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Abstract: For the two-point distribution of a quasi-free Klein-Gordon neutral scalar
quantum field on an arbitrary four dimensional globally hyperbolic curved space-time
we prove the equivalence of (1) the global Hadamard condition, (2) the property that
the Feynman propagator is a distinguished parametrix in the sense of Duistermaat
and Hormander, and (3) a new property referred to as the wave front set spectral
condition (WFSSC), because it is reminiscent of the spectral condition in axiomatic
quantum field theory on Minkowski space. Results in micro-local analysis such as the
propagation of singularities theorem and the uniqueness up to C°° of distinguished
parametrices are employed in the proof. We include a review of Kay and Wald's
rigorous definition of the global Hadamard condition and the theory of distinguished
parametrices, specializing to the case of the Klein-Gordon operator on a globally
hyperbolic space-time. As an alternative to a recent computation of the wave front set
of a globally Hadamard two-point distribution on a globally hyperbolic curved space-
time, given elsewhere by Kόhler (to correct an incomplete computation in [32]), we
present a version of this computation that does not use a deformation argument such as
that used in Fulling, Narcowich and Wald and is independent of the Cauchy evolution
argument of Fulling, Sweeny and Wald (both of which are relied upon in Kohler's
proof). This leads to a simple micro-local proof of the preservation of Hadamard
form under Cauchy evolution (first shown by Fulling, Sweeny and Wald) relying only
on the propagation of singularities theorem. In another paper [33], the equivalence
theorem is used to prove a conjecture by Kay that a locally Hadamard quasi-free
Klein-Gordon state on any globally hyperbolic curved space-time must be globally
Hadamard.
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1. Introduction

The Hadamard condition has for some time been viewed as a necessary physical con-
dition on quasi-free or more general states of the Klein-Gordon field on a globally
hyperbolic curved space-time [5, 35, 11, 12, 20, 14, 23]. We study the Hadamard
condition from the micro-local viewpoint [18] by relating the global Hadamard con-
dition, rigorously defined in [23], to the theory of distinguished parametrices [7, 17]
and to a condition on the wave front set of the two-point distribution.

Specifically, in Sect. 5 we calculate the wave front set of a two-point distribution
satisfying the global Hadamard condition in neighborhoods of the form Ux x Ux,
where Ux is a convex normal neighborhood of x, and x ranges in a causal normal
neighborhood of a Cauchy surface, and utilize the propagation of singularities the-
orem [7] to obtain a global wave front set satisfying a certain condition, called the
wave front set spectral condition (WFSSC). This condition is similar to the spectral
condition of axiomatic quantum field theory [19, 34] because (in addition to spec-
ifying the location of the singularities of the two-point distribution) it requires that
for each cotangent vector (k\, fe) in the set of directions of non-rapid decrease at
(#1, #2), the first component must lie in the dual of the closed forward light cone and
the second component must be minus the first (after parallel transport from x\ to #2)-
The wave front set of the Feynman propagator of a theory satisfying the WFSSC is
then found by a symmetry argument to be that of the Feynman distinguished paramet-
rix constructed by Duistermaat and Hormander [7]. By the uniqueness theorem for
distinguished parametrices [7], these two distributions are the same up to a smooth
function. Finally, we show that any Feynman distinguished parametrix corresponds to
a globally Hadamard two-point distribution. This follows from the existence of glob-
ally Hadamard parametrices. These equivalences are summarized in Theorem 5.1.

Besides clarifying the mathematical theory underlying the Hadamard condition,
this equivalence theorem is useful in proving a conjecture by Kay [20, 21, 22, 14] that
locally Hadamard quasi-free Klein-Gordon states must be globally Hadamard [32, 33].
In Sect. 6 we suggest some heuristic reasons for believing that the WFSSC is a natural
analog of the spectral condition for linear quantum field models on curved space-times
and discuss Kδhler's modified WFSSC [24, 25] which is expected to hold for more
general (nonlinear) models.

We note that [32] (and a previous draft of this paper) contains an error in the
computation of the wave front set of a globally Hadamard two-point distribution,
which was pointed out by Kohler [24, 25] and corrected by him using a deformation
argument analogous to that developed by Fulling, Narcowich and Wald [11]. (The
error rendered the proof valid only for the case of Minkowski space.) Here we provide
an alternative computation which bypasses an argument like that of [11] and does not
rely on the "Cauchy evolution argument" of [12] (on which Kohler's computation and
the results of [11] depend). After the equivalence has been proven, the preservation
of the Hadamard form under Cauchy evolution, originally shown by Fulling, Sweeny
and Wald [12], follows easily from an application of the propagation of singularities
theorem to the WFSSC.

Sections 2,3,4 contain preliminary material on the distributional approach to QFT
on CST, the Hadamard condition, and distinguished parametrices respectively.
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2. Distributional Approach to Quantized Fields on Curved Space-Time

A pair (M, g) is a (curved) space-time (CST) if M is a smooth n-dimensional pseudo-
Riemannian manifold (n > 2) equipped with a smooth metric tensor field g of signa-
ture (+ — •••—). The metric g determines the notions of time-like, null, and space-like
vectors v G TX(M) at a point x G M by the conditions gx(υ,v) > 0, gx(v,v) = 0,
and gx(v,υ) < 0 respectively, where gx is the value of the metric tensor field at x.
Time-like, null, or space-like curves on (M, g) are smooth curves on M whose tangent
vectors at every point on the curve are time-like, null, or space-like respectively. A
geodesic is a (parametrized) curve whose tangent vector is parallel transported along
itself. Points X\,XΊ G M are causally related if x\ and x^ can be connected by a
time-like or null curve in M. They are space-like separated if they are not causally
related. They are null related if they may be connected by a null geodesic. The
closed light cone Vx at x consists of all nonzero time-like and null vectors in TX(M).
Clearly Vx decomposes into two components at each x. A time orientable CST is one
in which a continuous global designation of "future" component of the closed light
cone can be made. In this case the future/past (also called forward/backward) closed
light cone at x is denoted by V^. A CST (M, #) with a hypersurface S such that
every inextendible causal curve in M intersects 5 precisely once is labelled globally
hyperbolic. Every globally hyperbolic CST is necessarily time orientable. Some of
these definitions are as in Hawking and Ellis [15] and Chapter 8 of Wald [36]. Also,
a covector k G T*(M) is called dual to v G TX(M) if k = gx( ,v).

For the test function space on a space-time (M, g\ we use in this paper the
space of smooth complex-valued functions of compact support CQ°(M). The dual
space of C™(M) with respect to the metric volume form on (M,ρ) is the space of
distributions on M and is denoted &'(M). See Sect. 6.3 of [18] for definitions and
further discussion of distributions on a manifold.

Let &m(M) denote (g)m C0°°(M) for ra > 1 and define ^b(M) = C. For a
collection of functions {/m}m>o, where /m G &m(M) and only a finite num-
ber of the fm do not vanish, define / = 0^=0/m With involution defined as

/* = 0m=g/m> where fm(χiι- ιχm) = fmfrm, - - , #ιλ and the product of /
and^ = 0m=0 gm defined as / x g = 0^0(/ x g)m, where (/ x g)m(xι,..., xm) =
Σ™o fι(x\, , xΰgm-ί(Xι+ι ? , Xπi), the set of all such / becomes an involutive
algebra JSf(M), called the Borchers algebra on M. See [2, 8].

Let ̂ (M) denote the space ®m[ '̂(M)], the dual of &m(M). The direct sum
topology is given to J5>(M) = 0^=0 ̂ m(M). If μ is in JS\M\ the dual of 38(M)
with respect to this topology, then for each m > 0 the m-point distributions (or
functions) are μm = μ\&m(M) € &m(M) If u; e J^'(M) satisfies ω0 = 1 and the
positivity condition ω(f* x /) > 0 then ω is a state. Suppose in addition that ω
satisfies the local commutativity condition

ω(- - - 0 / 0 g (g) - -) = ω(- - 0 g 0 / 0 - - •) (1)

for supp / and supp g space-like separated. (This is a statement of the independence of
measurements (commensurability) of observables at space-like separation, a typical
quantum mechanical restriction.) Then one may think of the m-point distributions
ω m (xι, . . . , #m) On generalized function notation) as representing the expectation
values of the product of m field operators Φω(x\),..., Φω(xm) with respect to some
vector Ωω in a Hubert space J^L, an interpretation made available by an analog of
the Wightman reconstruction theorem [2, 34], which is here given the generic label of
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"GNS construction" [3]. We call a triple (M,g,ω) whose ω satisfies these properties
a quantum field model on the CST (M, g). (Note that further conditions will be needed
for physical quantum field models.)

A state ω is quasi-free if the m-point distributions satisfy ωim+\ = 0 for m > 0
and

U2m(fl Θ 0 /2m) = Σ ̂  πi ® ̂ 2) ' ' "2(Γ2m-1 ® Γ2m) (QF)
τr677m

for m > 1, where 77m is the set of permutations π: {1, . . . , 2m} — > {!,..., 2m} such
that τrι < πs < < π2m-ι and πi < π2, 7Γ3 < π4, . . . , 7Γ2m-ι < 7Γ2m. The main
focus of research in quantum field theory on CST has been on states constructed from
a linear wave equation via canonical quantization on CST [1]. These states turn out
to satisfy (QF).

The fact that a quasi-free state ω is determined entirely by its two-point distribution
leads one to direct particular attention to ω^ Two general properties of ωi, as implied
by those for a (not necessarily quasi-free) state ω of a quantum field model on (M, g),
are as follows:

Positive Type: For any / e C

This follows from the generic positivity condition on ω which in turn corresponds to
the positive definiteness of the inner product on the Hubert space 3@ω obtained by
GNS construction from ω.

Let the symmetric (anti-symmetric) part of a two-point distribution u be defined
by u±(f®g) = \ (u(f ® g) ± u(g <8) /)). Equation (1) implies the following necessary
condition on u^:

Local Commutativity: For any /, g G CQ°(M) such that supp / and supp g are
space-like separated,

0. (LC)

The properties (PT) and (LC) make sense for any space-time (M, g), even possibly
one that is not time orientable, and are two of the basic properties for ωi that are
necessary for the state ω to yield a physically meaningful field Φω by the GNS
construction. We suggest in Sect. 11 of [33] that on a time orientable CST a certain
"wave front set spectral condition" is a third such condition. (It is of interest to
determine if there are perhaps any more such physically necessary conditions, such
as the existence of the scaling limit of the state [8] and Lorentz invariance of this
scaling limit. See Chapter 4 of [32] for a discussion of "axiomatics" on a CST, and
in particular, ideas for a proof of a spin-statistics theorem for theories satisfying the
axioms given above. Note that the WFSSCs for m-point distributions (m > 3) that
are proposed in [32] fail to hold even for quasi-free states. See Kohler [25] who has
suggested an improved version of these conditions.)

A Klein-Gordon quantum field model on (M, g) is a quantum field model (M, g, ω)
such that, in addition to (PT) and (LC), ω satisfies:

Klein-Gordon: For any f,ge C0°°(M),

^2 ((D + m2)/ <8> 0) = 0/2 (/ <8> (Π + ™2)g) = 0 . (KG)



Micro-Local Approach to the Hadamard Condition in QFT on CST 533

Here, Π = g^VμV^, where Vμ is the covariant derivative on the pseudo-
Riemannian manifold (M, g). The term m2 may be replaced by a more general po-
tential V(x) and a first derivative term — ibμ(x)Vμ may be added.

In order to have a well-posed Cauchy problem for the Klein-Gordon equation, we
assume in this paper (as is usually done) that the CST for a Klein-Gordon quantum
field model is globally hyperbolic. For states satisfying (KG) on a globally hyperbolic
CST we also assume in this paper the property (QF) for ω as well as the following
property:

Commutator: For any f,g G C0°(M),

(ω2)-(f <g> g) = -Δ(f (g) g) , (Com)

where Δ = A A — ΔR and A A and ΔR are the advanced and retarded fundamen-
tal solutions of the inhomogeneous Klein-Gordon equation. These distributions are
uniquely determined by their support properties [27, 28, 29]. Condition (Com) is a
direct consequence of canonically quantizing a scalar field satisfying the Klein-Gordon
equation. Clearly it implies (LC).

For our purposes the Feynman propagator ωF of a state ω is defined to be
ωF = iω2 + ΔA. When ω2 satisfies (QF), (PT), (KG) and (Com) the distribution
(JF(#I, #2) is interpreted as the time-ordered expectation value (with respect to some
global time coordinate function) of the product of fields Φω(x\)Φω(x2).

3. Review of the Global Hadamard Condition

We review the rigorous statement of the global Hadamard condition given by Kay and
Wald [23], including the proofs of some minor lemmas for completeness. Suppose
(M, g) is a globally hyperbolic curved space-time of dimension n = 4 with a preferred
time orientation and let T be a global time coordinate function on M which is
increasing toward the future. If S is a subset of M, one defines the causal future
J+(S) (causal past J~(S)) to be the set of all points x of M such that there is a
future-directed (past-directed) causal curve from S to x.

Let ̂  C M x M be the set of causally related points (x\, x2) such that J+(x\) Π
J~(x2) and J~(x\) Π J+(x2) (one of which may be empty) are within convex normal
neighborhoods, where such a neighborhood is an open set °26 such that for any two
points x\ and x2 in &£, there exists a unique geodesic contained in °16 which connects
x\ and x2. The (signed) square of the geodesic distance from x\ to x2 in a convex
normal neighborhood ύl6 is defined as

, , dx»(τ)dx»(τ) '

dr dr
dτ\ , (2)

where x( ) is a parametrization of the unique geodesic in fy6 from x\ to x2 (i.e.,
#(α) = #ι and x(6) = #2) and the plus or minus sign is chosen according to whether
#(•) is space-like or time-like respectively. For example, on Minkowski space (Mn, r?),
we have σ(x\,xι) = -(x\ - x2)

2 = -(xf - x2)(xιμ - x2μ).

Lemma 3.1. There is an (open) neighborhood & of ̂  on which σ is well-defined
and smooth. Furthermore this neighborhood may be taken to be a union of sets of the
form U x U, where U is a convex normal neighborhood.
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Proof. Take © = U(xi)X2)€^t/(Xl)X2) x U(X}ιX2), where for each point (#1,0:2) in ̂
the set U(XlιX2) is a convex normal neighborhood containing J~(x\) Π J+(x2) or
J+(x\) ΓΊ J~(x2) (whichever is nonempty) and thus containing x\ and x2. m

Fix an integer p > 1 and a real number e > 0 and define for (x\,xz) G ̂ , the
complex- valued function

(2ττ)2
(3)

where we define σe(xι,x2) := σ(xι,x2) + 2ie[T(x\) — T(x2)] + e2, v(p\x\,x>ι) :=

Σ^n=QVrn(x\,X2)σrn(xι,X2), and Δϊ,υm are smooth functions uniquely determined
by certain recursion relations (called the Hadamard recursion relations [13, 5]). The
function Δ is called the Van Vleck-Morette determinant and does not vanish where
σ does. The branch cut for the logarithm in Eq. (3) is chosen to be on the negative
real axis.

A set Λ/~ is said to be a causal normal neighborhood of a Cauchy hypersurface
¥? of a globally hyperbolic space-time (M, g) if W is a Cauchy hypersurface for
Λ/~ (considered as a space-time in its own right) and if for any points xι,x 2 G
,/K*, such that x\ G J+(x2), one can find a convex normal neighborhood containing

Lemma 3.2 (Lemma 2.2 of [23]). Let & be a (space-like) Cauchy hypersurface of
a globally hyperbolic space-time (M, g). Then W has an open causal normal neigh-
borhood.

Let °^ be the set of pairs of points (X\,XΊ) which are causally related (hence
<W D 9Ό and let @ be an open neighborhood of 9^ on which σ is well-defined
and smooth (by Lemma 3.1).

Lemma 3.3. In Λ/~ x Λ^ there is an open neighborhood & of W Π (Λ^ x Λ^)
such that the closure of &' in Λ/~ x Λ^ is contained in & Π (Λ^ x Λ^).

Proof. We first prove that (W^^(Λr x ̂ } is a closed subset in Λ^ x Λ/~ with respect
to the relative topology of Λr x Λ/". Suppose {(xl,y1)} is a sequence converging
in M x M to (x, y) G Λ^ x ΛS* and (x*, y*) G W Π (̂ K x Λ^) for all i. Since
(xι,x2) G ̂ " Π (̂ F' x Λ^) implies that x\ and x2 are causally related and, by
definition of ,/K, that J+(xι) Π J~(x2) and J~(#ι) Π J+(x2) are in convex normal
neighborhoods in M, we have (W^^\(^A^ x Λ/^) C ̂ , which means that σ is smooth
on "̂ Π (Λ^ x Λ^). Hence σ(x\yτ) < 0 for all i implies σ(x, y) < 0, i.e., x and y
are causally related. Hence (W Π (Λ^ x Λ^) is closed relative to Λ/" x Λ/* . Since
@ Π (̂ K x ΛO is open relative to ̂ K x ̂ ^ and contains W Π (̂ K x ΛO, there
is a set ̂ ; c ί̂̂  x ^K open relative to Λ^ x Λ/~ such that

n (Λs* x ΛT) c ̂  c W' c ̂  n c/r x ̂ ') ,

where the closure is taken relative to Λ^ x Λ^ .
Now let χ(#ι,£2) G C°°(^/F* x ./K) be chosen_so that χ(xι,x2) = 0 whenever

(xι,x2) ^ ̂  and χ(xι,x2) = 1 whenever (xι,x2) G ̂

Definition 3.4 (Globally Hadamard, cf. [23]). Let α;2 be a two-point distribution in
on a four dimensional globally hyperbolic space-time (M,g) and let T be a
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choice of global time coordinate function on M that is increasing toward the future.
Let £f, .yίΛ and x be chosen as above. Then ωi is said to be globally Hadamard on
Λ/~ x Λ'* if for each integer p there exists a function Hp e Cp(Λ/~ x ΛO such that

/
J. f

(GH)

where dμg(x) = ^/| det^μι/(x)| d4x on coordinate patches and

{ , z2) = χ(χι , χ2)Gτ^p(xl , χ2)

This means that for each choice of T and p we have u;2 = Λτ'p on Λ/* x ./K, where
:= lime^o+ Λ^p is a well-defined two-point distribution. The function x has

been chosen so that σ is smooth on supp χ. Hence χ(xι,x2)Gf^'p(xι,x2) is a smooth
function on M x M. Since Hp(x\,x^) is in CP(Λ/' x ΛO, and p can be made as
large as desired, this term effectively acts as a C°° contribution to cj2. Hence the set of
singular points of Λτ'p and u;2 in &' is determined by those of ΓT:P := lime^0

+ ^e

T'P>
where Γ^p := χG^p. Furthermore, outside of & in ,/K x ^K", the two-point
distribution ωi is smooth. We then see that the global Hadamard condition requires
that u;2(xι,x2) have singularities only at points (xι,x2) in Λ/* x Λ/~ such that x\
and X2 are related by a null geodesic totally contained within <A^ .

Note that in [23], (PT), (KG), (Com) are implicitly assumed in their statement
of the global Hadamard condition, and that (QF) is not assumed (whereas in Defini-
tion 3.4 none of these four properties is assumed). In Sect. 6 we shall see that (PT)
is a consequence (mod C°°) of (GH), and in fact that this result has been in the
literature since 1972 (see [7]).

The definition of globally Hadamard is consistent (mod C°°) with (KG) since

each Λp satisfies (KG), by the choice of ΔΪ and the coefficients vm. Consistency
of the global Hadamard condition with (Com) follows from the rigorous Hadamard
expansion of the advanced and retarded fundamental solutions of the inhomogeneous
Klein-Gordon equation on an arbitrary globally hyperbolic CST in, e.g., Chapter 4
of Friedlander [9]. Precisely the same partial sums as in [9] are obtained by taking
the imaginary (anti-symmetric) part of the Γp in the global Hadamard condition on
./r x Λ/\

If a two-point distribution α;2 satisfying the global Hadamard condition on Λ/' x
.Λ^ is also required to satisfy the Klein-Gordon equation (KG) globally (as is required
in [23]), then the singularity structure of α;2 in any other neighborhood (in M x
M) of the form U x U, where U is a convex normal neighborhood, is also of
the Hadamard form, as has been shown by Fulling, Sweeny and Wald [12]. This
is called "preservation of Hadamard form under Cauchy evolution." Furthermore if
one chooses a different global time coordinate function T1 ', Cauchy hypersurface W ,
causal normal neighborhood ^^v, and cutoff function χ' in Definition 3.4, then the
global singularity structure specified by Definition 3.4 is the same as for the first set
of choices, as has been shown in [23].

4. Distinguished Parametrices

The definitions adopted for the distribution spaces '̂(M), ̂ (M) on a manifold
M, and for pseudo-differential operators, symbols and principal symbols on M
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may be found in [16, 18, 17, 32]. On a curved space-time (M,g) of dimension
n, the Klein-Gordon operator Π + m2 is a pseudo-differential operator, with prin-
cipal symbol gμv(x)kμkv. More generally, the principal symbol of the differential
operator Y^\0ί\<qoJOί(x)(—rid)0ί with respect to local coordinates (x°, . . . ,xn~l) is

Σui=g acί(x)ka, where a is a multi-index.

If u G &'(W) then if φ G C^QR^), the distribution φu is in '̂(1 )̂. A covector

k G Mp\{0} is a direction of rapid decrease of the Fourier transform </m iff there
exists a conic neighborhood ̂  of A: such that for any integer TV there exists a constant
CN such that

Here, |&| is the Euclidean norm of k, namely,

Note that the set of directions of rapid decrease is open in Mp\{0}. The set of
directions of non-rapid decrease Σ(φu) is the complement in BP\{0} of this set and
is closed in Mp\{0}. Now let Σx(u) be the intersection of the sets Σ(φu) for all
φ G Cg°(W) such that φ(x) ^0.

Definition 4.1 (Definition 8.1.2 of [18]). If u £ &'(M) the wave front set WF(u)
is the union of the points (x, k) such that k G Σx(u\ i.e.,

WF(u) = {(x, fc) G Γ*(M)\0: fc G Σx(u)} .

The projection of WF(u) on the first variable is equal to the singular support of
u, called sing supp u, which is the complement of the largest open set on which u
is smooth. Furthermore, if v G &'(β?) then the projection of WF(υ) on the second
variable is Σ(v). Definition 4.1 extends to distributions on manifolds (u G <Sϊ'(M)\
where WF(-u) is an invariantly defined closed conic subset of T*(M )\0, the cotangent
bundle minus the zero section [17].

Roughly speaking, if (x, k) is a point in the wave front set of u, then x specifies the
location of a singularity of u and k a direction of non-rapid decrease of u (where we
multiply by φ G CQ° if necessary so that u G &') that contributes to this singularity.
Alternatively this k may be considered a "direction of propagation" of the singularity
at x. (The meaning of this statement is made precise in the propagation of singularities
theorem, mentioned later.) Generally speaking, the wave front set is a valuable tool
because it distinguishes between singularities propagating in different directions from
the same point, a considerable improvement over the singular set, which does not.

The wave front set and similar structures find wide application in partial differen-
tial equation theory. See the notes at the end of Chapter VIII of [18] for an historical
development of the concept of the wave front set. Study of the wave front sets of
the m-point distributions in quantum field theory on curved space-time (and other
micro-local aspects of this branch of physics) has apparently received attention only
in [30] (which uses pseudo-differential operator techniques) and [6] (which uses the
theory of distinguished parametrices) since the work of Duistermaat and Hormander

[7].
A pseudo-differential operator Q on a manifold M is said to be properly supported

if for each compact set K C M, there exists a compact set K' c M such that



Micro-Local Approach to the Hadamard Condition in QFT on CST 537

supp u C K implies supp Qu C K' and v = 0 on K' implies Qv = 0 on K.
(This is Definition 18.1.21 of [17].) Any differential operator, such as Π + m2, is
properly supported since one can choose K' = K. If Q is properly supported and
E is a continuous mapping C^>(M) —> C°°(M) then EQ and QE are well-defined
operators on C0°°(M). If in addition (i) QE = I (mod C°°), (ii) EQ = I (mod C°°),
or (iii) QE1 = E"Q = / (mod C°°), then we call E a (i) πg/iί, (ii) left, or (iii) two-sided
parametrix of Q. In case (iii) one usually deletes "two-sided."

On a space-time (M, #) the Schwartz nuclear theorem implies that a parametrix E
corresponds to a distribution E1 G ̂ '(M) such that the distribution density E\ (see

e.g., Chapter 6 of [18]) associated with E satisfies

El(f®h)=ff(Eh)dμg,

for /, h e (70°(M). Henceforth we denote the parametrix E, the corresponding dis-

tribution E, and the associated distribution density E\ by the same symbol E.
We now review pp. 217-218 of [7], preliminary material for the existence and

uniqueness theorem for distinguished parametrices. We work out the details for the
special case Q = Π + rn2 on a globally hyperbolic space-time (M, g). Since only the
principal symbol of Π +m2 plays a role in what follows, one may replace m2 by any
other lower derivative terms. (This would change, e.g., the distinguished parametrices
of Π + m2, but not their wave front sets.)

For Q a properly supported pseudo-differential operator with principal symbol q,
the bicharacteristic strips ofQ are the curves on the submanifold of T*(M)\0 defined
by q - 0 which are generated by the Hamiltonian flow, where the Hamiltonian is taken
to be q. (This definition is consistent because Hamiltonian flow lines remain within the
submanifold defined by q = 0.) The bicharacteristic curves of Q are the projections
of these strips onto M itself.

On a curved space-time (M,g) a null geodesic strip is a curve in T*(M) of the
form {(7(λ), fc(λ)): λ G M}, where 7( ) is a null geodesic (with affine parameter λ)
and fc(λ) is the dual of the tangent vector to 7 at λ. We denote it by (7, fc).

Proposition 4.2. On a curved space-time (M, g), the bicharacteristic strips of Π
are the null geodesic strips in T*(M) and its bicharacteristic curves are the null
geodesies on M.

The proof is elementary and may be found, for example, in [9] and [32] (where the
computation of bicharacteristic strips is evident in the proof).

A properly supported Q is of real principal type in M if its principal part q is real
and homogeneous of some order m and no complete bicharacteristic strip of Q stays
over a compact set in M.

Proposition 4.3. For (M, g) a globally hyperbolic space-time, Π + m2 is of real
principal type on M.

Proof. Since the principal symbol gμι^(x)kμkL/ is manifestly real and homogeneous of
degree 2, it remains to show that no complete null geodesic remains inside a compact
set in M. Lemma 8.3.8 of [36], which states that the globally hyperbolic space-time
(M, #) is strongly causal, and Lemma 8.2.1 of [36] together imply that if a complete
null geodesic 7 is confined to a compact set K C M, then 7 must have its past and
future endpoints in K. But since the domain of a complete null geodesic is (—oo, oo),
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we have j(τ) — »• 0 as r — » ±00. This implies 7(7-) = 0 for all r G M (since a
geodesic parallel transports its tangent vector), so that j(τ) = XQ, a constant, contrary
to assumption.

For Q a properly supported pseudo-differential operator of real principal type in a
manifold M, we say that M is pseudo-convex with respect to Q if for every compact
set K C M, there is another compact set K' C M such that K' contains any interval
on a bicharacteristic curve with respect to Q having both endpoints in K.

Proposition 4.4. For (M, g) a globally hyperbolic space-time (of any dimension), M
is pseudo-convex with respect to Π + m2-

Proof. The Corollary to Proposition 6.6.1 of Hawking and Ellis [15] states that if
(M,g) is globally hyperbolic and K\ and K2 are compact, then J+(K\) Π J~(K2) is
compact. If K is compact, then by this Corollary, K' = J+(K) Π J~~(K) is compact,
and if 7 is a null geodesic with endpoints in K, then clearly 7 c K' . See also
Proposition 4.2 of [6].

For Q a pseudo-differential operator with principal symbol q, define TV to be the
set

TV = {(x, k) G Γ*(M)\0: q(χ, fc) = 0} (4)

and for x G M let

TV, = {k G TX*(M)\{0}: </(*, fc) = 0} . (5)

For a properly supported pseudo-differential operator Q of real principal type,
with respect to which M is pseudo-convex, the bicharacteristic relation C for Q is
the set

C = {((xi, fci), (x2, fe» e TV x TV: fo, fcO « (x2, fc2)} , (6)

where (xi, fci) « (#2, fe) means that (xi, fci) and (x2, fe) are on the same bicharac-
teristic strip of Q. (As noted in [7], p. 217, canonical transformations on q leave the
bicharacteristic relation of Q fixed, and if α is everywhere nonzero, aq defines the
same bicharacteristic relation.)

For the operator Π +m2, we have TV = {(x, k) E T*(M)\0: gμv(x)kμkv = 0} and
the bicharacteristic relation is

C = {((xi,A;i),(x2,fc2)) G TV x N:(zι,kι) ~ (^2,^2)} ,

where by (xi, fei) ~ (x2, fe) we mean that (xi, fci) and (x2, fc2) ̂ e on the same null
geodesic strip (7, k) in T*(M). Since they are tangent vectors to the geodesic 7, fcf
and fc^ are parallel transports of each other along 7.

Let Z\τv be the diagonal of TV x TV:

ZW = {((xι,fcι),(x2,fc2)) G TV x TV:x! = x2,kι = k2} . (7)

Then C\ΔN decomposes into the open sets

TV x JV:(xι,fcι)^(x 2,fc 2)} , (8)

where (xι,feι)^(x2,fc2) means (xι,fcι) w (x2,fe) and (xι,fcι) comes after/before
(x2, fe2) with respect to the time parameter of the bicharacteristic curve.

Specializing to the case Q = Q + m2 on a globally hyperbolic space-time (M, g),
if k e T*(M) we introduce the notation k^Q, meaning ki G (V^)d, the dual of the
future/past closed light cone at x. Then we have that
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C+ = {((xi, k\), (X2, fe)) G C: x\ G J+(xi) if &ι > 0 or xi G J (x2) if &ι <1 0},

(7~ = {((xi, &ι), (X2, £2)) G C: x\ G J+(x2) if k\ <\ 0 or x\ G J~(x2) if fci > 0} .

An orientation of C is a splitting (C1, C2) of C\ΔN = C1 U C2 into two disjoint
subsets C1 and C2 which are open in C\Δjy and are inverse relations in the sense
that ((xi, &ι),(x2, fe)) G C1 if and only if ((x2, &2),(xι, fci)) G C2. Because C^C2

are inverse relations, neither set can be empty (or C\ΔN). Note that C3 is both open
and closed (it is the complement of an open set in C\ΔN). Hence C1 (and C2) must
be a union of connected components of C\ΔN

Next we show explicitly how each orientation is associated to a union of con-
nected components of TV. We include these details to facilitate further uses of distin-
guished parametrices, i.e., for higher order operators in QFT on CST. Furthermore,
the constructions will later be used to explain why the primed wave front set of a
distinguished parametrix (i.e., a parametrix uniquely determined up to C°° by its
wave front set) must be the union of an orientation set C1 or C2 and the diagonal set
Δ* = {((xι,fcι),(xι,feι)): (xι,fcι) G T*(M)\0}.

As in [7] (p. 218), define B(x,k) to be the complete bicharacteristic strip of
Q through (x,fc) and let C±(x,fe) = C± Π (B(x,k) x β(x,fc)) If (C!,C2) is an
orientation of (7, then for each j = 1,2, and for each (x, k), we have

C+(x, fc) C C '̂ or C+(x, fc) Π CJ' = 0 , (9)

since CJ is a union of connected components of C\ΔN and C+(x, k) is a connected
set.

Define for j = 1,2 the set N* = {(x,fe) G TV: C+(x, fe) C C^}. For (x,/c) G TV,
the set (7+(x, fc) must be in one of the sets C71, C2 since C1 U C2 = C\ΔN. Hence
we must have TV1 U TV2 = TV. Furthermore, TV1 and TV2 are disjoint, by Eq. (9), and
are open sets in TV. Hence the TV? are unions of connected components of TV.

We can reconstitute C1 and C2 by

U r+(u \x,

U c+(χ^))u U

Indeed, if C+(x, /c) C C1 then C (x, fc) C C2 since C1, C2 are inverse relations. If
(x, A;) G TV1 then C+(x, k) C C1 and if (x1', A:7) G TV2 then C-(x7, A:;) C C1. Hence

C
+ ( x , A θ ) u (

(x,k)<EN2

C2 D ( U C+(x,A:)) U ( [J C-(x,Aθ) -

Finally, C1 U C2 = C+ U C~ = C\ZiΛr implies that equality holds in the above two
expressions. Hence orientations of C are classified by the power set of the compo-
nents of TV. For a general Q satisfying the hypotheses of Theorem 4.5, if TV has k
components, then there are 2k orientations of C.

Denote the set of all components of TV by TV, and let v denote a collection of
components of N, i.e., v C TV. Let TV^, TV~ be the unions of all the sets in z/, TV\^
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respectively. Let (C+,C~) be the orientation of C corresponding to N+,N~. Note

In the case of Q = Π + m2, the set TV = {(x, k) e T\M)\^.g^(x)kμkv = 0}
has two connected components in n > 3 dimensions (four for n = 2), namely

N+ = {(x, fc) e N: k > 0} ,

7V_ = {(x, fc) E TV: k < 0} .

Hence there are 22 = 4 orientations in n > 3 dimensions (and 42 = 16 for two dimen-
sions). The choices for v C N are {7V+,7V_}, {7V+}, {7V_},0, with corresponding
7V+ equal to 7V,7V+,7V_,0. Letting these be 7Vι , 7V2 , ΛΓ3 , 7V4 respectively, we obtain
orientations (C/, C2), ό = 1, . . . , 4, where

+ (z,AO)U( U
Λ/;

and similarly for Cf. Hence

AT

C\ = \J C+(x, k)U\J C-(x, k) =
N+

C\ = \J C+(x, k)U\J C~(x, k) = Cl ,
N- N+

N

The different possible orientations of C are thus (C\,C\), (C\,C\\ (C\,C\\

The sets C\, C\, C\, C\ are shown in Fig. 1 for n - 3. Note that in these diagrams
x2 is fixed at the vertices of the cones and only the directions of the vectors fci are
shown. Those of &2 are left undisplayed for simplicity.

If E E J '̂(M), then let the primed wave front set of E be

£) = {((x1,A:1),(x2,A:2))GT*(MxM)\0:

((xι,fcι),(a;2,-fc2))GWF(£;)}.

We restate the existence and uniqueness theorem for distinguished parametrices
[7]:

Theorem 4.5 (Theorem 6.5.3 of [7]). Let Q be of real principal type in M and as-
sume that M is pseudo-convex with respect to Q. For every orientation C\ΛN =
C* U C~ one can find parametrices E* and E~ of Q with

where Δ* is the diagonal in T*(M)\0 x T*(M)\0. Any right or left parametrix E
with WF'(E) contained in Δ* U C+ resp. Δ* U C~ must be equal to E+ resp. E~
modulo C°°.
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Fig. 1. Sets C\, C\, C\, C\ making up orientations of C for n = 3. In these diagrams XΊ is fixed at the
vertices of the cones and only the directions of the vectors k\ are shown, those of ki being left undisplayed
for simplicity (except for the labelled points in (7} where k^ is shown).

In the case Q = P = Π + m2 we identify the parametrices corresponding to
C\,C\,C\,C\ as follows. By virtue of the fact that the wave front sets C\IC\ have
support only for x\ in the future/past of XΊ, we deduce that E2 - E^+ and E$ = E^_
must be (up to C°°) the retarded and advanced fundamental solutions ΔR,ΔA to
the inhomogeneous Klein-Gordon equation, i.e., E2 = ΔR, E^ = ΔA For example,
ΔA(X\> /) = / ΔA(xι,X2)f(%2)dx2 is the solution of (Π +m2)u = f (f G Cfi°) with
support to the past of supp /, hence only points (x\,X2) for which x\ e J~(xι) are
in supp ΔA

In Sect. 6.6 of [7] the parametrices E\ and £4 are labelled the Feynman and
anti-Feynman propagators Ep and Ep respectively. In this paper we call these the
Feynman and anti-Feynman distinguished parametrices respectively, because we must
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regard Ep as logically distinct from the distribution ωp> which in Sect. 2 is denoted
the Feynman propagator associated to a state ω. In the next section Ep and ωp are
shown to be in fact identical mod C°° precisely when cj2 is globally Hadamard and
satisfies (KG), (Com) up to C°°.

Note that the wave front set of EF gives precise meaning to the statement of-
ten found in the physics literature that "the Feynman propagator propagates positive
frequencies to the future and negative frequencies to the past." According to Theo-
rem 2.5.14 of [16], if u G &'(M) then WF(EFu) = WF'(£F) o WF(w), where the
o operator maps sets in T*(M)\0 to sets in T*(M)\0, i.e., if (yj) G WF(u) then
WP(EFu) contains any points ( x , k ) such that ((x, fe), (y, I)) G WFf(Ep). Hence if
WF(ι^) contains any points of the form (?/, Z), where / is null and / > 0 resp. / < 0 then
WF(Epu) will contain the null geodesic strip to the future resp. past of (y, I). Oth-
erwise, WF(Epu) contains only WF(ι^) (this comes from the Δ* part in WFf(Ep))9

i.e., singularities with non-null covectors are not propagated anywhere. Furthermore,
because of Theorem 4.5, one can say that the Feynman parametrix is (mod C°°)
the unique parametrix of Π + ̂  that propagates positive frequencies to the future
and negative frequencies to the past as seen in the wave front set. (Note that this
interpretation requires only global hyperbolicity, not asymptotic flatness.)

The parametrices E+, E~ are called distinguished because no other parametrix E
of Q is uniquely determined up to C°° by its wave front set WF(E). See Proposition
6.6.8 of [7].

The following propagation of singularities theorem (PST) is also of use here (see
Sect. 6.1 of [7], p. 196).

Theorem 4.6 (Theorem 6.1.1 of [7]). Assume that Q G Lm(M) is properly sup-
ported and has a real principal part q which is homogeneous of degree m. If
u G &'(M) and Qu = f it follows that WF(u)\WF(/) is contained in q~l(0) and is
invariant under the Hamiltonian vector field Hq.

For the definition of the symbol class Lm(M) = L™0(M) (also called Pm(M)), see
Chapter 2 of [16].

For the case that / G C°°, and with the choices Q = (Q +m2)® 1,1 ® (Π +m2),
applied to a two-point distribution μ^(x\,x^) on a globally hyperbolic CST, the PST
implies that WF(//2) must be a union of sets of the form B(x\, k\) x B(x2, fe), where
(zi,fci),O2,&2) G A T .

At this point, we provide an explanation for why the wave front set of a dis-
tinguished parametrix must be one of the sets of an orientation C^ union Δ*. In
the proof of Lemma 6.5.4 of [7], which is needed to prove the existence part of
Theorem 4.5, the identity operator / is broken up into ]ζTi, where each TI is a
pseudo-differential operator whose kernel has support in a conic region V^ and {Vτ}
is a locally finite covering of T*(M)\0. Intermediate parametrices F^ are constructed
such that PFΪ = Tτ+ Rf, where WF'(F*) C Δ* U C± and Rf is a certain Fourier
integral operator whose primed wave front set is contained in C^. (Under the hy-
potheses of Theorem 4.5, the sum of the R^ may be expressed as PG± mod C°°,
where WF/(G±) C C ,̂ which finishes the construction of the distinguished para-
metrices.) In the case that WF(T^) is in a sufficiently small conic neighborhood of
(xoj &o) sucn that P(XQ, fco) - 0' it is clear from the construction of F^ that the part
of C+ in which WF'(F/) is contained is a conic neighborhood in C+ of C+(x0, &o) if
(xoj &o) G N+, or a conic neighborhood in C~ of C~(XQ, ko) if (#o? ΛO) G N~. More-
over, each (x, fc) G N will give rise to a contribution of either C+(x, k) or C~(x, k)
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(not both) in the wave front set of the sum J^ F* — G+ (the constructed distinguished
parametrix E+). Note that if both C+(x,k) and C~(x,k) are included in the wave
front set of E* then the uniqueness argument would fail; see, e.g., Proposition 6.5.11
of [7]. Hence E* must have wave front set

WF'(££) = (J C+(x, fc) U (J C-(x, k) U Δ* ,
N1 N2

where TV1 and N2 are complements of each other in TV. However, since WF'(E£)
is a closed subset of T*(M x M)\0, TV 1, TV2 must be closed subsets of TV, i.e., they
give rise to an orientation by Eqs.(lO) and (11).

5. Equivalence Theorem

Following is the main theorem of this paper, referred to here as the "equivalence
theorem." We specialize to the case n = 4. Note that "ωi satisfies (KG) mod C°°"
means "(Π + τn2)ω2 = h\ and ̂ (D + m2) = ̂ 2 f°r some smooth /ii, /i2 "

Theorem 5.1. Let (M, g) be a four dimensional globally hyperbolic space-time, let
P = Π +m2, and suppose ω^ is an element <9/ '̂(M). Choose a Cauchy hyper surf ace
W , a causal normal neighborhood Λ/" of W and time function T. Then the following
three conditions are equivalent:

1. u)2 is globally Hadamard on Λ/" x ^\ and satisfies (KG) and (Com) mod C°°.
2. The Feynman propagator ωp ofω is the distinguished parametrix Ep ofP modulo

C°°.
3. ω2 satisfies (KG) and (Com) mod C°°, and

WF(ω2) = {((xi, fci), (x2, fe)) e Γ*(M)\0 x Γ*(M)\0:

(xι, fcι) ~ (x2,-k2),k\ > 0} .

Please refer to the Note Added in Proof, in which we show (KG) can be dropped
from Condition 3. The consistency of Condition 1 with (KG) and (Com) has been
shown earlier. Note that Condition (PT) is not mentioned in Theorem 5.1. A result of
Duistermaat and Hδrmander [7] will be used later to show that (PT) is a consequence
(mod C°°) of any of the above three (equivalent) conditions.

(i) 1 =Φ> 3. In [32] and an earlier version of this paper a proof of this implication was
given, but it was valid only for the flat case (σ(x\,X2) = —(x\ — ^2)2) Kohler [24, 25]
has completed this proof for the general case using a deformation argument analogous
to that of Fulling, Narcowich and Wald [11]. Whereas Kohler 's argument depends on
the results of Fulling, Sweeny and Wald [12] (namely that Cauchy evolution preserves
the Hadamard expression), here we present a direct computation of the wave front set
of ωi in the region Λ^ x Λ^, which does not rely on the Cauchy evolution argument
of [12], nor does it use a deformation argument of [11].

Let M denote four dimensional Minkowski space M4 with the usual metric ημι,.
The first step in our computation is to compute the wave front set of the following
distributions in &'(M):

uι(y) := lim (-yl)
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ii2(y) := lim In (—y2) ,

where yf = (y° — ie, y1, y2, y3). The wave front sets of the distributions

?2) := lim+ln(σe(x!,

(where σe(xι, x2) = σ(xι,x2) + 2ie(T(xι) - T(x2)) + e2) on a convex normal neigh-
borhood of a general space-time M will then be deduced through a judicious choice
of coordinates on the product manifold M x M.

Define the distribution u™(y) on M by setting the Fourier transform to be

u™(k) - —θ(ko)δ(k 2 — m2) , (12)

which is in J '̂(M). By inserting a "convergence factor" exp(—e/c0) and taking the
limit c —> 0+, one can show that u™ is given by

<(j/) = lim ί-L + /(m) ln(-ye

2)] + - - - , (13)

where the omitted terms are C°° and vanish when m = 0 and /(O) = 0, /(m) ^0 for
m > 0. As in the definition of G^p in Eq. (3), the branch cut is along the negative
real axis in the logarithm. ω2(xι, x2) = ̂ ii^xi — #2) is the two-point distribution
of the free field of mass m on Minkowski space.

It is clear from Eq. (13) that sing supp u™ = {y:y2 = 0}. Furthermore, from
Eq. (12) we have (Q + m2)uf = 0.

By the propagation of singularities theorem for the operator Π + m2 applied to
uf1, if (x, fe) G WF(w^) then so is (xf, k')9 where (x7, fc') - (x, fc) and A:2 = (A:7)2 = 0.
On Minkowski space MI we have k1 = k.

Observation 1. If (x, k) E WF(^^), so that x2 = 0, and if x ^0, then jfe is parallel to
x, since otherwise by the PST we may generate singularities off the light cone x2 = 0.

Lemma 8.1.7 of [18] states,

Lemma 5.2. Ifv G &"(W) then WF(υ) C W x F, w/ierβ F is ίfte fimiί cone o/supp Ό
αί oo, by which we mean the set of all limits of sequences tjXj, where Xj G supp v
and tj > 0 and lirn^oo tj = 0.

Using this we arrive at

Observation 2. We have WF(ι^) c M x F, where the limit cone F of supp i^ is
precisely

F = {k G M\{0}: &o > 0, A;2 = 0} .

If we let

A = {(x, fe) G T*(M)\0: fe || x ^0, A;0 > 0, A:2 = 0} , (14)

β = {(0, fc) G T*(M)\0: /c0 > 0, fc2 = 0} , (15)

then Observations 1 and 2 imply that
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0 c A U B = {(x, k) G Γ*(M)\0: 3s G R, x = sk, k0 > 0, k2 = 0} . (16)

Now if x2 = 0 and x ^ 0, there must be a nonzero covector k G M such
that ( x , k ) G WF(iί^) since u™(x) must have a singularity at such an x. Hence
WF(ι^) D A. Furthermore, the points (0,fc) with k2 = 0 and A:0 > 0 are also
in WF(t/,™) because we may pick a point (x, fc) G A and by the propagation of
singularities theorem propagate (x, k) to (0, fc) to produce a point in B. Hence we
conclude that equality holds in Ineq. (16), i.e.,

WF(ι^) = A U B .

This determines the wave front set for u\ = u\, for u™(y) — u\(y) = lime_+o+ f(m)
ln(—yl) + C°°, with m =/0, and hence for u2(y\

Following is the computation of the wave front set of a two-point distribution
α;2(£ι,£2) satisfying Condition 1 for the case of a general four dimensional glob-
ally hyperbolic space-time (M,g). Choose a Cauchy hypersurface W c Λ&, a
causal normal neighborhood ΛS* , and a convex normal neighborhood U in ΛΛ
Consider the mapping φ: M x M — > M x M defined as follows. For each pair
(xι,#2) £ U χ U, let φ(xι,X2) — θ£?2/(#ι>#2))> where x - XΊ and yμ(x\,X2),μ =
0, . . . , 3 are the coordinates of the point x\ with respect to the Rίemann normal
coordinate system at x2. (See e.g., Fulling [10].) Hence φ is a diffeomorphism
and σ(xι,x2) = -2/2(zι,#2) = -ημvyμ(xι,X2)yl'(zι,Z2)' The arguments of [23]
which show that the definition of Hadamard is independent of the choice of T
can be modified to show that T(x\) — T(x2) may be replaced by y°(xι,x2) (both
of which are positive when x\ e J+(x2)) in the definition of σe without chang-
ing the global Hadamard definition, so that under the mapping φ~l the distributions
v\(x\ , x2), v2(x\ , #2) become u\(x, y), UΊ(X, y), which are the elements of <2$'(M x M)
defined by u\ = I 0 u\ , ϋ2 = 1 0 w2.

Now clearly one has for z = 1 , 2,

WFfe) = {((x, 0), (y, fc)) G T*(M x M)\0: (y, fe) G WF(^)}

= {((x,0),(2/,A;))6Γ*(M xM)\0:

35 G M, yμ = s/cμ, A:2 = 0, k0 > 0} .

Hence it remains to apply the following theorem, from which we deduce how to
compute the wave front set of the pullback of a distribution:

Theorem 5.3 (Theorem 2.5.11X of [16]). Let X and Y be manifolds and φ: Y -> X
be a C°° map, and let

, 0 e T*(Jf): ^4(y)ξ = 0}

be the set of normals of the map. If u G &'(X) and WF(^) Π TV^ = 0 we can define
the pullback φ*u in one and only one way so that it is equal to the composition u o φ
when u is a continuous function and is sequentially continuous from &p(X) to &'(Y)
for any closed cone Γ C T*(Jf)\0 with Γ Π Nφ = 0. Moreover,

) C φ*WF(tO = {(y, V(2/)0: (^(y),0 € WF(u)} .
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Refer to [16] for the definition of the pseudo-topologies given to the sets of
distributions <&£(X) = {u G &'(X): WP(u) C Γ}. Transposition is denoted by *.
When φ is a diffeomoφhism, Nφ is contained in the zero section 0 and Nφ Π WF(u)
is empty. Since φ~l is also a diffeomoφhism, we have

For our choice of φ, replacing y by (#ι,£2) and ξ by [0, &]*, and changing to
space-time tensor notation, dφt(y)ξ becomes dφt(xι,X2)[Q,k]t, which is

0
(17)

1

Here the subscript 1,2 on the index a indicates that the derivative (indicated by a
comma) is with respect to the coordinates x\,x2 respectively. Now the wave front
sets of ΐίi, i = 1,2 contain points ((#, y), (0, &)), k =/ 0 such that yμ = skμ for some
s G EL We deal with the three cases s > 0 , s < 0 , s = 0 separately. If s > 0, then the
right hand side of Eq. (17) for VΪF(φ*ϋi), i = 1,2 is

Now recall (see e.g., Fulling [10]) that the vectors σai := σ^τ = gaί^Vβτσ for
i = 1,2 are the tangent vectors to the geodesic from x\ to X2 (within the convex
normal neighborhood) at x\,x2 pointing toward the other point along the geodesic,
with magnitude equal to twice the length of the geodesic. (Our definition of σ is
equal to the more common definition of σ times —2.) The first vector σaι is minus
the parallel transport of the second σa2 along the geodesic from x2 to x\. Since
ko > 0, kμ is a forward pointing null vector, which means that x\ >>- #2, i.e., x\
and X2 are connected by a null geodesic 7 and x\ is advanced in time with respect
to x2. Hence k\ = —^σaι is the forward pointing tangent vector to 7 at x\, and

k2 = —^σ0ί2 is minus the parallel transport of fci along 7 from x\ to x2.
For the case s < 0, we have x\ -< XΊ and one finds that k\ defined above is

forward pointing and that ki defined above is minus the parallel transport of k\ along
7 from x\ to x2. For the case s = 0, the points x\, x2 coincide, k\ = —/c2, k\ = 0, and
k\ > 0 as follows from continuity from the other two cases. Hence WF(^),i = 1,2
consists of all points ((x\, fei), (x2, fe)) in T*(U x ί7) such that (#ι, &ι) ~ (x2, —/c2)
and for which k\ > 0.

Now define the distribution Γτ'p(xι,x2) on the set ̂  defined in Lemma 3.1 to
be lime^o+x(#ι,£2)G<f'p(xι,£2), where Gτ'p is defined in Eq.(3). Clearly we have
on θ

= lim

, x2) In

—- χ(xl, x2) (^K^i, X2)vι(xι, x2)π V



Micro-Local Approach to the Hadamard Condition in QFT on CST 547

where σe(x\ , x2) = 0"(#ι , #2) + 2\eyQ(x\ , £2) + e2.
To simplify the notation in the following, we drop the T in Λτ>p and Γτ>p. Note

that we may choose the causal normal neighborhood Λ^ to be close enough to W and

the set @ to be close enough to Λ/" x ./V so that Δϊ(xι,x2) ^0 for (x\,x2) G ̂ .
In the following we shall also use the fact that for any y G M, and any φ G C°° such
that φ(2/) y 0, and any u G '̂(M), we have Σy(φu) - Σy(u).

Now since WF(ι^),i = 1,2 is determined on any set of the form U x U, where
U is a convex normal neighborhood, and since & is constructed as a union of such
sets by Lemma 3.1, WF(ι>i), i = 1, 2 is thus determined on all of & to be

T*(M x M)\0: fo, fcO - (x2, -fc2), fci > 0} .

Hence by the above facts and the fact that Γp = 0 outside ,̂ we have that

T*(M x M)\0:

(zi,fci)~(z2,-fc2), fci > 0} .

For any pair (x\,x2) G ~/K x «yK, choose a function φ such that </>(z 1,0:2) =/ 0
and with compact support in U\ x ί/2, where C/i are small coordinate neighborhoods
of Xi, 2 = 1,2. Hence we may compute the Fourier transform of φHp with respect
to the coordinates on U\ x U2 to be

for some constant Cp, and for any k = (fci, /c2). Since Λp = Γp + ίfp for any p, we
deduce that the wave front set over Λ" x ^V of a two-point distribution ω2 satisfying
Condition 1 is

WF(u;2) - {((x1,fc1),(x

(a i, AI) ̂  (#2, -fe), *ι D> 0} .

By the PST and the absence of singularities of ω2(x\ , x2) at points x\ , ̂ 2 which are
space-like separated in ΛS* , we conclude that the above equation is true on M x M.
Hence WF(α;2) is as given in Condition 3.

(ϋ) 3 => 2. We wish to show that if Condition 3 holds, then ωF = EF mod C°°,
where ωp = iω2 + ΔA is the Feynman propagator of ω and £^F is the Feynman
distinguished parametrix.

First, it follows easily from (Com) that ωp = 1(^2)+ + \(^A + ^Λ)» and since
ΔA[X\)X'I) - Δpt(x2,x\), the symmetry of ωp is manifest.

When restricted to points ((x\, kι),(x2,k2)) G T*(M x M)\0 such that x\ g
J~(x2), the distribution Z^(xι,x2) vanishes, and hence WF(O F) = WF(α;2) for
xi ^ J~(x2) It is easily verified that the wave front set of a symmetric two-point
distribution is a symmetric set. Hence

Γ*(M)\0 x r*(Af)\0:(x!,*;i)

k\ D> 0 if X] >- x2 and fei < 0 if x\ -< x2}.

This set is just C\, shown in Fig. 1.
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The last step is to show that WF'(ωF)\X}=X2 = Δ*9 where

Δ* = {((x, fe), (x, /c)): (z, fc) e T*(M)\0} .

Remark that PωF = ωFP = I up to C°°, where P = Q + m2, since this is true for
ΔA and CJ2 is (mod C°°) a bisolution of P. Now by the pseudo-local property of
pseudo-differential operators,

WF'toO D WF'C/Vp) = WF'(I) = Z\* . (18)

However, WF'(Z\A) = Δ* U Oj. (See Fig. 1 for the definition of C\.) Note
that C\ Xl=X2 C Δ* and that WF'to)U,=x2

 c Δ*. Therefore, WF'toOU^z C
!̂ ^ UW¥f(ΔA)\Xl=X2 C Δ*. Thus we have established that

= Δ*\J {((xi, fci), (x2, fe)) e T*(M)\0 x T*(M)\0: (xi, fcO - (z2, fc),

&ι > 0 if xι >- x2 and k\ <\ 0 if x\ -< x{\.

Finally, since ωF is a parametrix of P, the uniqueness (mod C°°) of distinguished
parametrices (Theorem 4.5) implies ωF = EF mod C°°. This proves (ii).

(iii) 2 => 1. First, note that Condition 2 implies 6J2 = —Ί(ωF — ΔA) = —i(EF —
mod C°° satisfies (KG) mod C°°, since EF and ΔA are parametrices of P. Next,

(modC00).

Therefore (Com) is satisfied mod C°°.
Finally, we need to show that if ωF = EF mod C°° then Cp functions Hp exist

such that CJ2 = Λp on ̂ ί̂ " x ̂  for all p, where Λp = Γp + fίp (see discussion fol-
lowing Definition 3.4). This follows easily from the existence of a globally Hadamard
parametrix \2(x\ , #2) on ^/K" x ^K since then we have λ^ = EF mod C°° and thus
ωi = \2 mod C00. See, e.g., [12] for the construction of such a parametrix, or Chapter
4 of Friedlander [9] for this construction for the advanced and retarded fundamental
solutions, which is readily extendible to the globally Hadamard case. (Note that to
construct this parametrix one does not need to use a Cauchy evolution argument, nor
does one need to show the existence of a globally Hadamard two-point distribution
satisfying (PT), (Com), and (KG) exactly, as is done in [11].) This completes the
proof of Theorem 5.1.

Now since the proof of Theorem 5.1 has not relied upon the "preservation of
Hadamard form under Cauchy evolution" result of Fulling, Sweeny and Wald [12],
we have an alternative micro-local proof of their results as follows: If (Com) and (KG)
hold mod C°° (globally), then the Hadamard condition on Λ/* x Λf is equivalent to
the WFSSC on ./̂  x JίΛ If Λ/*' is another causal normal neighborhood on M, then
all points ((2/1, /i), (2/2, lift in Λ^' x JV' of the form ( y \ , l ι ) - (y2, -fc) with l λ > 0
are in the wave front set of ω^ since they are easily seen to come from WF(α;2) on
ΛS* x Λ/" by the PST. It is also clear that there are no other points in WF(α;2) on
ΛS*' x ΛS'' since these would propagate back to pairs ((#ι, &ι), (#2, ^2)) not allowed
by the WFSSC on Λ/* x ΛΛ Hence the WFSSC holds in Λ"f x ̂ ' which, along
with (Com), (KG) mod C°°, implies (GH) on this set. Hence the global Hadamard
condition "propagates" throughout the space-time.
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6. Discussion

In anticipation of quantum field models satisfying a more general linear wave equation
and having a different form for the commutator, we isolate the condition on the wave
front set from Condition 3 of Theorem 5.1, calling it the wave front set spectral
condition (WFSSC):

Definition 6.1. The two -point distribution ωi is said to satisfy the wave front set
spectral condition ( WFSSC) if

(x\,kι)~(x2,k2),kι t> 0} .

As stated in the Introduction, the WFSSC is analogous to the ordinary spectral
condition for the two-point distribution in axiomatic quantum field theory. We may
see this as follows:

First, on Minkowski space M = (M4,r/), the spectral condition in axiomatic QFT
requires that ω2 G <5 '̂(M2) and that

supp ̂  C {(fci, fc2) Ξ M\{0> x M\{0>: fci G V*, fci + k2 = OJ U {0} ,

where V+ = {k G M: ημvkμkv > 0, feo > 0} is the closed forward light cone. By
Lemma 5.2 this implies

π2WF(u;2) C {(fci, fc2) G M\{0} x M\{0}: kι G V+, kι + k2 = 0 j.

Hence for each point (xι,x2) G M2,

Σ(xltX2)(ω2) C (fci, fez) G M\{0} x M\{0}: kλ G V+ ', kι +k2 =

Second, on an arbitrary globally hyperbolic space-time (M, g\ the WFSSC states
that for null-related x{ and #2,

C {(fci, fcj) G Tx*l(M)\{0} x TX*2(M)\{0}:

where the operator T£* parallel transports vectors along the null geodesic from x\ to
x2, and for other points (X\,XΊ\

The resemblance of the two conditions is manifest, justifying the terminology
"wave front set spectral condition."

Recently Kohler has proposed a modified WFSSC (called MWFSSC in this paper)
which allows for nontrivial examples that do not satisfy WFSSC at conjugate points
(i.e., points X\,XΊ which can be connected by more than one null geodesic). See
[24, 25, 33] for more discussion. Note that the WFSSC given here is entirely adequate
for linear models.

We remark that the WFSSC (or MWFSSC) contains qualitatively different kinds
of information than the spectral condition. The WFSSC specifies the location of the
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singularities of ω2 and indicates the directions of non-rapid decrease at these points
(but does not restrict the support of the Fourier transform of ω2), whereas the spectral
condition only places a restriction on the support of the Fourier transform without
explicitly specifying the location of the singularities. Now from axiomatic QFT on M
it is known that in general, ω2(x\,x2) is smooth for space-like separated points x\,x2,
if ω2 satisfies the spectral condition and Lorentz invariance. Hence the WFSSC may
be viewed as a combination of these two conditions modulo C°° on curved space-time.

For m-point distributions (m > 3), a wave front set condition has been proposed
by Kohler [25, 4] (see also [32] which contains a first attempt at such a condition,
but was shown not to be satisfied in the quasi-free case for the Einstein cylinder by
Kohler [26]), and it is of interest to investigate the consequences of the wave front set
property and other properties as is done in axiomatic quantum field theory [34, 19].

Various authors have viewed the Hadamard condition as a necessary physical
condition on quasi-free Klein-Gordon states in a globally hyperbolic curved space-
time [5, 35, 11, 12, 14, 23], and in particular as a remnant of the spectral condition
via the equivalence principle (see, e.g., [31]). Theorem 5.1 provides a stronger con-
nection between the Hadamard condition and the spectral condition, namely through
the WFSSC. This connection could perhaps have been anticipated by the following
heuristic argument: If ω2 £ <9^'(M2) and (supp αζ) consists of points (k\,kι) such
that k\ is in the closed forward light cone V+ and k2 = —k\, then multiplication
by a smooth cutoff function φ e C0°(M2) will result in a violation of the spectral

condition: e.g., ττι(suρp φω2) (f. V+. However, the directions (k\,k2) of non-rapid

decrease of φω-i are still such that k\ e V+ and fe = — &ι When considering dis-
tributions on curved space-times, it is natural to use a partition of unity to split up
ω2 into φω2 G <S'(M x M), where φ is localized near a point (x\,X2\ and to map
φω2 to ^7(M4 x M4) using a coordinate chart. It is sensible to then make some sort

of restriction on the directions (fti, k2) of non-rapid decrease of φω2 so that k\ is in
the forward light cone, and k2 is in the backward light cone. Since the metric on
M4 is no longer flat, and &ι, k2 are considered to be covectors localized near x\,X2
resp., there may not be a simple relation between k\ and k2 (such as k2 = —k\ on
flat space). However, parallel transporting k2 to x\ and requiring k\ = ~Tk2 appears
to be a natural thing to do in the curved case. In the limit as the support of φ goes
to (#1,2:2) this condition becomes an exact condition on the wave front set of ω2,
and it only remains to decide, e.g., along which curves parallel transport should be
taken. In any case, such an argument suggests that using wave front sets may be an
appropriate way of generalizing the restrictions suggested by the spectral condition
on flat space to a curved space-time.

Next, we quote a result by Duistermaat and Hδrmander [7] demonstrating that the
global Hadamard condition for Klein-Gordon two-point distributions is sufficient to
guarantee positivity (PT) mod C°°.

If n € N is a component of N, defined in Sect. 5, then one defines the two-
point distribution 5Λ to be the difference E^ ~ E^ of the distinguished parametrices
corresponding to n and 0 respectively of a properly supported pseudo-differential
operator Q, with respect to which M is pseudo-convex. As shown in Sect. 6.6 of [7],
if v is any subset of TV, then

(19)
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We refer to [7] for more properties of Sή Of interest to us here is the following
slightly modified version of the main result from Sect. 6.6 of [7].

The operator Q is called Hermitian if (Qu, V)M = (u, QV)M for all u, v G
Cg°(M), and (u,v)M = / u(x)v(x)dμg(x).

Theorem 6.2 (Theorem 6.6.2 of [7]). Let Q be Hermitian and of real principal type
in M, and assume that M is pseudo-convex with respect to Q. Then one can choose
Sn antί-Hermitian so that for u G C

(ΓSnU,u)M >0.

Refer to [7] for the proof. This theorem implies that if v\ D 1/2 men

-i(££ - ££) = -i SΛ

is of positive type up to C°°.
When we consider the case of Q = Π + m2 on a globally hyperbolic space-time

(M, #), and choose the distinguished parametrices Ep and ΔA, whose subsets z/ are
N+ U 7V_ and 7V_ respectively (see Sect. 4 for the definition of these sets), we see
that SN+ = EF — ΔA. Hence the above theorem informs us that —Ί(EF — AA) is of
positive type up to C°° (here we recall the correspondence between continuous linear
mappings of Cfi°(M) to C°°(M) and elements of ^>'(M)). Therefore, we have the
following result.

Theorem 6.3. If ω^ is a two-point distribution satisfying (KG) and (Com) and the
global Hadamard condition on a globally hyperbolic space-time (M, g) then there is
a function f G C°°(M x M) such that ω2 + / satisfies (PT).

Hence whereas positivity (mod C°°) was not needed to define the global Hadamard
condition, it is not only consistent with the global Hadamard condition but is also a
consequence of it.
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Communicated by G. Felder

Note Added in Proof: One can drop the condition (KG) from Condition 3 of Theorem
5.1; it is implied by the other properties of Condition 3. To see this, let AQ = (D+ra2)®
1, A2 - I ® (D + m2), and note that A\Λ = A2Δ = 0. Since (ω2)+ is symmetric, we
have (Aι(ω2)+)(x\,X2) = (A2(ω2)+)(x2,xι) and hence WP(Aι(ω2)+) = WF(A2(α;2)+)ί,
where t interchanges (x\,k\) and (x2, k2) in the wave front set. Also, A\ and A2 are
pseudo-differential, hence WP(Aι(ω2)+) = WF(Aιω2) C WF(α>2) and WF(Aι(α;2)+)t =
WP(A2(ω2)+) C WF(α;2), and since only k\ >0, k2 <ιO appear in WF(α;2), we see that
WP(Aι(ω2)+) must be empty. Similarly for Vf¥(A2(ω2)+). Thus ω2 satisfies (KG)
modulo C00.
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