider the force (k12 sin k'y, 0) with k' > 2 instead
of (4k2 sin 2%, 0) with k > 1, the existence of steady state solutions different to the
simple one (sin k'y, 0) can be obtained by following the approach of the study from
ludovich (1965). However, for the forcing assumed in this paper, it is found that
there can also exist time dependent periodic solutions. ludovich (1971) also derived a
general existence result relating periodic solutions to the Navier-Stokes equations us-
ing the Lyapunov- Schmidt method. However, for the torus problem under discussion
here, this result is difficult to apply because of the complexity of the eigenvalues asso-
ciated with the linearized Navier-Stokes operator. Liu (1992a,b) examined instability
of motion on the torus with reference to Hopf bifurcations, whereas Franceschini et
al. (1988) and Okamoto and Shoji (1991), through numerical experiments, truncated
the dynamical system modelling the fluid flow to one of finite dimensions. One can
also refer to the study of Marchioro (1986) for an alternative approach confirming the
result of Meshalkin and Sinai (1961).

In order to discuss the Hopf bifurcations and the subsequent time dependent peri-
odic flows in the viscous fluid on the two-dimensional torus, this paper is organised
as follows. In Sect. 2, we formulate the model describing the forced fluid motion,
and prove that this problem has infinite invariant spaces. Therefore we reduce the
fluid motion within a general space to one which is invariant with respect to Eq. (1)
and this may contain periodic flows. In Sect. 3, we study the spectral problem of

the linearized Navier-Stokes operator in [y/3k] different invariant spaces, and find, in
each such a space, a non-real eigenvalue arising on both sides of the imaginary axis
as the Reynolds number varies. Here [α] denotes the integer part of α. This finding

suggests that Eq. (1) admits [Vΐk] Hopf bifurcation values. In Sect. 4, to support

this suggestion, we truncate the Navier-Stokes equations to [\/3k] coupled sets of
five ordinary differential equations. Each set reveals Hopf bifurcations, and the bi-
furcated time dependent periodic orbits always appear to be limit cycle solutions for
all Reynolds numbers. In Sect. 5, as an example, we provide computional results in
the form of phase portraits for the limit cycle solution for the special case k = 1.
To provide additional evidence to confirm these theoretical and computational results,



Periodic Navier-Stokes Flows 579

the Navier-Stokes dynamical system is truncated to a thirteen-dimensional dynami-
cal system. (The latter is computationally manageable without excessive difficulty.)
This extended investigation further corroborates the trends observed in the findings
of Sects. 3-4.

In brief, this investigation shows that the time dependent Navier-Stokes flows
excited by a prescribed spatially sinusoidal external force exhibit [>/3fc] Hopf bifur-
cations and when the Reynolds number increases through each of these bifurcation
values a periodic flow arises from the steady state solution. Furthermore, no second
step bifurcation was observed in the flows as Reynolds number varies.

2. Existence of Invariant Spaces

It is easy to verify that u = (sin 2%, 0) is a steady state solution of Eq. (1). However,
in this paper, we are interested in the existence of solutions bifurcated from (sin 2ky, 0)
and satisfying the time dependent periodic condition:

u(t, x, y) = u(t + T, x, y), (ί, x, y) G (0, oo) x [0,2ττ] x [0,2ττ]

with period T > 0.
To address this problem, it is more convenient to adopt the stream function ψ -

rather than u - with vorticity cuήu = — Δφ and velocity u = (u\, u2) = (dyψ, —dxψ).
This allows the elimination of the pressure from Eq. (1) which now takes the form

dtΔφ - Δ2ψ + \(dyψ dxΔψ - dxψ dyΔψ) = 8/c3 cos 2ky (2)

associated with the modified condition

ψ(t,x,y)dxdy = 0, (3)

ensuring uniqueness of solution. Note that both (λ,^) and (—λ, —ψ) satisfy Eq. (2)
and therefore, if λ0 is a bifurcation value so also is — λ0.

To help formulate the discussion, the following spaces are adopted:

L2 = the L2space | ψ : ̂ 2 -> 3% \ ||^||2 = I \ψ\2dxdy < oo 1 ,

VF2'2 = the Sobolev space {ψ e L2 \ Δψ e L2} ,

H = the quotient space

H2 = the quotient space W2>2/M.

Note that the multiplication φψ G W2'2 whenever φ, ψ G VF2'2. This allows H2

to be a Banach algebra by defining the product φ - ψ = φψ in H2. Thus we can now
introduce the following subspace of H2:

H2^k = the Banach subalgebra of H2 generated by the three elements

cos ky, cos(lx — ky) and cos(/x + ky),

where / is a positive integer.
Obviously, H2, k C H2

k when V /I > 1 is an odd number, and furthermore there
holds the following characterization:
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{ oo oo

Ψ G H2 I ψ = y^ y^ rym>n cos(2mlx — Ix + 2n&y + fcy)
m=l n=—oo

oo oo oo ^

n=l ?7i=l n=— oo J

Additionally, observing that the inverse Δ~l : H —> £Γ2 of Z\ is continuous, we can
rewrite Eqs. (2-3) in the form of a functional differential equation:

-£-Δ<ψ = Λ WO, (4)

where

= — \A (dyψ dxΔψ — dxψ dyΔψ) — 2k cos 2ky

We thus seek Hopf bifurcations and periodic solutions of Eq. (4) in H f k , which
are now proved to be invariant with respect to Eq. (4).

Let etΔ,t > 0, be the contraction analytic semigroup in H generated by the

Laplacian. Since etΔ cos(mx + ny) = e~(πι +n }ί cos(nx + my), we see that

etΔψ, etΔfχ(ψ) G Hfk whenever ψ G H^k and t > 0.

Thus we state the invariance result in a slightly general form.

Lemma 2.1. Let HQ be a Banach subalgebra of H2 such that

etΔψ, etΛf\(φ) G HQ whenever <ψ G H0 and t > 0. (5)

Then there exists a unique solution ofEq. (4) such that

ψ G C([0, oo); HQ) and -0(0) = ̂ o

Proof. Note that for ψ G C([0, oo); H2), Eq. (4) is equivalent to the integral equation

/•*
Ψ(t) =

Jo

To ease the subsequent discussion, let FφQ(φ) denote the right-hand side of this integral
equation with Fψ0 representing an operator.

To study the fixed point problem of this operator, let us begin by introducing a
local existence argument. Given δ > 0, K > 0, and defining

W(δ,K,<φώ = ίψ G C([0,«];flo) I 11^ - Ψo\\w = max^ \\Aφ - Δψ0\\ < K\
I O^ί^σ I

we have for ψ G W(6, K, /0o)» 0 < t < δ and a generic constant c > 0,
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ft

= II / {dxe
(t-s}Δ(dyψΔψ)-dye

(t-s}Δ(dxψΔψ)-8k3e(t-s)Δcos2ky}ds\\
Jo

rt
< c (t-s

Jo

< c I (t - s
Jo

< cK2tl/4 + I6k3πt < cK2δl/4 + 16ArV<5,

where use is made of the Holder inequality, the Lp — Lq estimates and the Sobolev
imbedding inequality (see, for example, Triebel (1978)). Similarly, we have for ^, Φ G
W(δ, K, ψ0) and 0 < t < <S,

\\Aφ(t) - Δφ(t)\\ < cKδl/4\\ψ - φ\\w.
0<t<6

Thus, by Eq. (5) and the strong continuity of etΔ, we find that Fψ0 is a contrac-
tion operator mapping W(δ, K, ^o) mto itself, provided that δ is sufficiently small.
Therefore, the Banach fixed point theorem implies the uniqueness and existence of
the solution to Eq. (4) in W(δ, K, 00)

Additionally, if ψ G C([0,T);flo) satisfies Eq. (4) for some T > 0, we see that
the solution ψ is smooth. Multiplying Eq. (4) by Δ2ψ and integrating over ̂ 2, we
obtain

< 2||4A:2cos
at

and so

d|l^!|2 + \\Δψ\\2 < ||4A;2cos2%||2 = 32k4π2,

and hence for 0 < t < T,

+ 32Jfe4π2.

Through the local solution extension procedure, we arrive at the desired conclusion,
and the proof is complete.

With this lemma, we may reduce Eq. (4) defined in space H2 to the subspaces
H2

k and thus greatly simplify the problem. More specifically, we seek time dependent
periodic solutions of the equation

(6)

for 1 < I < \/3fc (The imposition of this latter restriction on / is discussed in the
following section.)
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3. Spectral Problem

Let
Aχ = Δ- XΔ-l(sin2ky(Δ + 4k2))dx,

which is the Frechet derivative of Aψ + fχ^φ) with respect to the steady state solution
—(l/2k)cos2ky. We note that A\ contains the operator A + 4k2, which, in fact,
allows the existence of non-real eigenvalues across the imaginary axis as λ increases.
A Hopf bifurcation is essentially based on such an observation (see, for example,
Guckenheimer and Holmes (1983)). This section is devoted to the determination of
the eigenvalues of the operator A\ in H2^ which, for convenience, is supposed to
be a complex space in this section.

Theorem 3.1. For every λ > 0, the spectral problem

Aχψ = p(X)ψ. (7)

in H2

k has no eigenvalues with nonnegative real parts provided that the integer I >

\/3fc, and it has an eigenvalue pι(X) with lmpι(X) ^0 such that

lim pι(X) = -I2 - k2, Repz(λz) = 0, Repz(λ) > 0 (λz < λ < λ; + δ) (8)
Λ—>Ό

for some positive constants \ι and δ, provided that 1 < I < \/3 fc.

Proof. Firstly, we derive an alternative form of Eq. (7) and prove the assertion in the
case I > Vϊk. Observing that

ψ = y . ζrn cos(/x + 2mky + ky) >
ra=—oo )

is an invariant space with respect to the operator A\ for every I > 1, we may consider
Eq. (7) in H2

k. That is, we reduce the spectral problem of the operator A\ in H2

k

to that in H2

k. Letting W be the complex plane, and (p, ψ) e W x (H2

k \ {0}) be
a solution to Eq. (7) with

oo

Ψ = / ] ζι,mcos(/x + 2mky + %),
m=—oo

we have for m G ,̂
1 r

0 = —2 / (A\Ψ — pψ) cos(lx + 2mky + ky)άxάy

2 2 1 ,̂ 2 2 2P ς/,m 2π2 Z^ f'n

n=—oo

• / cos(/x + 2mky + ky)Δ~1 {sin 2/cy sin(/x + 2nky + ky)} άxάy
Λ^2

)k + k)2-4k2)^

Xl(l2 + (2(m - l)fc + fc)2 - 4fc2)

2(l2 + (2mk + k)2) 'm~'

/,m-ls/,m-l /αx' - , (9)
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where
A,m = I2 + (2mA: + A:)2 and αz>m = l(l2 + (2mA; + A;)2 - 4k2). (10)

Following the reasoning of Meshalkin and Sinai (1961), it is easy to verify that
^ m ^0 for all m G £&. Thus by defining

7Z,m = l>m l>m for m > 0,

(11)

7z,m = —l>m l>™ for m < 0,

and using the fact ψ G H2

k, we obtain the boundedness of 7/?m with respect to
m G £5. It follows from Eq. (9) that

-1

7z,m+l

7Z,m = 7̂75 - Γ7V3 - fθΓ

We thus have 7/>m — > 0 as m — > ±00, and so

J_

7l,m = 7̂75 - ΓTV^ - ϊ - fθΓ

_

λαz>m 2(βι,m-ι + P)βι,m-ι J_

and hence 7/,0 = -7z,-ι since Eίl (1°) implies ^?_m = β^m-\ and α/,_m = αZ ) m_ι
for m > 1. On the other hand, by Eq. (11), 7^0 = l/7/,-ι, and so 72

0 = — 1. We note
that if p satisfies the equation 7^0 = i, P satisfies the equation 7^0 = —i. Therefore,
Eq. (7) becomes the equation 7^0 = i or by Eq. (12) with m = 0,

λαz,0

λα/?ι

λα/,2

From Eq. (10), we see /?/,m > 0 and α/?m+ι > 0 for a l l / > 1, and m > 0. Thus, if
this equation has a solution with Rep > 0, then

α i j 0 = l(l2 - 3k2) < 0.
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This is impossible if I > V3k. Moreover, for such an integer I, it is readily seen
that Eq. (7) in W x H\k has no other non-trivial solution (p, Ψ) with Rep > 0. This

shows the assertion in the case / > \/3fc, and hence we derive the condition, / < v/3&,
imposed in Eq. (6).

Secondly, we show the existence of the eigenvalue p with Rep > — βι$ and

Imp ^ 0 when 1 < / < \/3fe Imp ̂  0 is obviously valid if p satisfies Eq. (14).
Multiplying Eq. (14) by λα^o/2/3^0 yields

Let
μ = Rep, z/ = Imp, and Φλ,z(μ, v) = (Re^λ,z(μ, z'), Im#λ,z(μ, ^)),

where \P\j(μ,v) denotes the left-hand side of Eq. (15). This equation is solved when
a suitable value is found for (μ, v) = (μ/(λ), z//(λ)), a fixed point of Φχ,z

Note that 1 < / < Vϊk implies α/5o < 0, which yields

and
lir/ Λ ι , Λ j . / q i ̂\Ψχ,ι(μ, v} + βifll <

for all μ > — /3/>0 and z/ G J^. Setting the constant

K(\\ =1 ;
2/3z>0 4A,o

we have
Φλ,/ : [-A,o, K] x [-̂ , K] ̂  [-/3/j0, /f] x [-/f, If].

Since ΦA,Z is a continuous function and the set [— /3/}o, if] x [— -K", if] is homeomor-
phic to the unit disk of J%2, by the Brouwer fixed-point theorem (see, for example,
Massey (1991)), Φλ,z admits a fixed point (μ/(λ), z/ι(λ)) G [- ,̂0, 1̂ x [-K, K] or

(16)

(

Finally, it remains to prove the validity of Eq. (8) for p/(A) = μz(λ) +
Observing that limλ^o K(X) = 0, we have

#λϊKμKλ), ^z(λ)) -> -/?/,o as λ -. 0,

and by Eq. (16), μz(λ) — > — A,o < 0 as λ — > 0. Additionally, let us suppose that, on
the contrary, μι(X) < 0 for all λ > 0. It is not difficult to verify that z/ι(λ) = O(λ)
as λ tends to infinity by using Eq. (16) and the fact Iimm_,oo7/?m = 0. Thus for λ
sufficiently large, it is valid that ReΦλ,z(μz(λ), ̂ (λ)) > 0, and so μ;(λ) > 0 by Eq.
(16). This leads to a contradiction, and completes the proof.
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4. Hopf Bifurcations

From Theorem 3.1 we see that a pair of conjugate eigenvalues of A\ arise in the right
half complex plane as the Reynolds number increases across \ι for every 1 < I <

\/3A:, and the corresponding eigenfunctions are in the space Hfk. This provides limited
evidence for the existence of Hopf bifurcations in the infinite-dimensional dynamical
system represented by Eq. (6), and thus the existence of periodic Navier-Stokes flows
in the spaces Hfk. Although a rigorous mathematical proof of these statements is
not available, fortunately by numerical experiment they can be substantiated. For
example, by truncating Eq. (6) with 1 < I < \^3k into a coupled set of ordinary
differential equations, a Hopf bifurcation with respect to bifurcation value λ/ can be
demonstrated.

Let us begin with an observation to strengthen credence in the proposed truncation
scheme. Since the Navier-Stokes flow is excited by a vector field in span { cos 2ky},

and the spectral problem studied in Sec. 3 is only considered in the space H2

k,

therefore H2

k x span{cos 2ky} is the key subspace to investigate the Hopf bifurcation
problem. Moreover, suppose that

ψ=

is an eigenfunction of A\ associated with the eigenvalue pι(X). It therefore follows
from Eq. (9) that

(I2 + (2mA: + k)2 + p)(l2 + (2mk + &)2)6,m -» 0 as m -> oo

and hence for every n > 0,

(2mA: + k)nξ^m — » 0 as m — > oo.

This suggests that the modes cos(/x + 2mky + ky) for m large have little influence on
the bifurcation problem. From Eqs. (12-13) we see that the mode cos(lx + 2mky + ky)
exhibits limited symmetry with the mode cos(/x — 2mky — ky) for every m > 0 in
the spectral problem examined in Sec. 3. Furthermore, it is easy to verify that the
projection of Eq. (6) onto the space

spanjcos 2ky , cos(£x — ky), cos(lx + ky)}

produces a coupled set of three equations, which is globally stable and hence, no
bifurcation is possible. It also follows that the simplest construction onto which the
truncation can produce a coupled set of equations exhibiting Hopf bifurcations is the
five-dimensional space

span{cos 2ky, cos(/x — 3ky), cos(lx — ky), cos(lx + ky), cos(lx + 3ky)}.

The projection of Eq. (6) onto this space allows the Navier-Stokes flow defined
by Eq. (6) to be truncated in the following manner:

5

Ψ = X\(t) cos 2ky + Y^ Xn(t) cos(lx + 2nky — Iky),
n=2
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and with this representation, we find that the nonlinear term can be expressed in the
form

4

^ kl(4k2 -I2- (Ink - 5fc)2)*ι*n+ι cos(lx + 2nky - Iky)
n=2

5

~ /2 - (2nk ~ 9A02)Xι^n-ι cos(lx + 2nky - Iky)
3

5
3Sk3l(n - 4)XnXn_ι cos 2ky + E,

n=3

where E is a term orthogonal to the five-dimensional space. Thus the set of truncated
equations

/ (— - Δψ - f\(φ))φάxάy = 0, φ = cos 2%, cos(lx+2nky-lky), 2<n<5
J&T da

gives

— = -4k2 Xi + 2XlkX2X3 - 2XlkX4X5 - 2k,
at

(17)

Let us examine this coupled set of equations to find a supercritical Hopf bifurcation
value λj* approximating the true bifurcation value λ/ of Eq. (6). When λ increases
across λ^*, a limit cycle solution arises from the equilibrium point (— l/2fc, 0, 0, 0, 0),
which corresponds to the steady state solution —(l/2k)cos2ky of Eq. (6).

For simplicity, let

a = l2 + k2,b = 9k2 + 12, c = 3k2 - I2 and d = 5k2 + 12, (18)

and Eq. (17) becomes

— = -2k(2kXλ + 1) + 2\lk(X2Xι - XA), (19)
at

dX2 hγ Xlkc
—— = -0X2 -- — AιA 3 , (20)

at b
άX* Y X l k c γ γ X l k d γ γ πn— — = -aA3 -- AιA 4 -- AιA 2 , (21)
at a a

άX4 Xlkc Xlkd v
Xs, (22),at a a

άX5 hY ±λlkcγ Y nτ\— — = -bX5 + —— AιA 4 . (23)
at b
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Denoting B\j(\) to represent the Frechet derivative of the right hand side term of
Eqs. (19-23) with respect to X = (X\, X2? ^3? XΛ, Xs), we see that B\j(X) represents
the matrix

/ -4k2

XlkcX3

b
Xlk(cX4 + dX2)

a
Xlk(cX3 + dX5)

a
XlkcX '4

2XlkX3

h

XlkdX{

a

0

π

2\lkX2

XlkcXl

b

λlkcXi

a

π

-2XlkX5

0

XlkcXl

a

XlkcXi

-2XlkX4 \

0

0

XlkdXl

a

h

Specifically, we have

Bλ,ί((-l/2fc,0,0,0,0)) =

with characteristic polynomial

0 = det(βλ((-l/2Λ,0,0,0,0))-/>/)

/ -4k2

0

0

0

, 0

0

-b

Xld

2a

0

0

0
Xlc

~2b

—a

Xlc

2o

0

0

0

Xlc

2a

—a

Xlc

0

0

0

Xld

~~2a

-b

\

I

XΨcd

4ab

Let us examine the complex eigenvalues of this matrix with p = μ + iv, and assume
μ > 0 is a root of this polynomial. We see that the eigenvalue satisfies the equation

(α + μ + iv)(b + μ + iv) —
X2l2cd . Xlc(b + μ + iv)

4ab 2a
= 0,

giving

ab + 2dμ + μ2 — v1 —

2dv + Ίμv -

X2l2cd Xlcv

4ab 2a
Xlc(b + μ)

2a

= 0,

= 0,

and so
_ Xlc(b + μ)

4a(d + μ)'

After manipulation, these equations give

, X2l2cd\
(24)



588 Z.M. Chen et al.

providing an equation in μ only. Since a Hopf bifurcation, with bifurcation value
A = A*, can only occur when the real part μ is near to zero, Eq. (24) implies that

4abd _ 4(k2 + I2)(9k2 + I2)(5k2 + ί2)

- c2b2 I^4(3k2-l2)(5k2+l2)3 - (3k2-l2)2(9k2+l2)2

when μ = 0. Thus, if ηι(μ, λ) represents the left-hand side of Eq. (24), then at μ = 0,
we have

r7ι(0,λf) = 0,

2d oμ ab 4a2

and

0y?z(0,Ap = Λ*/2c(4d3 - c&)
<9A " Sabd2 < '

by Eqs. (25, 18). Furthermore, by the implicit function theorem, it follows that μ
μι(X) is the only function defined on a small interval (A* — <$, A* + <5) such that

( (\\ \\ n , n * ϊ 0ηι(μι(λ), \) = ( ) , μ ι ( λ l ) = (), — — — = — f~,~ . (Γ. λ i | tχ > 0.
dλ

These results can now be summarised as follows:

Lemma 4.1. For every / = 1, ..., [\/3fc], ί̂ ^ ejc/51^ α unique positive number λz*
associated with an eigenvalue p^(X) of Bχj((-l/2k, 0, 0, 0, 0))/or A > 0 such that

r\

IπvΓίλΠyO, Rep?(λ,*) = 0 and — RepΓ(λ?) > 0.

This discussion is further enhanced for it can be shown that Az* is in fact a Hopf
bifurcation value and there exists a limit cycle solution bifurcated from the equilibrium
solution (-1/2&, 0, 0, 0, 0). This is achieved by multiplying Eqs. (21) and (22) by X3

and X* respectivly, to give

at

at a

The summation of these two equations implies

OK,
3 4 - - ι 2 3 - 5 4 , (26)

Q ΐ CL

and by a similar process it follows from Eqs. (20-23) that
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2 2 2λlkc
= -2D(A 2+A 5) -- - — Aι(A 3 A 2 - A4A5), (27)

v d^4 λ/fcc 2 2 A/fed
A 4— - -- ^3-77- = -- A ι ( A 3 + A 4 ) -- Aι(A 2 A 4 + A3A5), (28)

dί at a a
άX2 dX5 Xlkc

A 5 — - -- XI-TT = -- — Aι(A 2 A 4 + A3A5), (29)
at at b

ά(X3X5 + X4Xι)
- — - = - Aι(A 2 A 3 - A5A4) - 2d(A3A5 + A4A2). (30)

at a

Let us initially assume that X\(t) is convergent as t tends to infinity. That is,

lim *!(*)-> Xι,λ (31)
t— >oo

for some constant XI,Λ (This can always be validated by numerical experiments, see
for example Fig. l(b).) We thus have, by Eq. (19),

\l(X2(t)Xι(f) - X4(t)X5(t)) -> 2feΛΊ> λ + 1 as t -> oo, (32)

and by Eq. (30)

Xlkc
-—Xl(t)(X2(t)X3(t)-X5(t)X4(t))
2ad (33)

when ί is sufficiently large. Under this latter condition, from Eqs. (19, 26-33) it
follows that

yy y yA 2A 3 — A 4A 5 =

AX. Xlkc . Xlk2c
ι,λ

+ 1),

dX2 dX5

With polar coordinate substitution

Xi = r cos #, X4 = r sin #, X2 = s cos $, Jίs = s sin $,

this set of equations becomes

2kXltX + 1
- -mrs cos(θ

ΛL

a
Xlkc

a
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at

and admits a stable periodic solution expressible as

rs cos(# + $) =
XI

—X

2άθ _ Xlkcv_2 Xlk*cv2 ,01.v.ϊλ + 1)
j , " *• l.Λ /Λ 9dί α 2α2

or
d# _ Xlkc(a - 2d)

~άt " 2^d 1 > λ >

^cT«-AI λl^Ai A + A ; ?62

s2^ = -or
d7?

dί

Finally, by Eq. (18), the limit cycle solution for λ > λ* with 1 < / < \/3k can
be expressed as follows:

Λί

ctf _ Xlk(3k2 - I2)(l2 + 9k2)

~άt " 2(/2 + k2)(l2 + 5/c2) 1 > λ > ( }

2 fc(3/c2 - /2) x
ι,λ + D,

\ι—r yι\j~)~

~άt = 2(Z2 + fc2)(Z2 + 5fc2) Xl'λ'

This gives the supcritical Hopf bifurcation for Eq. (17) because this limit cycle is
obviously the equilibrium solution (—/2fc, 0,0,0,0) whenever λ = λ^*.

5. Computational Results

In this section, we provide computational results to strengthen the theoretical findings
presented in Sects. 3-4. From the investigation of Sect. 4, we see that the projections
of the limit cycle solutions of Eq. (17) onto the planes (Xι,X4) and (X^^Xs) are
circles irrespective of the magnitude of λ. This phenomenon is valid for λ « λ/ but
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when A diverges from A / , the truncation of the Navier-Stokes equations in the manner
proposed becomes less reliable. This is because the infinite-dimensional dynamical
system described by Eq. (6) was truncated to a five-dimensional dynamical system
only represented by Eq. (17), and the truncation error is no longer small as A increases
from A / . Therefore to assess the effect of the truncation, a further truncation model
was adopted in which Eq. (6) with k = I = 1 is reduced to a coupled set of thirteen
ordinary differential equations. This of course provides an improved representation
of the ideal situation (i.e. an infinite number of degrees of freedom) and it allows
a relaxation of the condition A = A / , such that A can now be chosen further from
\ι before the truncation error dominates the numerical scheme. Furthermore, through
this process we find that the error between the periodic Navier-Stokes flow described
by Eq. (6) with k = I = 1 and the limit cycle solution represented by the coupled set
of thirteen ordinary differential equations is very much reduced. It should be noted
that in this numerical example no second step bifurcation was found as A increases.

From the analysis described in Sects. 2-4, we note that there is little significant
difference amongst the topological structure of the periodic flows defined by Eq. (6)
for the case 1 < / < \/3fe with k > 1. By way of an example, therefore, we only
consider the case fc = I = 1.

Let us begin with the computation of Eq. (17) with k = I = 1 associated with the
five-dimensional dynamical system. That is, the coupled set of equations

-4Xt + 2XX3X2 - 2XX4X5 - 2,
dt

dX2 _„ 1
dt 5

dX3 = -2X3-XX1X4-3XX1X2, (35)
dt

~dΓ

5 _ i n V _ ι _ \ Y " V— - -10X5 + -λM4,

associated with the Hopf bifurcation value

~ '13.3,

which is derived from Eq. (25).
Let us denote X = (X\, X2, X3, X4, X5) and the right-hand side of Eq. (35) by

/ι}λ(X). The resultant equation can be discretised by the three-step Adams-Bashforth
method (see Lambert (1991)) to give

Xn+l = Xn + :ΓΓ (23/ι>λ(Xn) ~ 16/l,λ(Xn-l) + 5/ι,λ(Xn-2)) ,

where the step length h = 0.0002, and for demonstration purposes we arbitrarily
choose a Reynolds number A = 15 (i.e. close to the Hopf bifurcation value λ*) or A =
210. Since the periodic solution is stable, any initial value outside the stable manifold
of the equilibrium solution (—1/2,0,0,0,0) generates a trajectory approaching the
limit cycle solution. We thus need only choose the initial value

Xo = (-1/2,0,1,0,0).
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0.04

b 0 0.5 1.0

Fig. 1. (a) Phase portraits of the limit cycle solutions derived from the five-dimensional truncation model
(k = l= 1) for Reynolds number λ = 15 and λ = 210. The Hopf bifurcation occurs at λ = λ* w 13.3. (b)
Demonstration of the convergence coordinate X\(t} as t —> oo (see Eq. (31)).

The computational results for this example are displayed in Fig. 1, which shows that
the assumption of Eq. (31) is satisfied, and

XlίX = -0.439057 for λ = 15 and X^χ = -0.031361 for λ = 210.

The limit cycle solutions illustrated in Fig. 1 coincide with those presented by Eq.
(34) and the corresponding phase portraits on the (X3,X4) and (X2,Xs) planes are

X\ + X2 = r2 = 0.2833242 and X\ + X] = s2 = 0.0327152 for λ = 15,

χ\ + χl = r2 = 0.2099782 and X\ + X\ = s2 = 0.0242462 for λ = 210.

To proceed to a more detailed representation of the dynamical system defined in
Eq. (6) with k = I = 1 by a coupled set of equations greater in number than 5, it is
beneficial to note that every solution of Eq. (6) with k = I = 1 is of the following
form:
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OO OO OO

n=l m=\ n=— oo

OO OO

\—^ x—^
f J f J '
m=l n=—oo

This Navier-Stokes flow is excited by the spatial force 2 cos 2y, and the Hopf bi-
furcation stems from the term Σn^-oo η\,ncos(x + 2ny + y), which then influ-

ences the terms Y^=_00 Cι,ncos(2x + 2m/) and Σ™=ι ζn cos 2ny. Furthermore, the
modes cos(x + 2ny + y) and cos(2x + 2ny) have limited symmetry with the modes
cos(x — 2ny — y) and cos(2x — 2ny) respectively, and by numerical experiments ξn,
??ι,m ?7ι,-n-ι, Cι,n and Cι,-n can be shown to be of order W~n~l for n > 0. For
these reasons, this Navier-Stokes flow can be adequately approximated by a function
in the following form:

N N N

/_^£nOOcos2my + \^ ζι,n(t)cos(x + 2ny + y) + V^ η\^n(t)cos(2x + 2ny)
n=l n=-N-l n=-N

for TV > 1. Here, for simplification, we take N = 2. Therefore, by the previous
reasoning, Eq. (6) with k = I = 1 is projected onto the thirteen-dimensional space

spanjcos 2y, cos 4y, cos(x — 5y), cos(x - 3y), cos(x - y), cos(x + y), cos(x + 3y),

cos(x + 5τ/), cos(2x — 4y), cos(2x — 2y), cos 2x, cos(2x + 2τ/), cos(2x + 4y)}

and, after rearrangement, the Navier-Stokes flow is truncated to the following form:

2 8

j=l n=3

13

+ 2_^ Xm(f) cos(2x + 2my —
m=9

Letting

φj = sin2j?/, 0n = sin(x + 2ny — lly\ φm = sin(2x + 2my — 22y),

ψ3 = cos 2jy, ψn = cos(x + 2ny — 1 ly), ψm = cos(2x + 2my — 22y)

for j = 1, 2, n = 3,..., 8 and ra = 9,..., 13, we have

2 8 1 3

i Σ(2n - ll)Xn(t)φn + Σ(2m - 22)Xm(t)φrι

n=3 m=9

13

n=3

8 13

n=3 m=9
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^5>-
n=3

+ Σ(2m - 22)(4 + (2m - 22)2)Xm(t)φm,
m=9

and so, after the necessary manipulations, the non-linear contribution is given by

l n=3

13

n-j + 8j2(2m -j-
n=3+j m=9+j

2 8-j

3=1 n=3

2 8

~ Σ Σ ^'W2 - 1 - (2n - 2j -
j=l n=3+j

13

+ Σ Σ (

m=93<m-n,n<8

2 13-j

+ Σ Σ 8 ̂ '2 -
j=\ m=9

2 13

- Σ Σ 8^'U2 - 1 " (m - j -

j=l m=9+j

13

+ Σ Σ (

=9 3<m— n,n<8

where E is a term orthogonal to the thirteen-dimensional space. Eq. (6) is thus trun-
cated to the following coupled set of thirteen ordinary differential equations:

1313 Γ H /
0 = V / (-£-

^α
which on expansion gives

13 άX 2

(2n -
1=1 j=l n=3

13

m=9
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-0.004

-0.3

0.004-

-0.004

0.002 η8

o-

-0.002

-0.002

X1

-0.4620 -

-0.4623 -

-0.4626 -

-0.2

-0.0052 -

X9
-0.0050

-0.0015 -0.0010 -0.0005 -0.2

0.002

0.2

0.2

Fig. 2. Phase portraits of the limit cycle solution derived from the thirteen-dimensional truncation model

(k = I = 1) for Reynolds number λ = 15 (Hopf bifurcation value λ** « 14).

2 / 8 1 3

^Σ Σ (2n~J ~ l VXnXn-j +λ Σ 2(2TO -3 -
j=l \n=3+j m=9+j

-II)2

Σ

l+(2n-l l) 2 ^"n-jvn

(m - 2n)((l 1 - 2n)(4m - 2n - 33) - 3).

m=93<m-n,n<8

2 D-J2JO'2-1

l+(2n-l l ) 2

-ii)2),, v

j=\ m=9
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2 13

j=l m=9+j

13

^y T/ _^ / -j
m=93<m-n,n<8

l + ( m _ H ) 2

(m-2n)(l + (2n-II)2)
4 + 4(m — II)2 n m n m

The rewriting of this coupled set of equations in the following form:

, , ,..., (36)
at

leads itself to a discretisation by the 4-step Adams-Bashforth method to give

Xn+1 = Xn + A

where a step length /ι = 0.0002 is again chosen. To illustrate the variation of the limit
cycle solution as the Reynolds number λ increases, Eq. (36) at Reynolds numbers

X6

0.3

-0.3-

0.02-

-0.02 -

-0.02 0 0.02 -0.010 -0.005 0

Fig. 3. Phase portraits of the limit cycle solution derived from the thirteen-dimensional truncation model
(k = I = 1) for Reynolds number λ = 210 (Hopf bifurcation value λ** « 14).
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λ = 15, 21, 108, 140, 180 and 210 were examined. Similar to the five-dimensional
example, we need only choose the initial value X with X\ = —1/2, X5 = I and
Xn = 0 for n ^ 1, 5. From numerical experiments we find that the Hopf bifurcation
value A** for this set of equations is near 14 as compared to A f (« 13.3) for the
five-dimensional case. The computational results for a selection of symmetrical phase
portraits of the limit cycle solutions with A = 15 and 210 are displayed in Figs. 2-3.

These figures together with the intermediate calculations at A = 21, 108, 140, 180
illustrate that Eq. (36) provides a satisfactory approximation of Eq. (6), and the limit
cycle solutions of Eq. (36) become more and more complicated in form as A increases.
Fig. 2 illustrates the case of A close to A** (i.e. A = 15, A** « 14), whereas Fig.
3 shows the effect of A substantially removed from A** (i.e. A = 210, A** w 14).
Futhermore the evidence presented in Figs. 2-3 also suggests that the periodic Navier-
Stokes flows of Eq. (6) are stable irrespective of the magnitude of the Reynolds
number A.
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