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Abstract: Let G be a connected Poisson-Lie group. We discuss aspects of the
question of Drinfel’d: can G be quantized? and give some answers. When G is
semisimple (a case where the answer is yes), we introduce quantizable Poisson sub-
algebras of C°°(G), related to harmonic analysis on G; they are a generalization of
F.R.T. models of quantum groups, and provide new examples of quantized Poisson
algebras.

Introduction*

Quantization in the framework of deformation theory (deformation quantization
[26]) was initiated in [2]. The deformation-quantization program of symplectic
structures ([2]) leads to various and deep applications in physics and mathemat-
ics (e.g. index theory [8 and 26]). The existence of quantizations was first proved
using some technical assumptions (essentially vanishing of the cohomology group
where obstruction sits), and then in full generality: actually, any symplectic Poisson
bracket can be quantized ([9 and 26]).

In his Berkeley report [10b], Drinfel’d proposed a similar program of quantiza-
tion in the case of Poisson-Lie group structures. Here, deformation of algebras will
not be enough: one has to deform Hopf algebra structures. In order to quantify the
standard Poisson—Lie bracket on simple groups, Drinfel’d introduced deformations
of enveloping algebras, which became very popular under the name of quantum
groups. These structures contain a lot of combinatorial information, and happened
to have fundamental applications (e.g. knot theory [19a and 23]), via their univer-
sal R-matrix. In [10d], a very natural question was asked: can any Poisson—Lie
structure be quantized? This question is, in fact, a multivalued one, since it can
be given at least three interpretations, each of which leads to a particular problem,
that we shall now state.

* Unexplained notations used in this introduction can be found in Sect. 1, Sect 4 (for Poisson
algebras, Poisson—Lie groups, etc ) and Appendix A (for representations of semisimple Lie groups)
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(P1) Problem 1. Given a Poisson—Lie group G, does there exists a deformation of
the Hopf algebra C>®(G), with a new product x, unchanged coproduct, and such
that:

if fxg=fg+Ci(f,g)t+ O, then

{f.9} =Ci(f,9)— Cilg, /), Vf,g€C¥(G)?

In this definition, C*°(G) is considered to be a topological Hopf algebra, and
deformation means topological deformation (see [6]). Any solution of (P;) will
be called a quantization of the Poisson algebra C*°(G), or simply a quantization
of the Poisson—Lie group G.

We recall that deformations with unchanged coproduct are called preferred defor-
mations ([13]). This condition is imposed to quantization because of the invariance
property of the Poisson—Lie bracket:

6({f.91) ={6(/), ()}, Vf.g9 € C=(G).

It is therefore natural to impose the same compatibility of the x-product with respect
to the coproduct of C*°(G), i.e.:

o(f*xg) =0d(f)*xd(g), Vf,g€C™(G).
(P2) Problem 2. Given a finite dimensional Lie bialgebra (g, p), does there exist
a deformation of the Hopf algebra 9U(g), with new coproduct A, such that:

(4 — AP)|y = pt + O(F*) ?

Once more, deformation has to be taken in the topological sense, %(q) being
endowed with its natural topology ([6]). Any solution of (P;) will be called a
quantization of the Lie bialgebra (g, p), or a quantized enveloping algebra.

Relations between (P;) and (P,) are not obvious, though it is clear that a natural
choice for (g, p) is the Lie bialgebra structure defined from the Poisson-Lie structure
of G. Very heuristically (but it can be made rigorous in the present context as we
shall show later on), considering that #(g) and C*°(G) are related by some duality,
and given a solution of (P;), transposition of the new Hopf structure of %(g) should
lead to a new Hopf structure on C*°(G). But, if the product of #(g) is changed,
we shall not obtain a preferred deformation, so invariance with respect to d will be
lost. Therefore, we have to ask more:

(P3) Problem 3. Given a finite dimensional Lie bialgebra (g, p), does there exist
a solution of (Py) with unchanged product?

Any solution of (P3) will be called a preferred quantization of the Lie bialgebra
(9, 0).

Let us briefly recall what was known up to now. If G = R", (P;) is solved
by the Poincaré—Birkhoff-Witt Theorem ([15]). For triangular bialgebras (i.e. such
that p(X) = [4(X),r], VX € g, with r € g A g, a solution of the classical Yang—
Baxter equation), it was shown that (P;) and (P3) can be solved in the simply
connected case ([10a]). Introducing quantum groups, Drinfel’d was able to solve
(P3) for the standard bialgebra structure on semisimple g; topological deformation
theory was then used in [5 and 6] to solve (P;) in that case. After several at-
tempts (e.g. [19b]), it was shown that (P;) can be solved for any finite dimensional
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Lie bialgebra [11]. The main problems, i.e. (P3) and especially (P;), are still un-
solved, up to now, for general g, or G.

Furthermore, let us mention another kind of quantization, the so-called Faddeev—
Reshetikhin—Takhtajan models (or F.R.T. models) [12]. It works for simple classi-
cal matrix groups. Actually, it was proved in [5 and 6], that F. R.T. quantization is
a quantization, in the sense of (P1), of the Hopf algebra of coefficients of finite-
dimensional ( f.d.) representations of G (this was expected by several authors, who
gave various heuristic proofs). Even more, the above-mentioned solution of (Py),
in that case, can be restricted to f.d. coefficients, and one recovers F.R.T. models
([5 and 6]). For a semisimple G, f.d. coefficients are dense in C°°(G) if and only
if G is linear ([5]); so, for a linear G, the x-quantization is specified by its restric-
tion to f.d. coefficients. This is what we shall call @ F.R.T. core: a %-stable dense
subalgebra of C°°(G), the first example being exactly F.R.T. models. It is a very
interesting (and completely unexplored up to now) problem to find FR.T. cores,
for instance for nonlinear G; %-stable subalgebras are also of interest, because they
provide ipso facto new examples of Poisson—Lie algebras, and of their quantization.

So, we have two objectives in the present paper:

— first, to go further in the resolution of (Py),
— second, to construct new F.R.T. cores, and examples of x-stable subalgebras, in
relation to representation theory and harmonic analysis.

Now, we describe our main results.
We prove a general statement concerning the resolution of (P;), when (P3) can
be solved:

Theorem 1 (6.1.1). Let G be a simply connected Poisson—Lie group. If (P3) can
be solved, then (P1) can be solved.

Our proof gives an algorithm for the computation of the solution. We also show
that the cochains of the obtained %-product on C*°(G) are bidifferential operators;
they are of finite order.

In the case of semisimple groups, a well-known argument of Drinfel’d shows
that (P,) and (P3) are equivalent problems. Using [11], (P;) can be solved, then
an easy application of arguments developed in [5 and 6] gives:

Theorem 2 (4.3.2). Let G be a connected semisimple Poisson—Lie group. Then
(P1) can be solved.

Note that simple connectedness is not needed in Theorem 2. We show that, in the
semisimple case, the cochains are bidifferential operators of finite order.

Using [11], where (P3) is proved in that case, the case of “double groups” is
very similar:

Theorem 3 (4.3.3.3). Let G be a connected Poisson—Lie group. We assume that
the associated Lie bialgebra is the double of some Lie bialgebra. Then (P,) can
be solved.

In that case also, the cochains are bidifferential operators of finite order.

Let us restrict our attention, in the sequel, to connected semisimple Poisson—Lie
groups, with finite center. For such groups, it was shown by Drinfel’d [10c] that
solutions of (P3) are always obtained from the initial coproduct by a twist. As a
consequence, we are able to construct -stable subalgebras and F.R.T. cores using
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representation theory, and coefficients, not only of finite dimensional representations,
but also of infinite-dimensional ones:

Theorem 4 (5.3.4) & (3.3.1).

1. Let II be a family of C* representations of G, and C[II] the subalgebra
of C*(G) generated by their coefficients. Then C[II] is x-stable.

2. Let II be a family of admissible Banach representations of G,K be a max-
imal compact subgroup of G and Ck[II] the subalgebra of C*“(G) generated by
their admissible coefficients. Then Ck[II] is %-stable.

3. In case 1 (resp. 2), if II is conjugation-stable and contains sufficiently many
representations, then C[IT] (resp. Ck[II]) is a F.R.T. core.

(5.3.1) shows that C?(G) is x-stable. Note that Ck[IT] is a domain since it is
contained in C®(G). In Theorem 4, one can take, for instance, the family IT;; of the
irreducible f.d. representations of G; then C[II;s] = C[II;s] = Span[Coeff[IT;/)],
and C[II;s] is a F.R.T. core if and only if G is linear ([5]). For general G, F.R.T.
cores always exist, but infinite-dimensional representations are needed:

Theorem 5 (5.3.6). There exist unitary irreducible representations m,...,n, of G
such that Cg[my,...,n,] is a FER.T. core. If G is not compact, my,...,n, can be
constructed using the unitary principal series induction techniques.

The first claim of Theorem 5 is the generalisation of a similar result valid for
compact groups ([6]). There is some freedom in the choice of my,...,w,.

Let us now restrict to the case when rank G = rank K. This ensures existence
of discrete series, but we want more, since we want to have holomorphic discrete
series. So we assume that, once a compact Cartan subalgebra §) is fixed, there
exists a Borel subalgebra b D b, and nontrivial b-extreme unitary representations of
G (these representations were introduced by Harish-Chandra in his early work on
discrete series [16]). We denote by IIy the set of b-extreme unitary representations,
and obtain:

Theorem 6 (5.4.1). Coeffx(ITy) is a x-stable subalgebra of C*(G). One has:

Coeffx(ITy) = @ Coeffg(n) .
n€lly

If I} is the subset of integrable elements in Iy, and IT: the subset of square-
integrable elements, then:

Coeffx(IT}, ) C Coeffx(IT? ), and Coeffx(IT2 ) » Coeffx(IT2 ) C Coeffx (IT} )[[£]] -

So, for any choice of an “admissible” Borel subalgebra, there is a corresponding
Poisson algebra of coefficients of unitary b-extreme representations, and x is a
quantization of this Poisson algebra.

Theorem 6 is a consequence of the reduction of any tensor product of elements
of ITy into direct sum of elements of IT, ((3.5.4)). It is a generalisation of the
results of [4], who treated the case of G = SU(1,1).

Theorems 1 to 6 are, in our opinion, the main results of the paper; nevertheless,
there are several other results or remarks which can be of interest by themselves:
for instance, we show in Sect. 7 that the existence of a solution for (P,) can be
interpreted as a “free quantization up to flat functions.” These results are not listed
in this introduction, and have to be found in the sections of the paper.
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We tried to write a self-contained exposition; so we often recall known results,
when needed. Nevertheless, it would be too long to recall the complete theory
of topological Hopf algebras and their deformations, including well-behaved Hopf
algebras, which is developed in [6]. This machinery being an essential tool in the
present paper, we recommend that the reader consult [6].

Let us describe the sections of the paper:

Section 1 contains all general material and notations about the well-behaved
Hopf algebra C*°(G) and its strong dual A(G). This presentation is not so usual,
but very convenient, so we give some details.

Section 2 deals with subalgebras of C*° and C“ coefficients, Sect. 3 with sub-
algebras of admissible coefficients (for semisimple G), in the classical case, i.e.
before quantization. Subalgebras defined from b-extreme unitary representations are
studied at the end of the section, the example of G = SU(1, 1) is presented in detail.

In Sect. 4, we recall, for convenience, the basic notations concerning quantization
of Poisson algebras. We then discuss the semisimple case, and prove Theorem 2.
We obtain Theorem 3 by similar arguments.

In Sect.5, we specialize to connected semisimple Poisson—Lie groups, with
finite center. Drinfel’d’s twist formula provides explicit formule for the compu-
tation of product of coefficients (5.2.1). Using the results of Sects. 2,3 and 4, and
Appendix B, we prove Theorems 4,5 and 6.

In Sect. 6, we prove Theorem 1. The proof uses integrability results on defor-
mations of representations obtained in [18], that we recall at the beginning of the
section.

In Sect. 7, we interpret the solutions (P,) as free quantizations up to flat func-
tions, using the duality between the space of formal Taylor series and the enveloping
algebra.

Apart from Theorems 1 and 3 (and Sects. 6 and 7), most of the paper deals with
semisimple Lie groups, and their representations. Since the theory of representations
of semisimple has developed a jungle-like and often author-dependent terminology,
we give in Appendix A, a complete list of the vocabulary and results needed in the
paper, for the convenience of the reader.

Finally in the paper, we use a C*° Stone—Weierstrass Theorem, adapted to Lie
groups, which is useful:

C* Stone—Weierstrass Theorem. Let G be a connected Lie group, & a closed
subalgebra of C*°(G) stable under conjugation, containing sufficiently many func-
tions to separate between points of G, and stable under the left or right regular
representation of G. Then & = C*®(G).

Since we have not been able to find a reference for this theorem, we give a proof
in Appendix B.

1. Notations

1.1. All vector spaces used in this paper are complex vector spaces, all Lie groups
are real Lie groups, all algebras have a unit element. A tv.s. is a complete,
Hausdorff and locally convex, topological vector space; if ¥, and V, are t.v.s.,
ZL(V1; V,) is the space of continuous linear mappings from V; into V,, V* is the
strong dual of V. The tensor product of t.v.s. is the topological projective one,
denoted by ®.
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In the paper, we need several results partly from geometry (essentially Lie group
theory), partly from t.v.s. theory (distribution theory), partly from Hopf algebra
theory. All these results are well-known, but not presented all together in the
same textbook, so we shall recall them in detail. For the proofs, we refer to
[7,14,17,22,25], etc. The Hopf algebra theory we use is topological Hopf algebra
theory, introduced and developed in [6]: the underlying vector spaces are t.v.s., the
tensor product is ®, and all the usual operations of Hopf algebras are supposed to
be continuous. Any usual (i.e. in the algebraic sense) Hopf algebra of countable
dimension is a topological Hopf algebra, when endowed with its natural topology.
A (topological) Hopf algebra is well-behaved ([6]), if the underlying t.v.s. is Fréchet
or DF, and nuclear. If U is a well-behaved Hopf algebra, then (by transposition)
A* is also a well-behaved Hopf algebra; due to the reflexivity of such spaces,
A** = A, as Hopf algebras. For more details, see [6].

1.2. Given a connected Lie group G, we denote by e the identity element of G,
by go its (real) Lie algebra, by g the complexification of gy, and by %(g), or %,
the enveloping algebra of g. The space C*°(G) of the C*° maps from G into C,
with its usual Fréchet topology, is a well-behaved Hopf algebra, with the product
the Abelian product of functions, the coproduct é : C*®(G) — C®(G)® C®(G) =
C*®(G x G) defined by &(f)(x,y) = f(xy), the antipode S(f)(x)= f(x~!), and
the counit &(f) = f(e). Transposition of the Hopf structure of C*°(G) to 4(G) =
C*°(G)* provides a well-behaved Hopf algebra structure on 4(G): the elements of
A(G) are the compactly-supported distributions, and the product is the convolution
product, that we shall denote by S-T(S,T € A(G)) or simply by ST, if there is
no ambiguity. The Dirac map 0 : G — A(G), mapping x to the Dirac measure on
x (0x), is a homeomorphism from G onto the closed subset of group-like elements
of A(G). Moreover, one has 0y -0y = 0y, and O, is the unit of A(G), so it is
natural to identify G and O0g, which we assume is done in the sequel. One has
Span(G) = A(G). Then, the fundamental property of A(G) is that any C*° map f
from G into a t.v.s. V can be extended to a continuous linear f : A(G) — V. This
is a consequence of nuclearity: one has

C®(G;V)=C®(G)RV = AG) ®V = L(AG); V).

For instance, any C* representation © of G in a t.v.s. V lifts to a representation
of A(G) on V (see Appendix A).

1.3. We can identify %(g) and the algebra of the left invariant differential operators
on G. Then we define a linear one-to-one map i : %(g) — A(G) by:

(F1iX)) = (X(N]de), VX € U(g), Vf € CZ(G).

i is a one-to-one morphism of algebras from %(g) onto i(%(g)), so we identify
both, and consider that %(g) C A(G). %(g) is weakly closed, since it is exactly the
orthogonal of the space of C*° functions which are flat at e, and A(G) induces on
U(g) the finest t.v.s. topology, i.e. the natural topology, as defined in [6]. One has:

d
(flx) = E(fICXPTX) , VX €g0, Vf € CP(G), (1.A)
=0
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) ad; exptX|.—0 = X, in A(G), for X € go. As a consequence:

d
aexth =X-exptX =exptX X,
in A(G), for X € go.

The Hopf structure of A(G) is exactly the extension of the usual Hopf structure
of %, i.e., if 4 is the coproduct of 4(G), one has, VX € g, A(X) =X Q1+ 1R X,
S(X) = —X, and the counit ¢ is the trivial representation of g.

1.4. Given a C* representation 7 of G in a t.v.s. ¥, as mentioned in Appendix A,
it extends to a representation of A4(G), and, as a consequence of the formula (1.A),
the restriction of 7 to %(g) C A(G) is exactly what is usually called the differential
of 7.

For instance, the left and right regular representations of G on C*°(G) are
representations of 4(G), defined by the formulae:

(LSYFIT) = (fIS(S)- T),
(RHFIT) ={fIT-S$),
Given X € %(g), R(X) is exactly the left invariant differential operator correspond-

ing to X, and L(X) is exactly the right invariant differential operator corresponding
to X:

Vf € C=(G), VS, T € A(G).

[LX)f1(x) = (FISX) - x),

Vi € C®(G), Vx € G, VX € %(g) .
[RCX) f1(x) = (f]x-X),
Contragredient L and R are C*™ representations, when extended to 4(G), they are
given by:

LT =8-T,
. VS, T € A(G).
R(S)T =T -5(8),

1.5. The Adjoint representation of G on 4A(G) is the C* representation defined by:
Ad(x)S =x-S-x7!, VxeG, VS €4G).

It extends to a representation, still denoted Ad, of A(G) on itself.

One has Ad(X)Y =[X,Y], VX,Y € g, so Ad|, acting on g is what is usually
called the adjoint representation of g. As for Ad|s acting on g, it is the usual Adjoint
representation of G on g. Let %,,n = 0, be the canonical filtration of %(g), then
Ad(x), C U,, Vx € G, so each %, (and consequently %(g)) is a stable subspace
for the Adjoint representation of A(G).

1.6. Finally, let us give some precise information about the notion of the differential
operators on C*°(G). They are defined from %(g)-valued C* functions from G to
A(G): Given such a function d, the associated differential associated operator is
D : C>®(G) — C=(G):

(DfIx) = (f1S(d(x)) - x) = (f - Ad(x™D[SE(x))]), Vf € C¥(G), Vx€G.
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For instance, for constant functions, one recovers the left regular representation of
%(g) in C*=(G), [LX)f1(x) = (fIS(X)-x), (Vf € C*®(G), Vx € G, VX € U(g)).
The right regular representation of %(g) occurs for functions of type x — Ad(x)X
X € u(9)) : [RWX) f1(x) = (fIx - X) = (fI[Ad(x)X] - x), (Vf € C=(G), Vx € G).

A differential operator is of finite order if it comes from a C*°%,-valued
function, for a fixed n, from G into A(G). For instance, the left and right regu-
lar representations of #(g) in C*°(G) are representations by differential operators
of finite order.

The %-products are generally expected to have bidifferential operators as cochains.
The notion of bidifferential operators is a straightforward improvement: one takes
(% ® U)-valued C* functions from G into 4(G)RA(G) = A(G x G), and given
such a function d, one defines D by, Vf,g € C*(G), Vx € G:

(D(f,9)x) = (f ® g|SP(d(x)) - (x ® x))
= (f®gl(x®x) AdP ™" @ x HSP(d(x))]) ,

where S@ is the antipode of A(G x G), Ad® the Adjoint representation of G x G.
A finite order bidifferential operator comes from a (% ® % ),-valued function, for a
fixed n, from G into 4(G X G).

This is the end of the list of general notations we need. Specific notations for
representations of semisimple Lie groups are given in Appendix A.

2. C* and C? Coefficients

2.1. Let V be a t.v.s.,, L(V) the algebra of continuous linear maps from V into V'
and %p(V') the ideal of finite rank continuous maps, i.e. those f € £ (V') such that
dim(Im f) < oo.

2.1.1. Lemma. Let V* be the topological dual of V. Then S(V)=V*QV.

Proof. Obviously, V* ® V' is contained in #(V) if one defines, for ¢ € V*,
veV :weV,(p®v)(w)=@Ww)v.

Conversely, if f € %(V), then Ker f is of finite codimension, so it has a topo-
logical supplementary S. Let us introduce the projection p onto this supplementary
with respect to the reduction V' =S @ Ker f. Then S* C V'*, since any element
@ €S8* can be extended to ¢ =¢@o p € V*. Now, let {si,...,s,} be a basis
of S,{¢1,..., .} its dual basis and {vy,...,v,} a basis of Im f. If f(s;) = >_, fi¥i,
then /=3 fyg®v. O

We define a trace on % (V') by:

peViveY, Tr(p®v) = @(v) .
The usual properties of the trace are satisfied, as shown by the following lemma:
2.1.2. Lemma.

1L.Vf € L(V), Vge L(V), Tr(fog)=Tr(go f).
2. Let Vi and V; be t.v.s., Tty and Tr, their respective traces, assuming that u
is an isomorphism from V| to V5. One has:

Vf € LK), Tri(f)=Tra(uo fou).
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Proof. To prove 1, we use (2.1.1) and restrict to f = @®vV,p € V*,v € V. Then
fog=(pog)®vV,and go f = ¢ ®[g(V)], so:

Tr(f o g) = olg(v)] = Tr(go ).
For 2, the same kind of arguments work. [J

2.2. For the purposes of deformation theory, we have to introduce formal maps,
and formal trace. This is a straightforward generalization:
We define the C[[¢]]-algebra £ (V') of formal linear maps by:

P, = {f= S s fo € x(V)} ,

with the product:

<Z fnt”> o (Z gnt”> = Z ( ;}f ° gn_i) ",

and the ideal Zy(V'); of formal finite rank maps by:
Lo(V) = {f= o Jat"s fu € i”o(V)} .

The formal trace Tr(f) =, Tr(fy)t" € C[[t]] is C[[¢]]-linear and satisfies:

Te(f 0 §) = Tr(Go f), Vf € Lo(V) VGE L), .

2.3. Let G be a connected Lie group and m a C* representation of G in a t.v.s.
V. Given f € % (V), we define the coefficient cf by:

i(x)=Tr(fo[n(x)]), x€G. (2.A)

Using (2.1.1), it is clear that the space of coefficients Coeff(n) is a subspace of
C*°(G). Generalized coefficients are obtained when using formal finite rank maps.

Let L and R be the left and right regular representations of G on C*°(G). Both
are C* representations. By (A.5), 7 is a C* representation of G on V*, and one

has, if p € V*,ve V:
{ L(x)chev = Cliypian »
R(x)chey = Cogintem -
It results that Coeff(w) is stable under the left and right regular representations.
2.3.1. Proposition.

1. Assume that W is a closed stable subspace of V and let ny be the restriction
of @ to W. Then Coefl(ny) C Coeff(n).

2. We suppose that V is a Fréchet space and keep the assumptions of 1; let
nt be the C™ quotient representation on V/W. Then Coeff(n!) C Coeff(n).

3. If m and ' are two equivalent C* representations of G, then Coefl(n) =
Coeff(n').
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Proof. 1 is a trivial consequence of the Hahn—Banach Theorem. For 2, denote by
u:V — V/W the canonical map, given @ € (V/W)* and v € V, one has ng[y(v)] =
Clpoyay: then 2 follows from (2.1.1). Finally, 3 is an immediate consequence

of (2.122). O

Let us note that the restriction in 2 is essential because, for a general t.v.s. V,
V/W need not be a t.v.s., but is not really troublesome since we are especially
interested in the case when 7 is the restriction to the space of C°° vectors of a
continuous Banach representation of G, in which case V' is Fréchet space.

2.3.2. Proposition. Let © and ' be two C™ representations of G on V and V'
respectively, f € L (V), f' € L(V'). Then ch X c}l, = c?‘?g},.

Proof. By (A.5), n®n' is a C* representation of G, by (2.1.1), f® f'¢€
Lo(V®V"), and we can restrict to f =@ QvV, ff=¢'QV, o e V*, ¢ € V"™,
veEV, v € V', in which case the formula is trivial. O

2.4. Given a C*™ representation = of G on a t.v.s. V, we define its conjugate @ as
follows: first, we define a new t.v.s. structure, say ¥, on V by 1 -v= v, A e C,
v € V; then we set T(x)v = n(x)v,x € G,v € V, and get a C*> representation T of
G on V. One has to take care that 7 is generally not equivalent to m, since Idy is
antilinear from V toLNow, there is an antilinear isomorphism between V'* and V*
defined by @(v) = @(v), ¢ € V*. So, coefficients of 7 are conjugate of coefficients
of 7, i.e. Coeff(7) = Coeff(n).

We say that 7 is self-comjugate if T ~ m; obviously, n @7 is always self-
conjugate.

2.5. Any C® representation 7 of G in a t.v.s. V' extends to a continuous represen-
tation of A(G) (A.1), that we still denote w; on the other hand, for any coefficient
c} of m, since cy belongs to C*°(G) = A(G)*, it is a continuous form on A(G).
Now formula:

(c}la) = Tr(f o [n(a)])
is valid if a € G, so, by the density of Span(G) in A(G), it holds if a € A(G).

2.6. Let now 7 be a representation of G in a Banach space V. There are several
possible choices for what could be called “C* coefficients of 7,” the simplest one
being the space of coeflicients of 7|;,, = 7. But this last space contains functions
which are not continuous coefficients of n in the usual sense. So we define the
space of C™ coefficients of 7 as follows:

We consider V* ® V., and we define Coeff,(7) to be the subspace of Coeff(7,)
generated by c}°°, f € V* ® V. The space Coeffoo(7) is still stable under the left
and right regular representations of G on C*°(G).

Similarly, we define the space of analytic coefficients of @ to be the sub-
space Coeff,(n) of Coeff(n,) generated by C}"", fevV*®V,. As for Coeff (),
one has stability of Coeff,(7) under the left and right regular representations.
Moreover, Coeff,(n) C C*(G), so analytic coefficients are completely specified
by their restriction to %(g), since an analytic function is specificed by its Tay-
lor series. Finally, any subalgebra of C°°(G) generated by analytic coefficients is a
domain.
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One can define the conjugate ® of n as in (2.4). = and % have exactly the
same C* or C® vectors, and V, = V,, as t.v.s.. Moreover, since V* and (V)* are
anti-isomorphic by @(v) = ¢(v),¢ € V*,v € V, one has:

Coeff () = Coeff () and Coeff, () = Coeff, (7).
Note that, if 7 is a unitary representation, then T ~ 7, the contragredient of .

2.7. Given a family IT of representations of G, we define subalgebras of C*°(G)
as follows:

— when any element of IT is a C* representation, then C[II] is the subalgebra of
C*°(G) generated by all coefficients of all elements of IT;

— when I is a family of Banach representations, then C[Il,] is the subalgebra
of C°°(G) generated by C*° coefficients of all elements of IT and C[II,] is the
subalgebra of C”(G) generated by C® coeflicients of all elements of II.

In any case, those algebras are all stable under the left and right regular repre-
sentations. If IT is assumed stable by conjugation, then the same property holds for
the associated subalgebras.

Clearly, the most interesting case is the algebra C[II,], because this algebra is
a domain (2.6). Note that the family IT, of finite-dimensional representations is in
both cases but there is no ambiguity because any vector is analytic and:

ClI;] = C[(Iy)oo] = T[T} )o] -

2.8. We shall now use the C* Stone—Weierstrass Theorem of Appendix B to obtain
some density results on the algebras defined in (2.7).

2.8.1. Proposition. Let I be the family of all unitary irreducible representations
of G; then C[I1,] is dense in C*(G).

Proof. The Gel’fand—Raikov Theorem asserts that G has sufficiently many unitary
irreducible representations, so C[I1,] satisfies the assumptions of the C* Stone-
Weierstrass Theorem of Appendix B. [

2.8.2. Proposition. If G is linear, then C[II;] is dense in C*°(G).

Proof. Let m be any f.d. faithful representation of G, then C[rn,7] satisfies the
assumptions of the C* Stone—Weierstrass Theorem of Appendix B. O

2.8.3. Remarks.

1. When G is compact, G is linear and, if 7 is any f.d. faithful and self-conjugate
representation of G, then C[r] = C[II;] ([5 or 7]).

2. When G is linear and 7 is any f.d. faithful and self-conjugate representa-
tion, then C[n] is dense in C°°(G) by the proof of (2.8.2) but it can happen that
C[r]+C[1I] (see an example in [5]).

3. If G is semisimple, then G is linear if and only if €[II/] is dense in C*°(G)
([5]); moreover, for any semisimple linear group, it is always possible to find a f.d.
representation such that C[n] = C[I1,] ([5]).
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3. Admissible Coefficients

In this section, we assume once and for all that G is a connected semisimple Lie
group with finite center. We fix a maximal compact subgroup K and denote by to
the Lie algebra and by t the complexification of t;. We make a free use of the
terminology of Appendix A.

3.1. Let m an admissible representation of G in a Banach space V,FVx its space
of K-finite vectors, which is an %(g)-module, and ¥® the dual Harish-Chandra
module.

We consider the space /;® ® ¥, and the corresponding finite rank linear map-
pings defined by: (¢ @ V)(W) = @(W)v, ¢ € V2, v,w € V.

As noted in [21], from the existence of continuous @?rojections on each isotypical
component of K, it results that each element f € V3 ® Fx can be extended to a
(finite rank) continuous linear mapping from ¥ into V (or Vs into V), so that
f € V* ® Vy. Therefore, using (2.6), f defines an analytic coefficient ¢ by the

formula:
cix)=Tr(fo[n(x)]), x€G.

In the sequel, coefficients of this type will be called K-finite, or admissible
coefficients of m; the space of admissible coefficients will be denoted Coeffx (7).
Since Coeffx(n) C C*(G), an admissible coefficient is completely specified by its
restriction on %(g). It has to be noted that Vkx is generally not stable under 7, so
Coeffx(n) is generally not stable under the right or left regular representation of
G; nevertheless, Coeffx () is stable under the restriction to K of the right and left
regular representations, and also under the left and right regular as representations
of %(g), because P is stable under 7|x, and also under m|4g), moreover, VK@ is
stable under 7|g, and also under 7|4(q) (see (2.5) or Appendix A for the notations).

Generalized admissible coefficients are defined by formal series },c7 ¢", with
c}n admissible coefficients of =, Vn.

3.2. We want to state formula (2.3.2) in the case of admissible coefficients; obvi-
ously, the tensor product of two admissible representations is generally not admis-
sible as a representation of G; fortunately, it is admissible as a representation of
G X G ((A.10)), so we can state:
3.2.1. Proposition. Let n and n’' be admissillvle Banach representations of G,c7
and c”, be admissible coefficients. Then c;?é”f, is an admissible coefficient of the
representation 1 @ T’ of G X G, and one has:
/ _ ® !

cF xcly = c’}®”f, o (3.A)
3.2.2. Corollary 1. The space of restrictions to G of admissible coefficients of
the representation n @ ©' of G x G, is exactly the space generated in C°(G) by
products of admissible coefficients of © and ©'.

Before we give a proof, let us make some remarks.
1. The corollary is easily generalized to » tensor products, so, one obtains:

3.2.3. Corollary 2. The subalgebra of C*(G) generated by admissible coefficients
of m and 7' is exactly the subspace generated by restrictions to G of admissible
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coefficients of representations 1) @ - -- @ Wy, W; =7 or 7', n € N*, of G", and the
constant function 1.

2. The results work as well for Hilbert representations and the Hilbertian tensor
product.

Proof of the Proposition. We can restrict to f =@ ®vV, f'=¢ @V,pc V2,
@' e (VIR.VE VK,V €V Then f@ ' =(¢p®¢")@(VOV), one has 9 ® ¢’ €
VOV, VOV € (V®V kxk by (A.10), so c}‘%’}', is an admissible coefficient
of the representation 7 ® ' of G x G. Formula (3.A) is trivial. O

3.3. Given a set I of admissible Banach representations of G, we denote by Ck[I1]
the subalgebra of C°°(G) generated by admissible coefficients of all elements in IT.
Since Ck[IT] is contained in C®(G), the algebra Ck[IT] is a domain. Following
the usual terminology, we say that I contains sufficiently many representations if,
for any x € G\{e}, one can find © € IT such that n(x)=+Id.

3.3.1. Proposition. If II is stable by conjugation and contains sufficiently many
representations, then Ck[II] is dense in C*°(G).

Let us note that, when IT contains only unitary representations, stability of IT
under conjugation is equivalent to stability of IT under contragredient operation.

Proof. Ck[II] satisfies all assumptions of the C*° Stone—Weierstrass Theorem (use
(A.4) for assumption 2), except one: stability under the right regular representation
(see (3.1)); we introduce the closure Ck[II] in C*°(G).

Let = € I, V,, be the space of C™ vectors of @ and 7., the restriction of «
to V. Given v € V,,, we define f, € C®(G,Vx) by fy(x) = Too(x)v. The map
v — fy is an isomorphism from V,, onto a closed subspace of C*°(G, V) ([25]).
Let R be the right regular representation of G on C*°(G), and cg,, ¢ € VK®,
v € Vk, an admissible coefficient of n. Then R(x)cg®v = QO frooy- Since Fx is
dense in ¥V, there is a sequence v, € Vx such that n.,(x)v = lim, v, in V,; there-
fore fr.oxyw = lim, fy, in C*(G, V), and since ¢ € VZ, one has lim,(¢ o fy,) =
$ 0 fro@y 0 C(G), ie. lim, chg,, = R(X)cggy. As consequence, Ck[II] is sta-
ble under the right regular representation, so it satisfies all assumptions of the C*°
Stone—Weierstrass Theorem. [

3.4. Using (3.3), we shall now propose some refinements of (2.8.1). Our goal is
to find finite sets IT of irreducible Banach representations of G such that Cx[I]
is dense in C*°(G). For instance, if G is linear, it is possible to find such a set
containing only f.d. representations ((2.8.2)). If we drop the assumption that G is
linear, then, by (2.8.3.3), we have to use infinite-dimensional representations. Let us
now show that the classical construction of the principal series will give an answer
to the question.

3.4.1. Proposition. Let H be a closed normal subgroup of G. Then HNK = {e}
implies H = {e}.
3.4.2. Corollary. Let m be a representation of G. Then = is faithful if and only
if |k is faithful

Proof. Let by be the Lie algebra of H, and H, be the connected component of {e}
in H. Then H, is a closed normal semisimple subgroup of G, with Lie algebra by.
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Since by is an ideal in g, we have g9 = b @ 1, with i an ideal. Since [ho,i] = {0},
and H, is connected, Ad|y, acts trivially on i, and, on by, it acts as the Ad-
joint representation of H,. So, Ker(Ad|y,) = Z(H,), the center of H,, but since
Ker(Ad|g,) = H. N Z(G), where Z(G) is the center of G, which is finite, we con-
clude that Z(H,) is finite.

Let K’ be a maximal compact subgroup of H,. Since H, is connected, semisimple
and has finite center, one has: K’ = {e} < H, = {e}. There exists x € G such that
xK'x~! C K; since H is normal, we can assume from the beginning that K’ C K.
It results that: H N K = {e} = H, = {e}. Now, if H, = {e}, H is a discrete closed
normal subgroup, but G is connected, so H C Z(G). Now, it is well-known that
Z(G) C K, so H = {e}.

For the corollary, we apply (3.4.1) to H = Kern. [

Let now G = KAN be an Iwasawa decomposition of G, M the centralizer of 4 in
K, and P = MAN the corresponding minimal parabolic subgroup of G. The unitary
principal P-series of G is obtained when inducing unitary representations of P
of type a(man) = &(a)L(m),¢ € /T, Lei. By the Frobenius reciprocity Theorem,
given 6 € I?, then ¢ is contained in Indpjg o as many times as L is contained in
O|um- So, using (3.4.2), we can easily construct faithful representations of G:

3.4.3. Proposition. Let 6 be a faithful unitary representation of K, and 6 =
DD, 0; € I?, its reduction into irreducible; for i=1,...r, let L; € M
be an irreducible component of 0;|y, & 6;1\, o, =¢& + L, vy =Indpygo;, and
v=@,_, vi. Then v is a faithful unitary representation of G.

Proof. By the construction of v, one has é C v|g, so v is faithful by (3.4.2). For
the exitence of J, see e.g. Chevalley [7]. O

3.4.4. Corollary. There exist unitary irreducible representations m,...,n, of G
such that Ck[ny,...,n,) is dense in C*(G).

Proof. Any unitary principal P-series representation is known to be reducible into
a finite sum of irreducible ([25]), so, with the notations of (3.4.3), v is finitely re-
ducible, and so does ¥; 7y,..., 7, are obtained as the distinct irreducible components
of the reductions of 7 = v @ ¥ and (3.4.4) follows from (3.3.1). O

3.4.5. Remarks.

1. Since the ¢; €A are arbitrary in (3.4.3), one has some freedom in the
choice of the representations 7y, ..., 7w, of (3.4.4), for instance, for their infinitesimal
characters.

2. For any compact group K, the statement of (3.4.4) is true (see (2.8.3.1)).
Proposition (3.4.3) and Corollary (3.4.4) can be seen as a direct consequence, using
the maximal compact K of G, and the induction process of principal P-series.

3. In the case of G = SU(1, 1), by a good choice, one can take n = 1 in (3.4.4).
This is not true in general (even for a compact G).

3.5. In this subsection, we assume that rank G = rank K. This is exactly the case
when G has discrete series representations: we shall deal with a restricted case, the
so-called “holomorphic discrete series.” Indeed, our assumption rank G = rank K
is clearly not enough for the existence of such representations. Moreover, we are
mainly interested in the algebraic structure of our representations, rather than their
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square-integrability. So let us assume that we consider a group G with the fol-
lowing property: Having fixed a compact Cartan subalgebra V), there exists a
Borel subalgebra b relative to V), and a (nontrivial) admissible unitary representa-
tion such that the associated Harish-Chandra module is generated by an extreme
weight vector of by (i.e. a vector v such that Cv is b -stable).

We shall call such a representation a b-extreme unitary representation of G.
We shall not discuss the conditions on G in order that nontrivial b-extreme unitary
representations do exist, we refer to Harish-Chandra [16] or Varadarajan [24]. Let
us note that though this type of representations was initially introduced by Harish-
Chandra in order to construct discrete series representations (and he gave conditions
to ensure square-integrability), it can happen that they are not square-integrable (e.g.
the mock discrete series of SU(1,1)). Finally, since b-extreme %(g)-modules are
indecomposable, a unitary b-extreme representation of G is actually irreducible.

3.5.1 Lemma. Let © be a unitary admissible representation of G in V. Then Vk is
a semisimple U(g)-module, and 7 reduces as a direct orthogonal sum of unitary
irreducible representations.

Remark. Lemma (3.5.1) is true for any semisimple group G with finite center.
Proof. Given a %(g)-submodule W of Fk, since n(x) (x € go) is antisymmetric, the
subspace W+ = {v € Vx/VLW} is also a submodule. One has W = @ (W N¥),

the V5 are mutually orthogonal and finite-dimensional, so Vx = W @ W+, which
proves that Vx is a semisimple %(g)-module. By Zorn’s lemma, we can reduce
Vk 1nt0 a direct sum of mutually orthogonal simple %(g)-submodules, i.e. Vx =
@.c; V. By (A.6), 7 is G-stable, and the restriction of 7 to 7 is a unitary irreducible

representation; moreover, V = @, V. O
3.5.2. Lemma.

1. Let V be an admissible %U(g)-module; assume that V = @,; W, where W;

are submodules. Then V,® = @,., W®.
2. Let m an admissible representation of G in a Banach space V; assume that
Vk = @, Wi, where W; are U(g)-submodules. Then W; is G-stable, the restriction

7; of T to W, is admissible, and Coeffy (1) = > ics Coefl(m;) (non-direct sum).
Remark. Lemma (3.5.2) is true for any semisimple group G with finite center.
Proof.

1. First, one has (W)s = W, N V;,0 € E so that each W, is admissible. If P; is
the projection on W, with respect to the reduction V' = €P,;,/ W, then P(¥;) C
(W)s, so Vs = @iel(l/ﬂ)g. If fact, the last sum is finite, since dim ¥; < 0o, so V; =
P, (W);, and then

ve=@ri=@m;=@w®. O
e g

2. By (A.6), W, is a subrepresentation, and (W,)x = W, so W, is admissible.
Using 1, K-finite coefficients of n; are K-finite coefficients of n, and any K-finite
coefficient of 7 is a (finite) sum of K-finite coefficients of n;, i € . [

3.5.3. Remark. We can apply (3.5.2) to the case of (3.5.1): if = is a uni-
tary admissible representation of G, then 7 reduces into a direct sum of unitary



310 F. Bidegain, G. Pinczon

irreducible 7;, i € I, and any K-finite coefficient of 7 is a (finite) sum of K-finite
coeflicients of m;, i € I.

3.5.4. Proposition. Let  and ' be two b-extreme unitary representations of G,
respectively in V and V', and n @ n’ their Hilbertian tensor product. Then n ® 1’
is unitary admissible, (V @ V')x = Vk ® V¥, and 1 ® ' reduces into a direct sum
of mutually orthogonal b-extreme unitary representations of G.

Proof. Let 6y, 02 €K. Then Vs, ® Vs, is stable under m ® n’ |, so also stable under

the projection Ps onto (V ®; V');, for any ¢ €K. It results that Vk @ V¥ is stable
under P;. Since Fx and VY are h-diagonal modules, Vx ® V¥ is also h-diagonal.

Let A and A’ be the extreme weights of Vx and ¥}, {ay,...,0,} a simple system
of positive roots relative to b. Then any weight of Vx (resp. ¥¥) is of the form:
A=Y nma, n; € N (resp. X' — > ;njo;, nj € N), and the corresponding weight
space is finite dimensional, so it results that any weight of Vx ® V¥ is of the form:
A+ A =3, mo;, mi € N, and that the corresponding weight space is finite-
dimensional. Vx ® V¥ is clearly K-finite, and, since its weight spaces are finite-
dimensional, it is an admissible %(g)-module.

Now, given v € (V ®, V)5, by the density of Vx @ V¥, we can find a sequence
v, € Vg ® V¢ such that v=lim,Vv,. Then v= Ps(v)= lim,Ps(v,), but Ps(v,) €
(Vk ® V)5, which is finite-dimensional, so (V ®, V')s = (Vk ® V{)s, therefore
V& Vik=Vc®VW, and n®7' is admissible. So (3.5.1) can be applied to
reduce n ® 7’ into a direct sum of mutually orthogonal unitary irreducible 7; acting
on the stable subspaces #; which come from the reduction Vyx ® V¢ = @Dic; Wi of
the %(g)-module (V ®, V')k into mutually orthogonal simple submodules #;. From
the structure of the weight system of Vx ® V¥ described previously, it results that
each W is generated by an extreme weight vector, so each 7; is a b-extreme unitary
representation of G. [

3.5.5. Proposition. Let Ty be the set of unitary b-extreme representations of G
(up to equivalence), including the trivial representation n°. Then Coeffg(ITy) =
@ren, Coeffx(n) and Coefix(Ily) is a subalgebra of C*(G). If I} is the
subset of integrable elements of IIy, and II} the subset of square-integrable
elements of IIy, then Coeffx(I1}) C Coeffx(I12) and Coeffx(IT2) x Coeffx(IT2) C
Coeffx(I1}).

Remark. b-extreme %(g)-modules are completely determined by their extreme
weight ([16]), so, due to the compactness of K, ITy is countable.

Proof. Given 7 € IIy, acting on V, Coeffx(7) is linearly spanned by coefficients of
type ¢, with /=@ Q®vV, ¢ € V.2 and v € V. Let R be the right regular represen-
tation of G on C*®°(G): R is a C* representation of G and one has:

R(X)chey = Cogmuxyys X € 90,

so the map v € Fx — cjgy, for fixed ¢ in V2, is a %(g)-morphism from Fx into
C*°(G). Since Vx is a simple %(g)-module, if ¢ is nonzero, the previous map is
injective, so Coeffx(n) is a semi-simple %(g)-module for the right regular represen-
tation, and it is isotypical of type m. It results that Coeffx(IIy) is also a semisimple
%(g)-module, with isotypical component of type 7 exactly Coeffg(n), and this

proves the first claim.
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Let now w and 7’ € II,, we want to compute the product of two admissible
n®7r/

coefficients by formula (3.A): ¢} x c}l, =gy |g. In this formula, 7 ® ' is the

Hilbertian tensor product representation of G x G. By (3.5.4), n® n/, as a repre-
sentation of G, is admissible. One has: (V ®, V' )x = Vk @ V¥, so:

(V@ Vg =V @ 1®
and
TV Vk=F2k) (WO eW),

/ . . . . .
) c}g’}, |¢ is an admissible coefficient of the representation 7 ® n’' of G, and any

admissible coefficient of that representation is a finite sum of such ones. Therefore,
Coeffx(n ® n’) is the subspace of C?(G) spanned by all products of admissible
coefficients of 7 and =’

On the other hand, applying (3.5.4), we reduce 7 ® 1’ = ,; m; into b-extreme
unitary irreducible representations of G, and (3.5.2) shows that Coeffx(n @ n') =
Eie ; Coeffg(n;), and therefore we can conclude that c} X c}l, € Coeffg(ITy).

When 7 and 7' are square-integrable, Schwarz inequality shows that
¢} X % € ZLYG), so Coeffx(n® ') C £1(G), and then Coeffx(m;) C LY(G), Vi
so m; €I}, Viel, and X c}/, € Coeff K(HEI,)‘ Finally, it is well-known that
ol c i (25)). O

3.6. To check the algebra structure of Coeffx(IIp), and see that it is really different
from the algebra structure of finite-dimensional coefficients, let us give details for
G =SU(1,1) ~ SL(2,R).

In that case, there are two possible Borel subalgebras b, and b_, with the
corresponding families ITp, of bi-extreme unitary representations of G. Follow-
ing Bargmann [1], [Ty, can be labelled by ;N : ITy, = {ni;m € IN}; one has
ngt = my, the trivial representation, nsz the mock discrete series representations,
I, ={nf;m>1} is the discrete series, the only nonintegrable discrete series

representations are ;, so ITy, = {m¥;m > 1}. It is easy to check that %) = 7,,,

so Coeffx(ITy_) = Coeffx(IIp,), and we can restrict to the case of ITy, .
The reduction Clebsch—Gordan formula for tensor product is:

Ty @y = D Tinyi - (3.B)
iEN

This leads to the introduction of C;" = Zer,mel N Coeffx(my), 7 € %]N. One has
Cy = Coeffg(ITy,), C = Coeffx(IT; ) and C3“722=CoeffK(H[',+). From (3.B), it
results that C} x C- C Cl,, therefore (C), is a strictly decreasing series of
ideals of Coeffx(ITy,). Let us consider C” = C{/C;, and denote by f” the class
of f € Cy. Given a basis {y;} of Coeffx(II{,), then {1°,77} is a basis of C”
by (3.5.5), the subspace spanned by {y’} is an ideal, and any subspace of this
infinite-dimensional ideal is also an ideal, so C” is not Noetherian. It results that
Cy = Coeffg(ITy,) is not Noetherian, and, a fortiori, not finitely generated. More-
over, any element of Coeffx(IT5,) can be written as a polynomial of degree <3 in
the coefficients of Hfr/z and 1 (see [4] for details).

Algebraically, the structure of Coeffx(IIy,) reflects the Clebsch—Gordan formula
(3.B), and, analytically, it reflects the integrability properties of the representations
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involved. Most likely, the case of general G is quite similar, but the structure of
the Clebsch—Gordan formula is (to our knowledge) not known explicitly.

4. Poisson Brackets and Quantization of Semisimple Poisson-Lie Groups

4.1. Let U be an Abelian algebra. U is a Poisson algebra if it has a Lie algebra
structure (the Poisson bracket) satisfying the Leibniz identity:

{a,bc} = {a,b}c + b{a,c}, Va,b,ceN.

A connected Lie group G is a Poisson—Lie group if C°°(G) has a Poisson
structure compatible with its Hopf structure, which means the following: the Poisson
bracket P defines a Poisson bracket ?® on C*®(G x G) = C*®(G)® C=(G) by:

PSS @S909)=2(f.0)@ 9 +f9@P(f\g). VI.f.9.9 € CZ(G);
P is compatible with the Hopf structure of C*(G) if:
d(2(f,9)) = 2P(f),89)), Vf,g€CPG).

Belavin and Drinfel’d have indicated how all Poisson—Lie group structures on con-
nected simple Lie groups can be found ([3]).

4.2. Let A be an Abelian algebra, and let us consider a deformation, say *, of the
product of A, with formal parameter ¢, so that:

axb=ab+ > Cya,b)t", Va,becU.

n=1

Let [a,b]x =ax b —bxa, and ads(a) = [a, * ]x- Then [, ]x is a Lie deformation
of the trivial Lie algebra structure of 2, and one has:

ady(a)[bxc] = (adx(a)b)* c + bx(adx(a)c) Va,b,c e A.

So, if we define 2(a,b) = Ci(a,b) — Ci(b,a), it immediately results that £ is a
Poisson bracket on 2, and that t~![, ], is a Lie deformation of the Lie algebra
structure defined by this Poisson bracket.

This situation is exactly what is called a quantization of a Poisson algebra: one
tries to find a deformation of the Abelian product of 2, such that the Poisson bracket
associated to that deformation (as above) is exactly the initial Poisson bracket of 2L.
The most famous example of such a procedure occurs in the Weyl formalism of
quantum mechanics: the Moyal product on IR?" is a quantization, in the above sense,
of the natural Poisson bracket, and quantum mechanics appears as a deformation
with parameter the Planck constant, of classical mechanics (see [2]).

4.3. There is another approach to quantization: the quantization of enveloping
algebras, often called “the theory of quantum groups” ([10b]). The fact that quan-
tum groups and quantization theory of Poisson-Lie groups are dual theories is an
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intuitive belief of a lot of authors, that we shall now rigorously prove using the
results of [5,6 and 11], at least for semisimple groups. Let us give some details:

4.3.1. Given a Lie bialgebra g, with cocycle p : ¢ — g A g, following [11], a quan-
tization of (g, p) is a Hopf C[[¢]]-algebra %, such that:

1. U, ~ U(g)[[t]] as C[[t]]-modules, and %, is a Hopf deformation of #(g);
2.if A is the coproduct of %,, for any X € g, one has:

AX) = AP(X) = p(X)t + O() .

Here, Hopf algebras have to be understood in the topological sense ([6 or 11]):
for instance, 4 :%; — (%(g9) ® %(g))[[t]] and not in %, ® %, as usual. From
now on, we shall make free use of topological Hopf algebra theory, topological
deformations, duality, etc. as introduced in [6]. When a topological algebra is con-
cerned, deformation will stand for topological deformation. When purely algebraic
algebras of countable dimension (e.g. %(g)) are concerned, we always assume that
they are endowed with their natural topology ([6]); this is not exactly the same as
the topological theory developed in [11], but we prefer this presentation since the
topologies we introduce are t.v.s. topologies, which is not true of the topologies
of [11]. Moreover, from the strict viewpoint of deformation theory, both theories
are equivalent ([6]).

The first general examples of quantization of bialgebras were given by Drinfel’d,
in the case of a semisimple g. At the same time, he raised the following question:
Can any bialgebra be quantized? By [11], the answer to Drinfel’d’s question is
yes for finite dimensional Lie bialgebras. Let us now check some consequences.
We follow the ideas of [5 and 6]. We assume that g is a finite dimensional
semisimple Lie algebra. Since % = %(g) is rigid as an algebra ([10c]), given any
Hopf deformation %, of %, then %, ~ %[[t]], as algebras. Assume now that g is
a bialgebra, with cocycle p (actually a coboundary smce g is semlslmple) and
that %, is a quantization of (g, p). Condition 2 above: A(X )— °p(X )= p(X)t +
O(#?) is unchanged if the product is replaced by f Xgg=P(P'(f)x D7(9)),
with @ =1d + &1 + O(#?), and the coproduct by do =(PRP)odod! (ie.
under an equivalence) since Aq; — A =A— AP 4 O(#?). So we can assume that
U; = U[[]], as algebras. There is a llttle problem with the counit: let & be the new
counit. Following [6 and 18], £ is a deformation of the trivial representation of g,
which is rigid by semisimplicity of g, so ¢ is the initial counit. So, only the antipode
and coproduct are changed. Let us look more closely at 4: once more using semi-
simplicity of g, it was proved by Drinfel’d [10c] that 4 is obtained from the initial
coproduct 4 by a twist, i.e.

IF € (U R@U)[1])/4 = FAF".

Now we can prove the following

4.3.2. Proposition (Theorem 2). Let G be a semisimple connected Lie group,
with a Poisson—Lie group structure. There exists a deformation % of the Abelian
product of C*°(G) such that:

L fxg=fg+Ci(f,9t+0*), with C(f,9)—Ci(g,f)={f.g9},Vf,
g € C=(G),
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2. 8(fxg)=0(f)* d(g) (preferred deformation),
3. unit and counit are unchanged.

So the Poisson algebra C°°(G) can be quantized, in the sense of (4.3), and the
quantization is compatible with the coproduct ¢ (preferred deformation), exactly as
the Poisson bracket was (we shall also use the terminology “x-products” on C*°(G)
for preferred deformations).

Proof. Let p be the cocycle (actually a coboundary) of G into g A g C 4(G) R A(G),
associated to the Poisson bracket ([10c]). Then one has:

Vf,geC(G), Vx e G, ({f.g}[x)=(/®g]px)(x®x)).

Since p € C*®(G; g A g), it extends linearly to 4(G), and the restriction of p to
g C A(G) is a cocycle of g (exactly the derivative of the cocycle p, since X =
ad; exp 17X |;=o in 4(G), for X € gy), and, since p is associated to the Poisson bracket,
(g,p) is a Lie bialgebra. From the previous discussion, thanks to [11], (g,p) can
be quantized: up to equivalence, we can assume that %, = %[[¢]] as algebras, the
counit is unchanged, and the new coproduct is twisted from 4, i.e.: 4 = FAF~!,
Fe(ueu) C (4G)@4(G)II]

Using [5], formula 4 = FAF~! defines a coassociative coproduct on 4(G), and
there exists an extension to A(G) of the new antipode of %. So we now get a
Hopf deformation, not only of %, but in fact of A(G), with unchanged product and
counit.

Let us write 4 = 44 4;¢ + O(¢?), the new coproduct of 4(G), and consider
o(S) = 41(S) — 47°(S). Then, one has:

o8- T) = AS)(T) + 5(S$)A(T)

and ¢(e) = 0. By restriction to G C A(G), it results that 6(x) = c(x)A(x)"isa C®
1-cocycle from G into A(G)® A(G) for the representation n(x)W = A(x)WA(x)"!,
W € A(G)RA(G). Note that, by restriction to gAg, 7 is exactly the Adjoint
action of G on gAg (since the Adjoint action on g is X — xXx~!, x € G,
X € g C A(G)). We extend linearly 6 to 4(G), and compute:

0(X) = %[g(exp X)) A(exp —1X )]0 = ¢(X) = p(X), VX € go.

So, the two (A(G)®A4(G))-valued 1-cocycles @ and p of G have the same
derivative, therefore 8 = p on G. We deduce that ¢(x) = p(x)4(x), Vx € G. Then,
following [6], we use A(G)* = C°°(G) and the duality arguments of [6], to obtain,
by transposition of the new Hopf structure of 4(G), a new Hopf structure of

C*(G), with the new product » = 74, unchanged unit, counit and coproduct. Now:
Vf,g € C®(G), Vx € G,

(fxg=—gxf|x)=(f@g|(A-AP)x) = (f ®g| px)A(x)t + OF))

so fxg—gxf={frg}t+0(*). O
4.3.3. Remarks.

1. From the twist formula A = FAF ', F € (% ® %)([[t]], and (1.6), it is clear
that all the cochains of the x-product are bidifferential operators of finite order.
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2. Let us note that (4.3.2) is valid without any assumption on the center of G.
The usual technical assumption “G with a finite center” is not needed. This will
be explained later on, in (5.3.3).

3. The proof of (4.3.2) can be applied straightforwardly to the case of double-
groups, i.e. connected Poisson—-Lie groups such that the associated Lie bialgebra
(g,p) is the double of a Lie bialgebra ([20]). In fact, it is shown in [11] that
a quantization of (g,p) can be constructed with unchanged product and a new
coproduct deduced from the initial one by a twist, exactly as in the semisimple
case. So we can state:

4.3.3.1. Proposition (Theorem 3). Let G be a connected Poisson—Lie group such
that the associated Lie bialgebra is the double of a Lie bialgebra. Then the con-
clusions of (4.3.2) hold for G.

4. There are three essential arguments in the proof of (4.3.2):

— The first one is the existence result of [11].

— The second one (due to Drinfel’d [10c]) is the rigidity of %(g),
for semisimple g, together with the fact that deformed coproducts on
%(g) are obtained from the initial coproduct by twisting. Using
arguments of [5], extension of the new coproduct to the whole A(G)
follows.

— The third one is the theory of well-behaved Hopf algebras and their
deformations, developed in [6]: transposition of the new Hopf structure
of A(G) to C*°(G)= A(G)* provides the wanted quantization of the
Poisson bracket on C*°(G).

Now, the result of [11] is valid without any assumption on g. So let us try to
imagine what happens if g is no longer assumed to be semisimple. Then the second
arguments break down: %; is not necessarily a trivial deformation of %, and one
has no information on the relations between the initial and new coproduct. It is then
not clear at all that the new product and coproduct of % can be extended to 4A(G),
especially if we keep in mind that % is not dense in A(G). Admitting that it can be
done, then [6] machinery can be applied, but it will provide a deformation of C*°(G)
with changed product, and changed coproduct (in general) so the compatibility
of the Poisson bracket with the initial coproduct, will not be inherited by its -
product quantization. Therefore, direct application of the existence theorem of [11]
to quantization of nonsemisimple Poisson-Lie group structures is not really clear,
except if the algebra structure of % is not changed by quantization, as will be
shown in Sect. 6.

5. %x-Stable Subalgebras

We assume that G is a connected semisimple Lie group, with finite center. Some
of our results are valid without the last assumption (it will be mentioned when this
is the case), but most of them need the existence of a nontrivial maximal compact
subgroup K. We assume moreover that G is a Poisson-Lie group. By (4.3.2),
we introduce a preferred deformation (%-product) of C°°(G), with unchanged unit,
counit and coproduct, which is a quantization, in the sense of (4.1), of the Poisson
bracket.
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5.1. A subalgebra $ of C°°(G) (for the Abelian product) of C>(G) is
%-stable (or “x can be restricted to 9H”) if C,(f,9)€DH, Vf,g€H, Vn,
where C, € L(C®(G)® C®(G); C®(G)) are the cochains of *: fxg= fg+
Zn Cn(fﬂg)tn

Since one has {f,g} = Ci(f,9) — C1(g, f), a x-stable subalgebra is necessarily
a Poisson subalgebra of C°°(G). Moreover, the restriction of x to § is obviously
a deformation (in the usual algebraic sense) of the (Abelian) algebra §, ie. a
quantization of the Poisson algebra § in the sense of (4.1). So the determination of
*-stable subalgebras of C°°(G) will lead, first to new examples of Poisson algebras,
second to new examples of quantization of Poisson algebras. We have to mention
that in many cases, the Hopf structure will be lost.

A x-stable subalgebra will be called a F.RT. core (FR.T. is for Faddeev,
Reshetikhin and Takhtajan), if it is dense in C°°(G). If one knows x on a F.R.T.
core, then it is known on C*°(G). The most famous example is the algebra # of
coefficients of finite-dimensional representations, when G is linear: if one uses the
standard Drinfel’d quantization of %(g) for classical simple linear groups, then J#,
endowed with its x-product, is an algebra introduced by Faddeev, Reshetikhin
and Takhtajan ([5,6 and 12]). But when G is not linear, ## is no longer a core,
because of (2.8.2.3), and we will show, in this section, how other F.R.T. cores can
be found.

5.2. We start the computation of the x-product of coefficients by the generalization
of (2.3.2) and (3.2.1). We use the notation of (4.3): the new coproduct of % is

A=FAF~ ' F € (% @ W)[[{]].
5.2.1. Proposition.

1. Let = and 7' be C™ representations of G in tv.s. V and V', f € Lo(V),
e Lo(V'"). Then:

/ /
chxcl =" ~
SR @en ) (F= Do( @ )ol(n@n!) (F]
where 1 Q ' is the tensor representation of G on V&V’
2. Let & and 7' be admissible representations of G in Banach spaces V and

V',c} and c;‘,',, K-finite coefficients of n and 7'. Then:

! /
lxct, = cn®7z " . ,
SRR Maeny(F=Djo( f@fol(r@n!) (M| g

where 1 ® ' is the tensor representation of G x G on VV'.

Actually, the right-hand side of both formulas may seem unclear. In fact, in
both cases, it is a generalized coefficient in the sense of (2.3), and this will be
explained in the proof.

Prgof We start with case 1: then 7 ® 7’ is a C™ representation of G X G, so
VeV isa (%(g) ® %(g))-module, that we can extend to a formal representation
of (% ® %)[[t]] by:

(o) (ZXM) =Y (@)X )", X €URU.
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Writing F = > o Fat", Fl= > . Fyt", one has:

@ YF) =Y (@7 )F)t", @@n)F )= (n@a')F)x",

and the second is the formal inverse of the first. Then:
(@7 YF )o(f®f)o(n®n')F)
=3 (ﬁ%[(ﬂ QA YF)o(f® fHol(n® n')(Fn-i)]>t” ,

n

from which we deduce that the right-hand side of the formula in 1 is a generalized
coefficient of the C* representation 7 ® ©’ of G, as defined in (2.3). Then, for
x € G, one has:

(% ) @) = (% @ % | A(x))
=Tr(f®fol(r@n)F)o[(rn@n)(x@x)]o[(r® ' )(F )]
=Tr([(n @ ¥')(F Do (f @ f)ol(n@n')(F)]

ol(r@n)x®x)]) (by 2.2)

/
=™ ~ (x),
[(r@n’)(F~! )]°(f®f')°[(7f®ﬂ')(F)]( )

and this proves 1.
Now, we prove 2. We know by (A.11) that 7 ® n’ is an admissible represen-

tation of G x G, and that (V¥ ® V' )xxx = Vk @ (V')k. The action of %(g® g) =
U(g) @ %(g) extends formally to (#(g) ® %(g))[[?]] by:

(n@n') (ZXnt") = (@)X )", X, €URU.

Therefore (7 ® n')(F) and (1 ® n’ )(f ~1) are well-defined formal operators from
Vk ® V{ into itself, and the second is the formal inverse of the first.

Still using (A.11), we have (FV @ V)2 , = V& ® I®, as (% ® U)-modules.
We restrict to f=¢®vV and f'=¢ ' ®V, with o € V", ¢’ € V/*, ve€ V; and
v/ € V. Then, using the notations of the first part of the proof:

(@) F NYo(f®fo(nen)F)
—Z(Zo(n@n)w')] (f®fol(n®n')(Fy- 1)])

But
[(r@ " )FD]o(f ® f1)ol(n® ') Fui)]
=[(r® ) (SE-))Ne ® ¢ @ [(n®@ ' )F)ve V)],
where S is the antipode of the Hopf algebra % ® %, and since V,?3 QW )1(? is a
(% ® U )-module for (1 ® ©')¥ (the contragredient of 7 ® ©’), we can conclude that

the right-hand side of the formula in 2 is a well-defined generalized (K x K )-finite
coefficient of the representation © ® n’ of G X G, as defined in (A.11).
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Then we compute, exactly as in the case 1, for x € G:
(fxcf)) = Tr([(m @ 7' )E D] o (f ® f/) o [(n® ' )(F)] o [(n ® 7' )(x, x)])

=cer . (nx). O
[(e®n")(F ™ )]o(f® f")o[(r@n )(F)]

5.2.2. Remarks.

1. When 7 and 7’ are unitary admissible representations of G, (5.2.1.2) holds
also for the Hilbertian tensor product representation 7 ®, n’ of G X G in V ®, V’,
and the proof is the same.

2. (5.2.1) has a straightforward generalization to tensor products of 7 represen-
tations, that we shall now describe. Actually, the proof is essentially the same, but
we need some notations to write the resulting formula:

Let U be an algebra with a coassociative coproduct 4. Define U™ = ®" 1,
and, by induction, a morphism A™ : [ — U+D py:

AV =4,  AM =1d®@ 4" D)o 4.

For instance, if U = A(G), with the usual coproduct A(x) =x ® x(x € G), one
checks that 4™ (x) = X1 X
Assume that we start with a coproduct 4 on U, and consider a twisted new

coproduct A=FAF~', F € U®U. Then one has:
AW = F, AWF 1
where F), is defined by inductively by:
F=F  F=018F )" V)F).

Coming back to the case of C*°(G), with the Abelian product defined from
coproduct A(xN) =x®x(x € G), on A(G), and *-product defined from coproduct

A =FAF~', F € (% ® %)[[{]], one has, for x € G:
(fio ful) =(fi®-® fu] A" D)),

and, by induction:

(fix-xfult) = (/i @ ® ful 40 D)
~(Ao-onlfo(@x)F) .

n
and F,,_1 € (®" 2)[[4]].
Now we can state the generalization of (5.2.1): Given admissible Banach rep-
resentations 7y,...,n, of G, c}[ll,...,c}’n" K-finite coefficients of m,,...,n,, then:

T Qmn,

clw o xc=c - R
h o T m® @m)E T DI(®  ®f)olm® @m)(Fy_1)]

G
ie. c}”ll * *cf’;” is the restriction to G of a generalized K-finite coefficient of the
representation 7; ® -+ @ m, of G" = G x --- X G (n times).

The proof is a straightforward adaptation of the proof of (5.2.1).
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5.3. We now introduce some useful x-stable algebras, and deduce examples of
F.R.T. cores. Note that (5.3.1), (5.3.2), and (5.3.4.1) are true without the assumption
that G has a finite center.

5.3.1. Proposition. Let $ be a subalgebra of C*(G), stable under the right and
left regular representations of §. Then § is x-stable.

Example. C”(G) is a x-stable subalgebra of C*°(G).

Proof. Let ZzﬁAIF"L Fe (% @ U)[[t]], be the new coproduct of A(G), we
develop F =Y, Fyt", F~' =Y F/t"F,,F € ¥ ®U. Given f,g € $, we com-
pute:

Vx e G, <f*g|x>=z(i<f®giE-(x@x)F;_»)t".

n i=0

So, in order to prove (5.3.1), we shall prove that, given U,V € % ® %, then the
function A defined by A(x) = (f ® g|U(x ® x)V)(x € G), is an element of $. We
can restrict to U =u®u', V=0, u,u’,v,v' € %, and then:

Vx € G, h(x)=(f®g|(wxv)® Wx)) = (f|uxw)(g|u'x')

so h = [L(S(u))R(v)f] x [L(S(' ))R(v)g] € $. O

5.3.2. Corollary. Let H be a closed normal subgroup of G. Then x induces a
*x-product on C*°(G/H).

Proof. We identify C*°(G/H) with

CP(G)={/ € COILS =1, Ve H}
={feC(G)|R(y)f = f, VyeH}.

Then C*(G/H) is a closed subalgebra of C*°(G), stable under the left and right
regular representations of G, and, a fortiori, of g, so (5.3.1) can be applied. O

5.3.3. Remark. Let G be the universal covering of G G is still semisimple, but

not always with a finite center. Poisson—Lie structures on G, or G, are in fact
the same algebraic objects: bialgebra structures on g (an easy consequence of the

fact that cocycles of the Adjoint representation vanish on the center of G). By
(4.3.2), any such structure has a quantization on C°°(G), and also on C*°(G).
Since G ~ G/I', T a discrete subgroup of the center, (5.3.2) shows that one goes
from quantization on G to quantization on G, by restriction of the x-product on
C°°(C~;) to C*(G) = C°°(6/F ). This explains why quantization is not dependent
of the usual technical assumption: G with a finite center.

5.3.4. Proposition (Theorem 4).

1. Let 1T be a family of C™ representations of G, and C[II] the subalgebra
of C*°(G) generated by their coefficients. Then C[II] is x-stable.

2. Let II be a family of K-finite Banach representations of G, and Ck[II] the
subalgebra of C®(G) generated by their admissible coefficients. Then Cg[II] is
*-stable.
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Proof.
1. One can use (5.3.1), but let us give a direct proof using (5.2. 1) We can
assume that the trivial representation 7° belongs to IT. Let IT® = {m, ®- - @m,

m, €11, n € ]N*} then, by (2.3.2), C[II] = Coeff(H®) By (5.2.1), given coeﬂi-
cients cf and cf, s of m,n’ € I1®, then cf *cf, is a generalized coefficient of 7 ® 7',
which belongs to II®. So (E[H] is x-stable. [J

2. Once more, we can assume that the trivial representation 7° belongs to I1.
Using identities:

L(X)chy, = cF,
Xhay = Gaomer I, Vo € V2, W e Vi, VX € gp,

R(X)coay = Cognurm
and the property that L(X) and R(X) (X € go) are derivations of C*°(G),
we deduce, using n(X)(Vax) C Vaix and (X )V, K) - V,S%, that Cg[IT] is stable
under the left and right regular representations of g on C°°(G). Then, we apply
(53.1). O

5.3.5. Proposition. Let I1;; be the set of irreducible finite dimensional represen-
tations of G. G is linear if and only if Coeff(Il;s) is a F.R.T. core.

Proof. Since G is semisimple, Coeff(Il;y) = C[II;), where II; is the set of
all finite-dimensional representations of G. Obviously, (5.3.4) can be applied, so
Coeff(IT;s) is a *-stable subalgebra of C°°(G). The density of Coeff(Il;r) in
C°(G) is achieved if and only if G is linear by (2.8.2) and (2.8.3.3). O

5.3.6. Proposition (Theorem 5). There exists unitary irreducible representations
My..., Ty Of G such that Ck[my,...,n,] is an F.RT. core.

Proof. Use (3.4.4) and (5.3.4). O

5.3.7. Remark. If G is noncompact, the representations ny,..., 7, in (5.3.6) can be
obtained by the principal series induction techniques (see (3.4.3) and (3.4.4)), and
there is a large freedom in their choice (see (3.4.3) and (3.4.5.1)).

5.4. In this subsection, we assume that G satisfies the assumptions of (3.5), and we
follow the notations of that subsection.

5.4.1. Proposition (Theorem 6). Let IIy be the set of unitary b-extreme repre-
sentations of G (up to equivalence) including the trivial representation m°. Then
Coeffx(ITy ) is a Poisson subalgebra of C*(G) and it is x-stable. If II} is the
subset of integrable elements in ITy, and II: the subset of square-integrable
elements, then one has:

g {Coeffx(IT2 ), Coeff x (IT2 )} C Coeffx(IT} )
an

Coeffx (IT? ) % Coeffx (IT? ) C Coeff (I} [[£]] -

Proof. 1t is shown in (3.5.5) that Coeffx (Il ) is a subalgebra of C®(G). Therefore
Ck[I1y ] = Coeffx (11} ), applying (5.3.4), we obtain that Coeffx (I ) is %-stable; it
results that Coeffx(ITy ) is a Poisson subalgebra (see (5.1)).

Given m, 7’ € IT?, the Hilbertian tensor product representation 7 ® n’ of G is ad-
missible and reducible into @,.; 7, m; € ITy ((3.5.4)). One has Coeffx(n ® n') =

> ics Coeffg(m;); using Schwarz inequality, each 7; € .
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For K-finite coefficients c}’ and c}’,,, one has:

/
cn *C" — n®n
T XS Cngon Y Dot @ 1M olmen ¥ | g

but, since 7 ® 7’ is an admissible representation of G, the right-hand side of the
formula is actually a generalized coefficient of that representatlon So cf * T €
Coeffx (1T} )[[7]], and the last formula is proved. Then [cf, c] s € Coeff x (I} )[[£11,
taking the first order term, we get that {c¥,c f,} € Coeff K(Hb) O

5.4.2. Remark. The explicit description of the quantization of the Poisson algebras
defined in (3.6) for G = SU(1, 1), is carried over in [4].

6. Preferred Quantizations of General Poisson-Lie Groups

6.1. In the previous sections of the paper, we were mostly dealing with semi-
simple Poisson-Lie groups. In the present section, we shall drop the semisimplicity
assumption, as was announced at the end of Sect. 4 (see (4.3.3)). The fundamental
property of the Poisson—Lie bracket is compatibility with the coproduct of C*°(G),
so it seems reasonable to impose that quantization x of the Poisson-Lie bracket has
to satisfy the same compatibility property, i.e.:

(C1)  (fxg)=0d(f)xd(g9), Vf.g€ CP(G).

Using duality 4(G) = C*°(G)*, and the techniques of [6], it results, by transpo-
sition, that the new structure of C*°(G) defined by %, comes from a bialgebra
deformation of A(G), with unchanged product.

We try to construct this deformation starting with the existence result of [11],
which quantizes the bialgebra structure (g, p), associated to the Poisson bracket,
into a deformation (%;,4) of the Hopf structure of %(g). To succeed, we have to
extend this deformation to A(G); but, assuming that this step is achieved, since it
can happen that the algebra structure of %(g) is nontrivially changed (see [11]), the
finally obtained x-product on C*°(G) will not necessarily satisfy the compatibility
property (C;). So, we shall restrict to quantizations of (g, p) which satisfy:

(Cy) U, is a trivial algebra deformation of % .

From the discussion following (4.3.1), we can therefore assume that %, = %[[¢]]
as a C[[t]]-algebra. We now state our quantization of C°°(G) result in that case:

6.1.1. Proposition (Theorem 1). Let G be a simply connected Poisson—Lie group.
We assume that the associated Lie bialgebra (g, p) has a quantization, in the sense
of [11], satisfying (C,). Then there exists a quantization % of the Poisson algebra
C>®(G) (in the sense of (4.3)) such that:

cwzé{*g = fg+ C(f,9)t + O@), with Ci(f,9) — Ci(g,f) ={f.9}, Vf.g €
2. 52f*g) = 0(f) x0(g) (compatibility with ),
3. The counit of C*°(G) is unchanged.

Following Gerstenhaber ([6 or 13]), such a quantization is called a preferred quan-
tization of C*°(G).
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Let us make some remarks:

1. Following [11] closely, it appears that it can happen that the unit of C*°(G)
is changed, i.e. that the cochains of the x-product do not vanish on constants.

2. In the proof of (6.1.1), we shall show that the cochains of the x-product are
bidifferential operators. All of them are bidifferential of finite order.

3. In the case of a semisimple group G, or in the case of a double-group, (C,) is
satisfied (see the discussion following (4.3.1)) so (6.1.1) does apply if G is simply
connected, and we recover partly (4.3.2) and (4.3.3.1); the explicit twist formula
for the coproduct (see the discussion following (4.3.1)) is necessary in order to
recover completely (4.3.2) and (4.3.3.1).

6.2. The main argument in the proof (6.1.1) is an integrability result concerning
formal representations, that we shall explain in this subsection. This result is proved
in [18], to which we refer for more details.

Given a Lie algebra g, and a space ¥, a formal representation (also called a
deformation of a representation) of g in V is a morphism from g into the algebra
L(V)[[t]], where L(V) is the space of linear maps. Such a morphism extends to
U(g), and this gives the definition of the notion of formal %(g)-module. Writing
n="y+ ), Tat", then my is a linear representation of g (the deformed represen-
tation). Since we are mainly interested by representations in a t.v.s., we restrict in
the sequel to formal representations of g which are valued in Z(V)[[t]], (¥ means
CONLINUOUS).

A formal C* representation of G in a bornological t.v.s. V (e.g. Fréchet, or
dual of reflexive Fréchet) is a morphism 7 = ), m,¢" from G into Z(V)[[¢]], such
that:

1. mp is a C™ representation of G in ¥ (the deformed representation);
2. (x,v) — m,(x)v is a continuous map from G x ¥ into V, Vn = 1.

As explained in [18], the cochains ©,, n = 1, are related to cocycles of G valued
in some corresponding C™ representations, for which any continuous cocycle is in
fact C*°, so one deduces ([18]):

3. x = my(x) is C* from G into (V') (topology of compact convergence),
Vn = 1.

It results that each m, extends to A(G), so m =), 7,t" is a continuous morphism
from A(G) into Z.(V)[[¢]], and this will be the definition of a formal representation
of A(G).

Using the inclusion %(g) C A(G), we can now restrict to 7|g(g), and get a
formal representation of %(g) (or @) in V, that we call the differential of 7. Since
X = :—1 exp X |.=o in A(G), for X € go, one has:

(X)) =Y m,(X)", and 7, (X)= %nn(exp X)) , Xeg.
n =0

A formal representation © of g in V can be integrated to G if there exists a
formal C* representation 7 of G in V such that n is the differential of 7, in the
above sense. It is shown in [18] that formal integrability, in the simply-connected
case, depends only on the integrability of the first cochain, i.e. the deformed repre-
sentation. The result is stated in the case when the deformed representation is the
restriction of a Banach representation to its Fréchet space of C* vectors, but this
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is only for convenience, and the result is valid for any C* representation of G in
a bornogical t.v.s..
We state now:

6.2.1. Proposition [18]. We assume that G is simply connected. Let my be a
C* representation of G (and therefore of A(G)) in a bornological t.v.s. V, and
T="To+ Y, Tat" a formal deformation of my, as a representation of g, with
cochains m,(X)e L(V), VX €9, Yn € N*. Then © can be integrated to a
formal C* representation of G in V.

Still denoting by 7 the extension of the integrated representation to a formal rep-
resentation of 4(G), and using ‘f—f exp(tX) =X - exp(tX) = exp(tX) - X, VX € go,
which holds in 4(G), we deduce that:

%n(exp X)) =n(X)- n(exptX) = n(exptX ) n(X),

where % means term by term derivation in Z(V)[[t]].

6.3. Proof of (6.1.1). We start with a quantization %,, with (formal) coproduct A
satisfying (Cz). So, as mentioned previously, we can assume %, = %([[¢]] as C[[¢]]-

algebras. We define: VF € A(G x G) = A(G)® A(G), VX € U, n(X)F = A(X)F

If we develop A(X) =AX)+ > ,5; 4x(X)t", we obtain:

n(X)= > m,(X)t", where m,(X)F = A,(X)F, VneN. (6.A)

nz0

This is obviously a formal representation of # in A(G X G), and m,(X) €
LAG x G)), YneN, VX € %. We can easily define my(x) (x € G) by:
mo(x)F = A(x)F, and we get a C* representation of G in A(G x G), with
differential the representation my of % defined by (6.A). my extends to A(G),
and one has: 7p(S)F = A(S)F, VS € A(G).

Applying (6.2.1), there exists a formal C*° representation of G (which extends
to A(G)), that we still denote by 7, with differential the representation © of %
defined by (6.A). In other words, @ extends from # to A(G), and 7| is a C*™
formal representation of G.

Now, we have to define A(x) (x € G). Noticing that A(X )=n(X)1, VX €
U, we deﬁne A(x) =n(x)]l, (x € G). The first problem is to prove the formula:

A(xx )= A(x)A(x ),Vx,x' € G. For that, we consider:
¢, = n(exp — TX)[A(exptX)F], VX € gy, VF € A(G X G).
Using the remark following (6.2.1), we can compute:

d d ~

— ¢, = —n(X _ = :

quS (X )P, + m(exp — 1X) [(dTA(exp ‘L'X)) F]

but & A(expX) = n(X)A(exptX), and n(X)n(exp — tX) = n(exp — tX)n(X), so
we finally obtain that & ¢, = 0, and since ¢o = F, we deduce that ¢, = F, V1 € R,
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and then that:
VX € g0, VT ER, VF € A(G x G), n(exptX)F = A(exptX)F .

So, there exists a neighbourhood W(e) of e in G such that: Vx € W(e), VF €
A(G x G),n(x)F = A(x)F.

Take now xi,x, € W(e), and apply the prev1ous formula to x =x; and
F = A(xz)l = 1(xy)1, one obtains A(xlxz) = A(x1 )A(x2 ), Vx1,x3 € W(e). By mduc-
tion, we assume that A(xz Xp) = A(xz) A(x,,) x; € W(e), and apply to F' = 4
(x2...%)1 = 1(xz...x,)1, we get that A(x;...x,) = A(x1)...A(xn), x; € W(e).

Since G is connected, given x,x’ € G, we can find x;,x; € W(e) such that x =
Xi...X, and x" = x{...x/,. Using the last formula, it results that: Vx,x’ € G, ACex! )=
A(x)A().

So we have extended A from % to G, and formula A(xx )= A(x)A(x ), Vx,x' €G,
holds. Moreover, since A(x) 7(x)1, the map x — A(x) is C*® from G into
A(G x G)[[¢]], and extends to a continuous linear map Z:A(G) — A(G x G)[[]].
From the density of Span(G) in A(G), we deduce that VS, T € A(G), Z(ST )=
A(S)A(T).

We have to prove now that our new coproduct A on A(G) is still coassociative.
We consider

W=d®MNHod=3| X (1d® 4)0 Ayi|t",
i=0

n

defined on A(G). The restriction Y| is a C*® mapping from G into
A(G x G x G)[[t]], and one has Y (ST)=r(SWa(T), VS,T € A(G). Since
4(exptX) = X exptX holds in A(G), for X € go, one has:

d
VX € g, VT ER, a[l//] (exptX)] = (X W (exptX).
We can do the same thing for Y, = (Z ®Id)o Z, and we obtain
d
VX € go, VT ER, a[lﬁz(exp X)) = (X )h(exp1X) .

But, VX € gy, ¥1(X) = y»(X), because 4 was, from the beginning, a coassociative
coproduct on %. Now, keeping in mind that X and exptX do commute in 4(G),
we compute: VX € go, VT € R,

%[%(CXP — X (exp 7X)] = —yo (X )Y (exp — TX ) (exp 7X)
+ Ya(exp — tX Y (X )i (expX) =0
At 1=0, we find Yyo(1)Y2(1) =1® 1® 1, so we conclude that

VX € g0, VT€R, yn(exptX)=(exptX).
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Using once more the connectedness of G, and formule

Vi(ST) = a(SWa(T),  ¥a(ST) = Yo (SWa(T), VS, T € A(G),

we obtain that Yn(x) = yYs1(x),Vx € G, and then, using the density of Span(G) in
A(G), that ¥, = Yy on A(G). Therefore A is coassociative.

A priori, we have only a bialgebra deformation of A(G), but it is well known
that any bialgebra deformation of a Hopf algebra is in fact a Hopf deformation
[13], so a new counit and new antipode do exist.

Using C*°(G) = A(G)*, and [6] transposition machinery, we transpose the new
Hopf structure of 4(G) to get a new Hopf structure on C*°(G). Since the product
of A(G) is unchanged, the new Hopf structure of C*°(G) is a preferred deformation
of the initial one. That it is a quantization of the Poisson algebra C*°(G) is proved
by a straightforward application of the arguments used in the proof of (4.3.2), so
we do not repeat them.

Finally, we prove that the cochains of the x-product are bidifferential operators.
Using LexptX = X -exptX = (exptX)X, VX € go, we can compute:

[A (exptX)A(exp — 1X)] = z Aij(exptX)A4,—i(X)A(exp — 1X)
=0

— Ay(exptX)A(X)A(exp — 1X) .
Since 49 = 4, we obtain

n—1
%[An(exp wX)A(exp — tX)] = Y di(exptX)4,—i(X)A(exp — 1X) .
i=0
So we obtain an algorithm for the computation of 4,:

n—11
A,(expX) = f Ai(exptX)A,—i(X)A(exp — X )dT - A(expX) . (6.B)
i=0 0
For instance

Ai(expX) = flA(exp tX)A41(X)A(exp —tX)dt - A(expX) .
0

But 4/(X) E U Q®U, and, for u € U Q@ U, x € G, A(x)ud(x~"') = Ad(x)u; since
the Adjoint representation respects the filtration of % ® %, the integral which
appears in the formula for 4;(expX) is an element of (% ® %)p,, if 41(g) C
(U ®U)p,. So we can write A;(expX) = uj(expX)A(expX), with u;(expX) €
(%@%)m,VX € go-

Assume by induction the existence of p,_1,up =1, uy,...,u,—; such that
Ai(expX) = u;(exp X )A(expX), with 4;(X ) and u;(expX) € (U QU)p,_,,1 £ i <
n—1, VX € go. Using (6.B), we consider:

u, (expX) = nz_: jA,-(exp X )A4,—i(X)A(exp —tX)dz
i=0 0

|
_

n

u;(exp X )Ad(exp tX)4,—;(X)dr . (6.0)

I}
<)

I
o .
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So, if we fix p such that Span{4;(g),1 £ i < n—1} C(¥# QU),, and define p, =
Pn—1 + p, we obtain that u,(expX) € (% @ U)p,, VX € go. Finally, our induction
proves that there exist an increasing sequence (p,), a neighbourhood W (e) of e in
G, and C* functions u, : W(e) — (% @ U)p,, with ug = 1, such that:

Ap(x) = uy(x)A(x), Vx € W(e).

We now use formula 4,(xy) = Z;':OA,-(x)A,,_i(y), (x,y € G). For x,y € W(e),
we obtain

Au(xy) = ;0 U()AID) - ()] - Ay) . (6.D)

Using connectedness of G, we conclude that our functions u, = 4,47 are
(% @ U )-valued, so the cochains are bidifferential operators.

Using the fact that the topology induced by 4(G x G) on % ® % 1is its natural
topology [6], and formula (6.C) and (6.D), it is easily seen that, for any rela-
tively compact opened set @ in G, given n, there exists py € N such that u,(0) C
(% ®U)po and u,|e is analytic; it results that po is independent of (), so finally
there exists p € N, such that u,(G) C(# ® %), and u, is analytic from G
into (% ® U),. Therefore the cochains of the x-product are analytic bidifferential
operators, and (a fortiori) of finite order. [J

7. Free Quantizations up to Flat Functions

Let us assume that G is a connected Poisson—Lie group. We denote by 2(G) the
closed subspace in C°°(G) of functions which are flat at e:

fePG) e (flu) =0, YueUg).

7.1. We introduce the space T(G) of formal Taylor series at e, as follows: we fix a
neighbourhood W of 0 in g such that the exponential mapping is a diffeomorphism
from W onto exp(#). We denote by C[[g]] the space of formal functions on g, i.e.
the space of formal power series on g*: this a Fréchet space, when endowed with
product topology. We define T(G) = C[[g]]. To any f € C*°(G), we associate its
(formal) Taylor series at e, 7 (f) € T(G). We obtain a continuous linear mapping
T : C°(G) — T(G). Using the Borel Theorem ([22]), J is onto; by the open
mapping Theorem ([22]), < induces an isomorphism of t.v.s. from C*°(G)/2(G)
onto T(G). We identify C*°(G)/#(G) and T(G) by this isomorphism.
Note that

T(G x G) = C[[g x g]] = Cl[g]] ® C[[g]] = T(G)®T(G) .

Moreover, when f € Z(G), then d(f) € (G x G), S(f) € #(G), and &(f) =0,
so the Hopf structure on C°°(G) defines a (quotient) Hopf structure on T(G). It
is clear that Z(G) is an ideal of the Poisson structure of C°°(G), so one has a
quotient Poisson structure on T(G), which is compatible with the Hopf structure,
since this property is true for the Poisson structure of C*°(G).

The Poisson—Hopf algebra T(G) is a formal version of the algebra C*°(G). As
a Hopf algebra, it depends only on the formal Lie group structure associated to G,
and not on G itself: when G and G’ are locally isomorphic, T(G) = T(G’).
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7.1.1. Lemma. T(G)* and %(g) are isomorphic, as Hopf algebras.

Proof. T(G) is a well-behaved Hopf algebra, so T(G)* is also a well-behaved Hopf
algebra ([6]). As twv.s.,, T(G) ~ C[[g]], so, as a t.v.s., T(G)* is isomorphic to a
space of polynomials with the natural topology ([6]). Let u: C*°(G) — T(G) =
C*°(G)/?(G) be the canonical map, then Ty : T(G)* — A(G) = C*°(G)* is a con-
tinuous injection from T(G)* onto 2(G)* = %(g). Since u is a Hopf map, so does
Tu. To conclude, one has only to remark that the Hopf structure of %(g) is exactly
the restriction of the Hopf structure of A(G). [

7.2. From (7.1.1), the Hopf algebra T(G)* being identical with %(g) endowed with
its natural topology, Hopf deformations of T(G)* are exactly Hopf deformations of
9U(g), and, since the natural topology is well-behaved, using [6], (topological) Hopf
deformations of T(G) are in one-to-one correspondence with Hopf deformations of
%(g). So, using [11], we can conclude:

7.2.1. Proposition. There exists a Hopf deformation of T(G), with new product x,
such that

fxg=fg+Ci(f,g)t+ 0>, with Ci(f,g)— Ci(g,f)=1{f,q},Yf,g€T(G).

Note that the new coproduct 3 is not necessarily identical to J, so the compatibility

condition
O(f*g)=0(f)*d(g)

is not necessarily satisfied. This is what one could call a free quantization of T(G),
or, in other words, a free quantization of C*°(G) up to flat functions.

Appendix A. Representations of Semisimple Lie Groups

In this appendix, we collect several definitions and results needed in this paper;
we refer to Warner [25] and Schmid [21] for more details. By t.v.s., we mean
topological, locally convex and complete complex vector space.

Let G be a connected Lie group, go its Lie algebra, g the complexification
of go.

A.1. Assume that © is a C* representation of G in a t.v.s. V. Using the identity
C®(G; V) =C®(G)®V = L(AG) V),

one can show ([25]) that = lifts to a representation of A(G) on V, and one has:
(T) e L(V), VT € A(G), and the maps T — n(T)v are continuous, Vv € V. Since
U(g) C A(G),V becomes a %(g)-module, and each operator 7n(u),u € %(g), is
continuous.

A.2. Let m be a representation of G in a t.v.s. V and V., be the dense subspace
of C*®-vectors of 7; given v € Vo, we define v € C*°(G; V') by V(x) = n(x)v, and
place on V,, the topology induced by C*°(G; V). Then the restriction 7., of 7 to
Voo is a C*-representation of G on V., so (A.1) can be applied.

A.3. Given a representation © of G in a Banach space V, let W be a subspace of
V which is a %(g)-submodule, then it is not true that the closure W of Win V is
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stable under n(G). In order to get such a property, one has to restrict to the (dense)
subspace V,, of analytic vectors of 7, which is also a %(g)-module; then, if W is
a %(g)-submodule of V,,, W is n(G)-stable. Note that the existence of nontrivial
analytic vectors of 7 is really specific of Banach space representations: for a more
general case (even Fréchet), it can very well happen that the only analytic vector
is 0 ([27]).

A.4. Let © be a representation of G in a t.v.s. V; we denote by 7 the contragredient,
which is continuous on a weakly dense, closed subspace V' of V*, complete if

V* is complete. If V is reflexive, then V = V*. If n is C*, then V = V* and #
is C*°.

A.5. Given two representations 7 and ' of G in t.v.s. ¥ and V’, the tensor product
n® 7’ is a representation of G x G in the projective tensor product ¥V @ V'. If n
and 7’ are C* representations, then so does © ® 7’. By restriction to G, one gets
the tensor product representation n ® n’ of G. When ¥ and V' are Hilbert spaces, it
is often convenient to consider the Hilbert tensor product ¥ ®, V’, and the Hilbert
tensor product representation 7 ®, 7’ of G X G (or G); one has a continuous dense
inclusion V@V’ C V@, V.

In the sequel, we assume that G is a connected semisimple Lie group, with
finite center. We denote by K a maximal compact subgroup, by t, its Lie alge-
bra, t the complexification of t;. We dengte by K the set of (finite-dimensional )
irreducible representations of K; for § € K, &5 stands for the character of o.

A.6. Let @ be a representation of G in a t.v.s. V; a vector v is K-finite if the linear
span of its K-orbit is finite-dimensional. Let Vs be the space of K-finite vectors
which are isotypical of type , defining:

Ps = dim(6) [ E5(k)n(k) dk ,
K

then P; is a continuous projection on Vj. It is not true in full generality that Vs is
contained in V., but actually it holds if dim Vs < oo, and, in that case, one has
also V5 C V,, when V is a Banach space. We denote by Vk the space ) SR Vs,
which is dense in V. We shall say that n is admissible, if dim Vs < oo, V0.
For instance, any unitary irreducible representation, or, more generally, any T.C.L
Banach representation is admissible. When = is an admissible Banach representation,
Vi is a %(g)-submodule of V,,, that we call the Harish-Chandra module associated
to 7. From the inclusion Vg C V,,, it results that submodules of Vg correspond, by
closure, to subrepresentations of 7, so that 7 is T.C.I. if and only if Vk is a simple
% (g)-module. Moreover, still in the Banach case, admissible representations 7 and
7' are Naimark equivalent if and only if they are infiniteismally equivalent, i.e. the
%(g)-modules Vx and V% are isomorphic.

A.7. Given a representation 7 of %(g) in a vector space V, we say that v is a t-finite
vector if m(%(t))v is a semisimple finite-dimensional %(t)-module. Denoting by
T the set of irreducible finite-dimensional representations of t, the set, V; of t-
finite vectors is a semisimple %(t)-module, which reduces into isotypical as V; =
> s iV, and a %(g)-submodule. We say that « is f-finite if ¥ = V, and admissible
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if it is t-finite with dim Vs < oo, V4 € . We shall also use the terminology Harish-
Chandra module for an admissible %(g)-module.

A.8. Let © be a Harish-Chandra module; from V' =) c1 Vs, the algebraic dual is
V* =T1lse1Vs, and the space Ve =) is Y sciVs- V™ is a %(g)-module for
the contragredient 7%, and Vf® is a %(g)-module, which turns out to be a Harish-
Chandra module, that we call the dual Harish-Chandra module of .

A.9. Let m be an admissible %(g)-module. We say that n is K-admissible (or a
K-Harish-Chandra module) if, for and 6 €T such that Vs+{0}, then & € K. By
integration from f; to K of each representation J, ¥ becomes a representation of
K, which is actually a C* one, if ¥ is endowed with the direct sum V =" st Vs
topology. The topological dual of ¥ is exactly the algebraic dual ¥*, and the space

V,? of K-finite vectors of the contragredient representation of K is exactly V. f@) , SO
the dual Harish-Chandra module of 7 is also K-admissible.

A.10. When 7 is a T.C.I. Banach representation of G, then Vg is an irreducible
K-Harish-Chandra module. This useful correspondence can be reversed, in a slightly
more general context than the irreducible one: actually, if 7 is a K-admissible finite
length %(g)-module on a space V, then V is the space of K-finite vectors of
some Banach space (or even Hilbert space) representation 7 of G, and =# is the
Harish—Chandra module associated to 7 by (A.6). Obviously, there is no unicity
of 7 if one thinks of the usual equivalence of representations of G, but, up to
Naimark equivalence, 7 is unique (A.6). We call such a procedure a globalization
of =, following Scumip [21], where a very elegant and complete discussion of
globalizations is developed.

A.11. Let m and 7’ be two admissible Banach representations of G, in spaces V
and V',

A.11.1. Lemma. 1 ® 1’ is an admissible representation of G X G in VQV'. One

has
(VEV kxkx =Vk ®Vgr and (VRV)L  =V2@V® .

Proof. One has K x K = {5 ®&; 8,0’ € K}, so

Psgs = dim(6 ® &) f Eswor (kK ) (T ® ')k, k')dk dk' = Ps ® Py .
KxK
Therefore

(VOVkxk = Y Pugg(VRV')= 3 BIV)®Py(V')=Vxk®Vi;
5,8'€K 5,6'eK
it follows that 7 ® 7’ is an admissible representation of G x G. Moreover
VOV )Rk =Vk®ViRug = X (Vs®Vy)"
5,8'ck
= Y VieVy=v2ere,
5,6k

as modules over %(g® g) = U(g) ® %(g). O
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If # and 7’ are admissible representations in Hilbert space, the same result holds
for their Hilbertian tensor product.

Appendix B. A Group-Adapted C> Stone—Weierstrass Theorem

Let G be a connected Lie group. We present here a sufficient condition for the
density of a subalgebra in C°°(G). The assumptlons are partly the same as the
classical Stone—Weierstrass Theorem (which is the C° case), but we need to add
stability under left (or right) regular representation. So the result is valid for Lie

groups only.

B.1. We state the conditions for closed subalgebras of C°°(G); for applications,
one generally starts with an unclosed subalgebra, and tries to apply to its closure.

B.1.1. Theorem (C*° Stone-Weierstrass Theorem for Lie groups). Let G be a
connected Lie group, & a closed subalgebra of C*™(G) such that

LYfe¥ fes
2. Vx,y € G, x+y, f € & such that f(x) F f(y);
3. & is stable under the left (or right) regular representation of G.

Then & = C*=(G).

Proof. Assume that &% is stable under the left regular (right case is similar). Let
C%G) be the algebra of continuous functions on G, with the Frechet topology
of uniform convergence on compact sets. Since & satisfies on each compact set
the assumptions of the usual Stone—Weierstrass Theorem, & is dense in C%(G),
therefore its orthogonal is {0} in C°(G)*. There is an obvious inclusion of the
space of C*°-compactly supported functions C®°(G) into C°(G)*, defined by

(flg) = ff(x)g(x)dx fECT(G), geC'G).

So, if f € C°(G) and satisfies (f|S) =0, VS € &, then f =0.

Consider now the orthogonal S+ of ¥ in C*°(G)* = A(G); one has C>°(G) C
A(G), and ¥+ N C>(G) = {0}. Since & is stable under the left regular represen-
tation, &~ is stable under L, and also under its extension to A(G). So L(S)T =
S-Te%t, VS € A(G), VT € ¥+, and &1 is a closed left ideal of A(G).
But C°(G) is a two-sided ideal of A(G), so CX(G) + ¥+ C CP(G)NFL = {0}
Let f, be a sequence in C{°(G) such that lim, f, = d, in A(G), then f,-S =0,
VS € &1, but lim,(f,-S) =S, s0 S = 0, and &+ = {0}. It results from the Hahn-.
Banach Theorem that & = C*°(G), and, since & is closed, ¥ = C*(G). O

B.2. A direct consequence is the (well-known) density of polynomial functions in
C>(R") ([22]). Many other examples of applications are given in the present paper.
The Lie group structure of the manifold G is essential in the proof, and we have
no idea what a C*° Stone—Weierstrass theorem for a general manifold could be.

Acknowledgements. We are indebted to M. Flato, who was convinced from the beginning that
the arguments of [6] were convenient for the general semisimple case. We thank W Schmid, and
M Semenov-Tian—Shansky for enlightening discussions.
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Note added in proofs. After this paper was accepted, appeared the preprint Quantization of
Poisson algebraic Groups and Poisson homogeneous spaces, by P. Etingof and D. Kazhdan,
where it is shown that, given a Poisson Lie group G, there always exists a free quantization, not
only up to flat functions, as shown in Sect 7 of the present paper, but actually on C°°(G). In the
quasi-triangular case, this quantization is preferred; in any case, it is local. These results generalize
our results of Sects 4 and 7.
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