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Abstract: It has been suggested that a possible classical remnant of the phenomenon
of target-space duality (T-duality) would be the equivalence of the classical string
Hamiltonian systems. Given a simple compact Lie group G with a bi-invariant met-
ric and a generating function Γ suggested in the physics literature, we follow the
above line of thought and work out the canonical transformation Φ generated by
Γ together with an Ad-invariant metric and a B-field on the associated Lie alge-
bra 9 of G so that G and g form a string target-space dual pair at the classical
level under the Hamiltonian formalism. In this article, some general features of this
Hamiltonian setting are discussed. We study properties of the canonical transfor-
mation Φ including a careful analysis of its domain and image. The geometry of
the T-dual structure on g is lightly touched. We leave the task of tracing back the
Hamiltonian formalism at the quantum level to the sequel of this paper.

0. Introduction and Outline

0.1. Introduction. Target space duality (T-duality) is a very surprising phenomenon
in string theory1. In essence, two target-spaces are dual to each other if both lead to
the same string theory. The usual technical definition involves using path-integrals
to sum over the space of all smooth maps from surfaces (string world-sheets) to
target manifolds [Bl, B2, F-J, R-V, G-Rl, M-V]. In this aspect, it is a quantum
mechanical phenomenon. Nevertheless, it is natural to ask:

" β : Are there classical aspects of the phenomenon of target space duality!

As already pointed out in the literature (e.g. [A-AG-B-L, A-AG-L2, C-Z, G-P-R,
G-R3, G-R-V]), one possible answer may be the equivalence of the associated string
Hamiltonian systems.

* e-mail: alvarez@phyvax.ir.miami.edu.
** e-mail: chienliu@phyvax.ir.miami.edu.

1 See the review [G-P-R] for a comprehensive set of references.
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As will be discussed in Sect. 1.3, for the simplest known example, the (R <-> ^ ) -
duality for Sι, the above naive picture after appropriate modification captures many
features of target-space duality. Backed by this example and some lessons learned
from it, we next turn our attention to another known example in the physics literature
[A-AG-B-L, A-AG-L1, C-Z, dlO-Q, E-G-R-S-V, G-K, G-R2, G-R-V]. Recall that
the simple compact Lie group SU(2) and its associated Lie algebra form a target-
space dual pair when SU(2) is endowed with a bi-invariant metric and its associated
Lie algebra su(2) is endowed with a metric and a 2?-field which, up to a constant
multiple, are written in linear coordinates respectively as [C-Z]

a n d BiJ =

In terms of Hamiltonian systems, the duality of this pair comes from a formal
canonical transformation from the loop space LT*SU(2) to the loop space LΓ*su(2).
This canonical transformation is generated by

in coordinate-free, fundamental matrix form. The latter expression is immediately
applicable for general Lie groups and their associated Lie algebras. This observation
leads us to this present work.

Recently, a geometrical picture of duality [K-Sl, K-S2] has emerged which
allows one to write down the general duality transformation when there is a group
action on a manifold. In the present paper, we use the formalism of [C-Z] to look
more closely at the example of the target being a simple compact Lie group.

In brief, given a simple compact Lie group G with a bi-invariant metric, let g
be its associated Lie algebra. We take the generating function Γ as the foundation
of our approach and work out the canonical transformation Φ it generates from
LT*G to ΐ r * g . We obtain also an Ad-invariant metric and an Ad-invariant £-field
(a 2-form) on the associated Lie algebra g so that they form a T-dual pair at the
classical level under the Hamiltonian formalism. This could possibly be an exact
dual pair in terms of path-integrals at the quantum level. In this first paper, we
focus on properties of the canonical transformation Φ and the T-dual geometry on
g and leave the important issue of how exactly G and g form a dual pair at the
quantum level to the sequel.

Recently there appeared an article [Lo] by Y. Lozano on the same subject.
Interested readers may compare our setting here with hers.
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1. Target-Space Duality in Hamiltonian Formalism

1.1. Hamiltonian Formalism for String Theory. In string theory a particle is
assumed to be a one-dimensional extended object. There are two kinds of
them, open and closed strings. In this article we shall restrict ourselves only
to closed strings, given by smooth maps from Sι into a smooth target
manifold.

Neglecting the dilaton and other fields, the target-space data for a string the-
ory consists of a Riemannian manifold with a 2-form (usually called a 5-field by
physicists) (M,ds2,B). We shall denote it collectively by M when both the Rieman-
nian metric and the i?-field are understood from the text. The configuration space
consists of all possible positions of the particle and hence is given by the loop
space

LM = {φ:Sι ^M\φ is C°°} .

The phase space requires however some choices. Since we are only interested in
objects describable as smooth objects along a circle, we choose the phase space
to be LT*M instead of the much larger T*LM. There is a canonical symplectic
structure ω on LT*M induced from the canonical symplectic structure ω on T*M
given by

ωy(η, ξ)= Jdσ ω(ηy(σh ξy(σ)) ,
si

where γ is in LT*M and η, ξ are two tangent vectors at γ. They are simply two
vectors fields in T*M along the loop γ.

The Lagrangian density from the (14-1 )-dimensional σ-model over a cylin-
der can be thought of as an energy function for paths in the configuration
space. It can be rephrased as a Lagrangian S£ defined on the tangent bundle
T*LM = LT*M of LM. Denote a point in T*LM by (φ,X), where φ e LM and
X is a smooth vector field in M along φ, then the Lagrangian can be written
as

&(φ9X)=fdσ&(φ,X'9σ)

with

±9X(σ)) - (φ*dσ,φ*dσ)) +B(X(σ),φ*dσ) ,

where (, ) stands for the metric on M, and dσ is the coordinate vector field along Sι.
The canonical momentum density π associated to 5£ for (φ,X) is given by

δ£
π(σ) = — (σ) = ( . ,X(σ)) + B(
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The Legendre transformation now takes functions on LT*M to functions on LT*M.
The image of the Lagrangian S£ becomes the string Hamiltonian function ffl on
LT*M. Its density function along Sι is given by

;σ) = \(π(σ)-B( ,ψ,3σ),π(<τ)-5( ,φ.dσ))~ + \(φ*dσ,φ.dσ) ,

where (, )~ stands for the induced metric on the fiber of T*M from (, ).
Basically all the information about the classical physics for a closed string is

contained in this Hamiltonian system.

1.2. Target-Space Duality. Though the term "target-space duality" has become
more or less official in the literature, a better name for it would be "string-
equivalence between target-spaces" [A-G-M]. The latter says exactly the meaning
hidden under the former. Technically, this means that there exists a correspondence
Φ that takes the states and observables in the string theory associated to one target-
space (M,ds2,B,...) to those of the string theory associated to another target-space

(M,ds2,B,...) such that the related correlation functions are all identical. Thus,
as long as physics is concerned, one cannot tell whether the particle is moving
about in one or another target-space in the same equivalence class. Since these
correlation functions are all defined formally via Feynman's path-integral, the def-
inition indicates that target-space duality is actually a quantum level phenomenon.
One would like to know // this phenomenon manifests itself at the classical
level.

Since all the information of the classical physics for a string theory is completely
contained in the string Hamiltonian system described in Sect. 1.1, a naive guess for
the classical remnant of target-space duality is the equivalence of string Hamiltonian
systems. This equivalence would be given by canonical transformations between
string phase spaces that take the string Hamiltonian function on one phase space
to that on another. In the next section we shall do a redemonstration of a known
example where the target space is a circle. The classical remnant of target space
duality will be a classical Hamiltonian equivalence except that the respective phase
spaces have to be restricted. In this example "classical duality" only exists between
reduced Hamiltonian systems. This may be a general feature of target space duality.
Namely, its classical remnant is a reduced Hamiltonian system though a general rule
for this classical reduction is not known yet.

In this paper we will explore these issues for the case of a G-Q pair.

1.3. A Lesson from the (R <-> j)-Duality of Sx. The S^-target case is the simplest
and best known example of target-space duality. It indicates a new relation be-
tween physics in the small scale and physics in the large scale. Such a relationship
may be applicable to the removal of initial singularities of a space-time in general
relativity.

The target-space in this example is 6^, a circle of radius R. The phase space
is LT*S^. Let (0,π) be a canonical coordinate system for T*Sχ, where θ runs
over the interval [0,2π] and is proportional to the length of the circle. Let γ(σ) =
(θ(σ), π(σ)) be a loop in T*SR. Then the value of the Hamiltonian function at γ is
given by
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with

The Hamiltonian vector field X#> on LT*SR associated to Jf can be computed
straightforwardly. Its value at a γ in LT*SR is a vector field along γ in T*SR and
is given by

X*\y{σ) = ( ^ 2 0 ) dκ\m + (^π(σ)) dθ\y(σ) .

The form of the Hamiltonian function suggests immediately a transformation Φ
from LT*Sι

R to LT*S\ that leaves the form invariant:

Let y = Φ(y), t h e n ^ , the pushed-forward of ^f to LT*S\, has density

which is exactly the string Hamiltonian function with target space S\. Unfortu-
nately, as we shall see, this natural candidate for the sought canonical transformation
is not extendable to the whole phase space. Nevertheless, a natural "quantization
condition" comes in to select the correct reduced phase space on which everything
works.

Proposition 1.1. Let ye and yπ be respectively the θ- and π-component of a loop
y in T*Sι

R. Let

Then

1. Each LR

m'n) is a sub-Hamiltonian system in (LT*Sι

R,ω,34f);

2. Φ is a canonical transformation from LR

m onto L ̂  .
R

Schematic representation of Φ may is depicted in {Fig. 1).

Proof Let t be the parameter for the string Hamiltonian flow. Continuity of the
flow implies that winding number of ye is invariant. Using the explicit expression
for Xjp9 the first claim then follows from the fact that along the flow

— fdσπ(σ,t) = fdσ-π(σ,t)
at sl sl ϋt
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Fig. 1. T-duality between S^ and S \. The outer lables denote the winding "quantum" number; the
R

inner labels denote the momentum "quantum" number.

which vanishes since T*Sι is trivial and, thus, -^θ(σ,t) can be regarded as a map

from Sι to JR.
That Φ maps L{^n) onto L ("'w ) is clear. Its inverse is given by

R

One can check that Φ * ^ = tf.
Now let Y be in TyL^n\ In the canonical coordinates, as a vector field along

y in T*Sι, one may write

Yί Λ-Jί Λ±
ϊ(σ)-Λ(σ) dθ

Then

τ(m>n) τ(n,m)

y(σ)
jdsB(s)) 4
J ' dθ Φ(y)(σ)

From this one can check straightforwardly that

and hence Φ is a symplectomorphism from

proof. D

'w ) onto l}\'m\ This concludes the
R

2. The T-Duality Transformation and T-Dual Structures

With the preparation in Sect. 1 we shall focus for the rest of this article on the
case of simple compact Lie groups and their associated Lie algebras. To avoid
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confusion with other duals in the discussion, we will write "T-dual" for "target-space
dual."

2.1. A Generating Function and the Induced Canonical Transformation

2.1.1. A Natural Generating Function Γ : Lq x LG —> 1R. Let G be a simple
compact Lie group and g be its associated Lie algebra. We shall identify g
constantly with TeG, the tangent space of G at the identity e or occasionally
with the space of all left-invariant vector fields on G whenever necessary. G
admits a bi-invariant positive-definite metric which is unique up to a cons-
tant multiple. This metric is proportional to the Killing form of G.
Its restriction to g = TeG provides an Ad-invariant inner product in the
Lie algebra. For simplicity of notation, we shall denote both of them

b y { , )
Let Ω be the left invariant Maurer-Cartan 1-form of G. Recall that, for X e TgG,

it is defined by

where lg : G —> G is left multiplication by g.
Then we choose a generating function Γ defined as follows.

Definition 2.1 (Generating function). Let (φ : Sι ^g)eLg and (φ :
With Sι parameterized by σ, we define

Γ(ψ,φ;σ)={ψ(σ),Ω(φ*dσ))9

where dσ is the coordinate vector field along Sι. We choose the generating function
Γ :L§xLG -* R to be

Γ(ψ9φ) = fdσΓ(φ,φ;σ).

Remark. Notice that when G is identified with a classical matrix group, the above
expression for Γ is exactly

Γ(ψ, φ) = constant / Tr

which appears already in the literature for constructing dual models of the chiral
577(2 )-model.

2.7.2. The Induced Canonical Transformations. In the following arguments we
shall denote points in LT*G by (φ,m), where φ is a smooth map from Sι into G
and w is a 1-form along φ. Similarly we shall denote points in LT*Q by (ψ9π),
where ψ is a smooth map from Sι into g and π is a 1-form along ψ. Our first task
is to work out the functional derivative

δΓ(ψ9φ) δΓ(ψ9φ)
w=— , π = —

oφ oψ

and then to solve (ψ9π) and (φ,w) in terms of each other.
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Proposition 2.1. The functional derivatives of the generating function Γ with
respect to its arguments are respectively

w

π = —

δφ

δΓ(ψ,φ)
= -<β(φ,3 σ ) ,

where ad( . ) is the ad-representation of ( ) on g.

Remark. One may notice that, in the expression, the part,

up to a constant, is exactly the canonical 3-form Ξ on a simple Lie group defined by

Ξ(X, Y,Z) = K([Ω(X)9 Ω(Y)l Ω(Z)) ,

where X, 7, Z are some tangent vectors at some point in G, [, ] is the Lie bracket
for the associated Lie algebra g and K is the Killing form of G.

Proof Since Γ(ψ,φ) is linear with respect to ψ, one has immediately

Thus for the rest of the proof we shall focus on the computation of \

(i) Let X be a vector field along φ. Let

r:Sιx(-ε,ε)-+G

such that

Let φτ = T( , τ). One has

a oφ dτ

_ Γ

dτ
(ψ(σlΩ(φτ*dσ))dσ

τ=0

Ω(φnδσ)) dσ
τ=0

(ii) We shall show next that

dτ τ=0
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Let S = Γ*dσ, T = Ύ*dτ. Let e, be a basis for g and ω' be the 1-forms on G
obtained by left-translating the dual basis of et around G. Then Ω = e, <g> ω'; and

dσ) = X(et ® ω\S)) = e, Taf(S)\^
τ=0

= e, {Sω'(T) + ω([T,S]) + 2dωi(T,S)}τ=0

= SΩ(X) + 2 dΩ(T,S), since Γ τ = 0 = X and [T,S] = 0;

dσ

By the Maurer-Cartan equation, i.e.

where [, ] means Lie bracket for the Lie algebra part and wedge product for the
1-form part, the second term in the last equation can be rewritten as

2dΩ(T,S) = ~[Ω,Ω](T,S)

= [Ω(S),Ω(T)] = aάΩ{φ*dσ)Ω(X), at τ = 0 .

(iii) Finally from the fact that ad is skew-symmetric with respect to (, ), we
have

/ dσ U{σ\ ^

= / dσ^-(ψ(σ), Ω(X)) -Jdσ (^-ψ(σ)9 Ω(X)\ - J dσ^άΩ{φ^σ)^(σ\ Ω(X)) .
sι dσ sι \dσ / s l

The first term is a total derivative of a function on S1; hence vanishes. In conclusion,

J dσSΓ(^φ\σ)(X(σ)) = - / dσ(^-φ(σ) + adΩ(̂ σ)<A(σ), Ω(X)\ .

Since we are in the smooth category and the above is true for all smooth X along
φ, one must have

This completes the proof. D

From the previous proposition, one can now obtain the sought out canonical
transformations formally. Before doing so, we introduce the following correspon-
dence for necessity.

Let ψ e Lg. Denote by E(φ) a path in G such that

φ = Ω(E(φUδσ)).
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From the theory of ordinary differential equations, E(φ) always exists but in general
doesn't close up to form a loop. Given ψ9E(ψ) is unique up to a left translation
in G.

Theorem 2.1 (Canonical Transformations). The formal canonical transformation
Φ from LT*G to ZΓ*g induced from the generating function Γ is

π = -Ω(φ*dσ)~ ,

where V% = ̂  4- adβ(«p#dσ) and " ~ " represents the metric dual with respect to

U {Fig. 2).
Its formal inverse Φ ι is given by

«=((fl|,ΓIo(-^

Remark. Requiring that ψ,φ be loops puts constraints on w and π respectively.
Thus, like in the case of Sι, Φ and its inverse are defined only on a reduced phase
space. One may think of this as part of certain "quantization conditions." (Or one
may consider the more general space of "twisted loops" [P-S], which we will not
discuss here.)

Proof of Theorem 2.1. The transformations are read off straightforwardly from the
previous proposition. These transformations are only formal due to the multivalued-
ness of operators (\7j ) - 1 and E. However it turns out that the multi-valuedness
can be completely understood, as will be explained in the next sub-subsection. D

Fig. 2. The formal canonical transformation between LT*G and LT*Q. In the picture the metric
dual with respect to (,) is used to represent a 1-form along a loop. Notice that the tangent vector
field to a loop and the momentrum vector field along it are exchanged under the formal canonical
transformation.
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2.1.3. Multί-Valuedness of the Formal Canonical Transformations. We shall show
that, under our choice of generating function, the multi-valuedness for the induced
canonical transformation in either direction is exactly what is expected.

Recall that the multi-valuedness of the map E : LQ —> Path G is parameterized
by G itself. Hence we only need to take care of the multi-valuedness of the inverse,

(Krι-
From the expression

V%° = ~dσ

if we regard ψ : S1 —> g as a section in the trivial bundle

S1 x g
1

sι,
then, given φ, the differential operator V$ defines a connection on this bun-
dle. Due to the linearity of this differential operator, for any fixed φ, the multi-
valuedness of (\7j )~1 is parameterized by the kernel ker(\7j ). From the horizon-
tal lifting property of paths in the base S1, it must be isomorphic to a subspace
of g.

Lemma 2.1. For any φ : S1 —> G, the induced connection V^ on the bundle Sι x g
is trivial.

Proof. Let s be a section in our trivial bundle Sι x g. Observe that the following
three statements are equivalent:

(1) Vls = 0;

(2) ^ ( σ ) = -adΩ(<Mσ>?(σ)

(3) s(σ) = Adφ(σ)-iXo for some XQ G g .

That (1) and (2) are equivalent follows from definition.
For (2) and (3), one can check that the section defined in (3) satisfies the

first-order ordinary differential equation given in (2). Conversely, given a section s
that satisfies the differential equation in (2) with -s'(σo) specified for some σo G 5 1 ,
there exists some XQ G g such that s(σo) = Ad^σo)-iXo since Ad^ is an automor-
phism of g for any g G G. One can then define a new section as in (3) that co-
incides with s at σ — OQ. Uniqueness of solutions for ordinary differential equa-
tions implies these two sections must coincide everywhere. Thus (2) and (3) are
equivalent.

Altogether, this shows that our bundle with connection V^σ admits a combing

by globally well-defined flat sections parameterized by the Lie algebra g.
This concludes the proof. D

Corollary 2.1. The kernel ker(Vj ) is isomorphic to g.

Proof Use the trivial connection \7j to retrivialize the bundle ί xg . The kernel
consists of exactly the constant sections with respect to the new trivialization and
the space of all such sections is isomorphic to g. D
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Remark. Recall that our generating function is given by

Γ(φ,φ)=Jdσ(φ(σ%Ω(φJσ)).

Let lg be the left-translation by g. Since Γ(φ,φ) = Γ(φ,lg o φ) for any g G G, it
is expected that Γ would determine a canonical transformation from LT*G to LT*§
only up to a freedom parameterized by G. The corollary now shows that there is
another part of freedom parameterized by the Lie algebra. This puts the group and
its associated Lie algebra on an equal footing, which is a nice feature as far as
duality is concerned.

2.2. The Dual Structures on the Associated Lie Algebra. Continuing the previous
arguments, we shall show that

Theorem 2.2. Let G be a simple compact Lie group with a bi-invariant metric
(, ). Let g be its associated Lie algebra identified with TeG. In order to make
the canonical transformations worked out in the previous section be T-duality
transformations, the metric ((, )) and the B-field {a 2-form B) on g are uniquely
determined. They are given by

((X, Y)) = ((Id - ad,)" 1*, (Id - ad,)"17) ,

B(X9Y)=pCMvY))>

where i Gg, X, Y G Γ̂ g and ad is the ad-representation of g on itself

Notice that in the above expressions we implicitly identify Tυ$, for any v in g,
with g itself by the vector space structure of g.

Proof We sketch first the basic ideas in the proof and then present the details of
the manipulations.

(i) Basic ideas. The inverse formal canonical transformation Φ~ι from LT*§ to
LT*G pulls back the string Hamiltonian function J f on LT*G to some function J f
on Z/Γ*g. It turns out that this is also a string Hamiltonian function, from which
one reads off the dual metric ((, )) and the dual Z?-field B on g.

(ii) Details: Recall that the Hamiltonian J f on LΓ*G is given by

where

To get the pulled back Hamiltonian 2/P on ZΓ*g, one simply rewrites &f in terms
of (ψ,π) by using

φ=E(-π~), w= ί(Ω\φy
ι o ( - — + adπ

Now
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and

" ' O (-JL + adπ

Thus

? σ ,ad π ~^) + (adπ~ ̂ , adπ~ i/r)

since a d π - ^ = — ad,/,π~ .
Next we try to put it into the string Hamiltonian form

where ((, )) and B are respectively the sought-for metric and 2-form on g and
((, ))Λ is the induced metric on Γ*g from ((, )).

Since (π~,π~) + (ad^π",ad^π~) contains all the quadratic terms in π, by com-
parison, we must have

((π,π))Λ = (π~,π~)

= ((Id + ad,/,)π~,(Id + ad^)π^), since (π",ad^π") = 0 .

Notice that the argument also implies that ((, )) is positive definite and that,
for each σ, Id + ad^(σ) is an invertible linear transformation from Tφ^q = g to
itself.

To get ((, )) itself, fix an orthonormal basis and its dual basis for (g, (, )). We
may then regard elements in g as a column vector and elements in g* as a row
vector. Then, with respect to such bases, π~ = π*, where "" ' stands for transpose;
and

((π, π))Λ = π(Id

Consequently, for X,Y e ^ ( σ ) g = g,

((X, Y)) = Xf((ld + adφ)'(Id + ad^))" 1 Y

= ((Id - ad^Γ 1 *,(Id -

where we use the fact that (Id + ad,/,/ = Id — ad^ since

((Id + ad^)X, 7) - (X,(I
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The mixed term

= ((Id + ad^)π~,(Id -

= ((Id + ad^ )π~,(Id + ad*)((Id + ad*)" 1 (Id -

Thus

B{ - , ^ * 3 σ Γ = (Id

and

B(X,ψ*dσ) = ((Id -

By choosing φ appropriately, we could make it pass through any point in g along
any tangent vector at that point. Thus the above implies that

B(X, Y) = ((X, ad,y», for X9 Y e Tv$ .

That B is a 2-form follows from the commutativity of (Id + ad,,)"1, (Id — ad,,)"1,
ad, and that (X,ad,7) = -(ad,X,7).

Completing the square, we then obtain

2je=({π-B( ,φ*dσ),π-B( ,φ*dσ)))A + ((φ*dσ,φ*dσ)) + Remainder ,

where

Remainder = (ψ*dσ,φ*dσ) - ((φ*dσ,φ*dσ)) - ((B( . 9φ*dσ)9B( ,φ*dσ)))A .

We shall now show that Remainder = 0.

Remainder

= (ψ*dσ9ψ*dσ) - ((Id - V ι

- ((Id - a d ^ ^ ^ d ^

= (ιA*3σ, [Id - (Id + a d ^ Γ ^ I d - ad^)" 1 + (Id + ad*)" 1 (Id -

= <^3σ,(Id - a d j Γ ^ ί l d - ad^) - Id + *d2

φ]φ*dσ)

= 0 as claimed.

From the argument it is clear that the ((, )) and B are uniquely determined by
the formal canonical transformation.

This completes the proof. D



Target-Space Duality under the Hamiltonian Formalism 199

2.3. A Second Glance at Φ. As already pointed out in a remark following
Theorem 2.1, the formal canonical transformation Φ that we constructed from
the generating function Γ is not a map from the whole LT*G to the whole LT*Q.
Instead, it singles out a reduced phase-space, DomΦ, the domain of Φ in
LT*G and a reduced phase-space, ImΦ, the image of Φ in LΓ*g. Both are of
codimension dimG in the original phase-spaces they reside. One last quest-
ion concerning the target-space duality between (G, (, )) and (g,
((, )),B) at the classical level under the Hamiltonian formalism based on Γ is
then:

Q. Are both Dom Φ and Im Φ invariant under the string Hamiltonian flows!

Naively, one would expect that if Dom Φ is invariant under the string Hamiltonian
flow in LT*G, then so is ImΦ in ZΓ*g due to the way the string Hamiltonian
Jf on LT*Q is constructed. Also notice that, a priori, the domain and image of
a canonical transformation that a generating function generates do not necessarily
have to do with Hamiltonian flows. However, as a thumb rule that whatever is
natural tends to work, the answer to the above question is affirmative. This cer-
tainly gives another backup of the Hamiltonian setting presented here and in the
literature.

Theorem 2.3 (Invariance under String Hamiltonian Flow). Both Dom Φ and Im Φ
are invariant under the related string Hamiltonian flow. Thus they do form sub-
string Hamiltonian systems.

Proof. Recall from Theorem 2.1 the map E from Lg to Path G and the connection
\7j . These together with the proof of Lemma 2.1 leads to

DomΦ = {(φ,m)| ψ G LG, and Ω(π~) G Im\7jσ}

= {(φ,tσ)|φ G LG, and / dσAdφ(σ) Ω(m~)(σ) = 0}
sι

and

lmΦ = {(ψ,π)\ψ G Lg, and E(-π~) is a loop in G} .

We shall first show that DomΦ is invariant under the flow generated by the
string Hamiltonian vector field X^>. We begin with a condition that characterizes
Γ*(Domφ) and then show that X&, when restricted to Domφ, satisfies this con-
dition and hence has to be tangent to Dom φ. The flow generated therefore leaves
Dom φ invariant. The invariance of Im Φ under the flow generated by X~ is also
demonstrated by a similar approach.

Let us introduce the following trivializations of bundles in the discussion:

T*G~ Gx g, Γ*G ~ G x g*, LΓG ~ LG x Lg* ,

T*(LT*G) 5 T*LG x Γ*Lg*, T*(LT*G) ~ T*LG x Γ*Lg* .

We denote all these bundle isomorphisms by Ω since they all arise from the first
isomorphism which defines the Maurer-Cartan form Ω.
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Let (φt,wt) be a path in LT*G that lies in DomΦ with

(φt,πt)j = (Y,Z).

Then

Thus

/ dσAdφt(σ)Ω(m~(σ)) = 0 for all t.

f dσAdφt{σ)Ω(m~(σ))

t=Q

= f dσAdφo(σ) —

= Jdσ Adφo(σ)

And we lead to a criterion for a tangent vector (Ύ,Z) at (φ,m) in DomΦ to be in
Γ*(DomΦ):

J dσAdφ{σ) {adγ{σ)Ω(m~(σ)) + Z(σ)~} = 0.
sι

(One should think of Y as an arbitrary smooth vector field along φ in G; and then
Z is subject to the above constraint.)

Next recall that the string Hamiltonian J f on LT*G has density

from which one has

= π~(σ) - (Vφ#dσφ*dσ)~ .

Consequently,

and

Now we only need to check that Ω{X^>L Λ satisfies the above criterion for

(φ,w) in DomΦ,

J dσAdφ(σ) {adΩ{w~{σ))Ω(m~(σ)) + Ω(Vφittdσφ*dσ)}
si

= Jdσ Adφ{σ)— Ω(φ*dσ)
s l aσ
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since aάγY = 0 and Ω(Vφίttdσφ*dσ);

= —Ω(φ*dσ)'9dσ

= ~ I d σ f : r A c

d
= - J dσAdφ(σ)eiάΩ{φ^dσ)Ω(φ*dσ) = 0.

This shows the invariance of DomΦ under the flow generated by X#.
Likewise for the image Im Φ we shall introduce the trivialization of the respec-

tive bundles induced by the trivialization

arising from the vector space structure of 9. A similar argument as in the first part,
using the identity

dt /=o
Ω(φt*dσ) = —

in the proof of Proposition 2.1 with Γ0(σ) being j t \ t = 0 Φ/(σ), gives the following
criterion for Γ*Im Φ:

(Y,Z) e r ( M i m Φ iff z~ e I m ( - ^ + a d

It remains to show that X~* when restricted to Im Φ satisfies this criterion. Let

Then in terms of a parallel orthonormal frame in g with respect to (, ), one has

Since only the Z-component matters, we shall work the latter functional derivative
out.

Recall from the proof of Theorem 2.2 that

~ 1
,π) = - / dσ{(π~,π~)

2

Let ψt be a path in Zg with ψ0 = φ and ^ ί = 0 ψt = To. Then

t=o
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(where V is the connection associated to the flat metric (, ) on g)

. . d2

= / dσ

sι
—
aσ, adπ~ad^π^ + adπ~ι^*δ

Thus, with respect to the same orthonormal parallel frame,

d

which satisfies the criterion for tangency to Im Φ.
This completes the proof. D

Remark. From the conditions that characterizes Dom Φ and Im Φ, one can see
that:

1. DomΦ is a codimension dim G vector subbundle in LT*G over LG; it has one
component over each component of LG and these components are labeled exactly
by π\(G) because UQ(LG) — π\(G).

2. Im Φ is also a codimension dimG subspace in Z/Γ*g; it is a bundle over Zg
with components of the fiber parameterized again by π\{G).

3. Φ then takes a component of DomΦ onto a component of Im Φ (Fig. 3).

This indicates that analogously to the Sx case, Φ cannot be extended to a bi-
jection between the two unreduced phase spaces after factoring out the
redundancy.

Fig. 3. The rectangles on the bottom represent the components of LT*G and the thick curves are
the components of Dom Φ. On the top rectangle, the thick curves represent the components of
ImΦ.
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Remark. In comparison with the Sι (i.e. U(l)) case, some features are similar and
other features are missing. Actually the SR—S\ T-dual pair can be obtained from the

R

general setting with the additional introduction of an appropriate compactification
of the associated Lie algebra 9. Naively, when this is done, say by a lattice in g,
one may then extend the scope from the loop space to the space of paths with the
difference of end-points lying in the lattice. In the case of u(l) there is no difficulty,
however, for general simple Lie group - Lie algebra pairs, it is not clear how such
a compactification can be introduced that lives compatibly with all other properties.

So far, we have rarely touched upon the symmetries in the theory. A reason
for this is that many of the concepts and discussions used here are quite general.
Actually, one may see that all the arguments seem to be applicable even to cases
without symmetries as long as one is able to tell what is the generating function.
We hope that using arguments which avoid relying heavily on symmetries may shed
some light on the more challenging situations. Nevertheless, it is worthwhile to see
if symmetry provides any conceptual reason why things should work in the present
case.

2.4. Symmetries in the Theory. Conceptually and naively, the following may be
related:

• symmetries of the generating function Γ;
• the redundancy (i.e. the non-injectiveness and multi-valuedness) of Φ;
• symmetries of the Hamiltonian systems for the G-part and the g-part respectively.

We shall try to clarify their relationships with each other.

2.4.1. Symmetries of Γ and the Redundancy of Φ. A more symmetric way to think
of Φ is to regard it as a symplectic relation. The section dΓ in Γ*(Lg x LG) over
Lg x LG gives rise to an embedded Lagrangian submanifold in the product space
Z,Γ*g xLT*G with the symplectic structure e δ θ ω ; this then leads to a relation
from LT*G to LT*Q, which is exactly Φ. Let SymΓ be a group acting on Lg x LG
that leaves Γ invariant. Then its induced action on LΓ*g xLT*G is symplectic
and leaves dΓ invariant. The intersection of SymΓ-orbits in LT*Q X LT*G with the
vertical leaves of the product space then contributes to the non-injectiveness of Φ,
while that with the horizontal leaves contributes to the multi-valuedness of Φ. This
gives a general picture how the symmetry of Γ and the redundancy of Φ are related.

In the present case, there are at least two groups of symmetries for Γ:

(SymΓ)i = Lg with the pointwise addition operation from g ,

whose action on Lg x LG is defined by

(SymΓ)i x (Lg x LG) ^LqxLG

(η,ψ,φ)*->(φ + adΩ{φ^dσ)η, φ)

and

(SymΓ)2 = GL x GR with the componentwise multiplication from that of G ,

whose action on Lg x LG is defined by

(SymΓ)2 x (Zg x LG) —> Lg x LG

((gugiXΦiψ) ^ (Adg-ιψ, Igιrg2φ).
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Direct computation shows that the intersection of an Zg-orbit in LΓ*g x LT*G with
either a vertical or a horizontal leaf is in general just a point; hence this huge
symmetry of Γ actually won't contribute to the redundancy of Φ in a major way.
However the GL X G^-orbit of a point in Z,Γ*g x LT*G intersects the vertical leaf
through that point by the GL X e/rsuborbit, which is homeomorphic to G. Thus the
GL x Gβ-symmetry of Γ accounts for the non-injectiveness of Φ completely. On
the other hand, the same orbit intersects the horizontal leaf through that point at
only one point and, hence, this action doesn't contribute to the multi-valuedness
of Φ.

2.4.2. Symmetries of the String Hamίltonian Systems

(a) The G-Part. Since the metric (, ) on G is bi-invariant, the Hamiltonian system
(LT*G,Jf) admits a GL X GR action induced by the left- and right-multiplication
in G. Moreover, since this action preserves the canonical symplectic potential θ on
LT*G, there is a moment map [A-M]

μ = (μL,μR):LT*G -* g | Θ gj

defined by

μ(φ,m)(vuv2) = (μL(φ,m)(vι)9 μR(φ,m)(v2))

= I J dσm(σ)(ξL

Vι\φ(σ)), f dσw(σ)(ξξ2\φ{σ))) ,
V 51 si )

where ξ% (resp. ξ^2) is the left (resp. right) invariant vector field on G generated
by v\ (resp. v2).

Proposition 2.2. DomΦ = μ^ι(0).

Proof. This follows from the computation:

μR(φ,m)(v) = J dσw(σ)(ζξ\φiσ))

= fdσ(m(σT,ξ%iσ)) = J dσ<β(ro(σ)~), Adφ(σ)_n;)
1 ^

= fdσ(Adφ(σ)Ω(m(σΓ),v) = ( / dσAdφ(σ)Ω(m(σΓ), v) .
51 V 1 /

This vanishes for all v iff

JdσAάφ{σ)Ω(w(σΓ) = 0,

which is exactly the condition that characterizes DomΦ. D

This proposition suggests that one may apply the Marsden-Weίnstein reduc-
tion to (LT*G,J^) and consider the quotient space ΌomΦ/GR as the true classical
physical phase space. It also provides a "true" reason for the invariance of Dom Φ
under the flow generated by



Target-Space Duality under the Hamiltonian Formalism 205

(b) The g-Part. The identity

Γ(φjgιrg2φ) = Γ(Aάg2ψ,φ)

suggests that Φ transforms the Gι x GR action on LT*G into the Ad GR action
on LT*g. Indeed as will be shown in Sect. 3.3, the T-dual Hamiltonian system
(XΓ*g, J f ) does admit the AdG action. Analogous to the G-part, this also leads
to a moment map

μ:LT*Q -> g*

defined by
μ(ψ,π)(υ) = J dσπ(σ)(ηv\φ{σ)) ,

sι

where ηv is the vector field on g associated to v via the Ad-action. Explicitly, ηv\ψ(σ)
is just SLάvφ(σ). Direct computation then gives

μθ,π)(ι;) = ( / dσadψ{σ)π~(σ), v ) . '
\sι I

Unfortunately, we are not able to see if Im Φ is of the form μ~ι(A) for some subset
A in g by using the above formula. The condition that characterizes Im Φ is more
related to the following holonomy map:

Hoi : LΓg -> G

GM) ι-> E(-π~)~ιE(-π~)2π .

Notice that this is well-defined regardless of the initial point E(—π~)0 chosen. It is
not clear to us how to translate the fact that imΦ — H o l " 1 ^ ) into the language of μ.
There might be other symmetries that would give the correct moment map for such a
translation. And we shall conclude our discussion of symmetries with this open end.

The last issue that we shall touch upon in this article is about the T-dual struc-
tures on g. There are surely many more properties worth studying, in particular, the
curvature properties, the asymptotic behavior of geodesies of the T-dual Riemannian
manifold and the existence of symplectic leaves of B. However we shall be con-
tented here only to give a light feel of the T-dual geometry on g.

3. The Geometry of (g, ((, )) B)

3.1. Preliminaries to Study the Dual Geometry. The dual structures on g worked
out in the previous section links closely to the ad-representation of g on itself.
Thus in this sub-section, we shall digress to prepare ourselves necessary facts about
real simple Lie algebras and their ad-representation for studying the dual geometry.
These facts either are contained in [Sa] or can be derived from material therein.

3.1.1. The Characteristic Polynomials and the Characteristic Variety. For any
v e g, the characteristic polynomial is defined to be

det(ad, - t Id) = {-\)n{f - Dλ{υ)f-λ +D2{vy~2 - + (-\f-rDn-r{v)f),

where n = dim g and r = rank g. Notice that the coefficients A are homogeneous
polynomials in v of degree i.
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Since g is simple, one has that n — r is even and that the characteristic polyno-
mials can be written in the form

n—r

detCad, - t Id) = (-Iff Π (t2 + aiivf),

where aι are some functions in v. This implies that

A = 0, for i odd .

The characteristic variety Vo is defined to be the zero set of the homogeneous
polynomial Dn-r. It is naturally stratified by the following "tower":

VΌDViD- DVkD. D Vψ_χ(= {0}) ,

where

Vk = {v\Dn-r(Ό) = Dn_r_2(v) = . . . = Dn-r-niυ) = 0} .

3.1.2. Cartan Subalgebras.

• Let v G g. Then there exists exactly one Cartan subalgebra that contains v if and
only if v G g — Vo.

• If υ G Vk for k > 0, then there exists at least a 2(& + 1 )-dimensional family of
Cartan subalgebras and each contains v.

• Fix a Cartan subalgebra ί) and an Ad-invariant inner product (, ) in g. Let A
be the set of roots of g with respect to ί) with a fixed order. Then g decomposes
orthogonally into

)

where A+ is the set of all positive roots and each 77α is a 2-dimensional subspace
invariant under ad t).

• For any v G g, the kernel of the endomorphism adυ : g —> g contains all the
Cartan subalgebras that contain v.

3.1.3. The Ad-Action on g and the Weyl Group.

• The Ad-action of G on g induces a G-action on the space of all Cartan subalge-
bras (with the subset topology from an appropriate Grassmann manifold). This
induced action is transitive.

• Since (, ) is Ad-invariant and g is compact simple, one has a group homomor-
phism

Ad : G -> SO(n) C Isom(g, (, ) ) .

• Let T be the maximal torus in G associated to ί), i.e. t) = TeT. The restricted
action AdΓ on g leaves I) fixed and are rotations on each 77α.

• Let ^ be root vectors associated to roots α G A. Recall that the Weyl group
action iV on I) associated to A is generated by the reflections with respect to
h^, the orthogonal complement of ha in ί) with respect to (, ). Then every
element in iV comes from an Ad^, for some g G G, that leaves ί) invariant.
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Conversely, if some Aάg, g e G, leaves f) invariant, then the restriction A d ^ is
in TT.

3.1.4. The Weyl Chamber. For our purposes, the Weyl chamber associated to (ί), Δ)
with a fixed order shall mean any of the following:
• The closed Weyl chamber is the quotient space ί)/#". It is a convex cone with

boundary. The interior is called the open Weyl chamber.
• Let F b e a fixed fundamental system. Then the closed Weyl chamber is the cone

Its interior is the open Weyl chamber.
• Let Γα = {υ e ί)\(ha,v) — 0}, for α G A. Then an open Weyl chamber is any

of the connected components of I) — UαeΛ^α ^ t s closure is a closed Weyl
chamber.

Notice that the closed Weyl chamber is linear isomorphic to the orthant

Rr

+ = {{au...,ar)\ar ^ 0} ,

where r = dim ί).

3.2. An Ad-Invariant Polarization in g — V$. There is a collection of integrable
distributions (i.e. a polarization) in g that arises from the ad-representation of g on
itself. It plays an important role in understanding the T-dual geometry on g and we
shall explain it in some detail.

Let C be a closed Weyl chamber in g and Int C be its interior. Then, from
Sect. 3.1.3, one has

g - Vo = Ad G Int C .

Let

be as in Sect. 3.1.2 with C lying in ί). Let I), 77α be the distributions along IntC
obtained by translating respectively ί), 77α over Int C using the vector space structure
of g. Applying the Ad-action to move them around, one then obtains a collection of
distributions on g — V$. Denote the one associated to ί) by Q)§ and the one associated
to 77α by ί̂ α. The whole collection is independent of the choice of Weyl chamber
and one has

This decomposition is orthogonal with respect to both (, ) and ((, )).

Proposition 3.1 (Integrability). The distributions @o and.%'s on g — Vo are inte-
grable.

Proof. From the setting, it is clear that ^o is integrable. An integral submanifold
of ^o is the intersection of some Cartan subalgebra with g — VQ. In other words, it
is an open Weyl chamber.
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As for %, let v G g — VQ; its stabilizer Stab(υ) under the Ad-action is the max-
imal torus T that gives the unique Cartan subalgebra ϊ) containing υ. The Ad-orbit
Q through v is diffeomorphic to G/T and one has

Let
proj : G

be the quotient map and ί) + 17α be the left-invariant distribution on G whose re-
striction at the identity is ί) + Πa. Since ί) -\- Πa is a subalgebra in g, ί) + Ac is
integrable. From the fact that

one concludes that % is integrable when restricted to Q and hence it is integrable
in g. Its integral submanifolds are the projection of those for ί) + Πα in G. This
completes the proof. D

We shall call either {%} or the family of their integral leaves the polarization
of g indexed by a root system.

3.3. Basic Properties of the T-Dual Geometry.

Proposition 3.2. The dual structures ((, )) and B on g are both Aά-invariant.

Proof. After identifying the tangent space at any v G g with g itself using the
vector space structure, one may write (Ad^)* for g G G simply as Ad^. With this
convention, for X,Y G Tv§, one has

= ((Id - adAd^Γ'Ad^CId - adAdgVy
lAdgY)

= (Ad9(Id - adt,)~'X,Ad^(Id - adυ)~ιY), since adAdeu = Ad^

= ((Id — adu)~'X,(Id - ad^) - 1 7), since (, ) is Ad-invariant;

And similarly,

£(Ad,X,Ad,7) A V = ((AάgXMAdgVAάgY))MgV

= ((AάgX,AdgaάvY))AάgV = ((XMvY))υ

= B(X,Y)Ό. D

Corollary 3.1. As a Riemannίan submanίfold in (g, ((, ))), every Cartan subalgebra
is totally geodesic.

Proof. Let ί) be a Cartan subalgebra in g and v G ί) — Fo. Then, for ε > 0 but small
enough, Aάexp(εv) is an isometry of (g, ((, ))) whose set of fixed points is exactly
ί). This shows that ί) is totally geodesic. D
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Let v G Q then ((X9X))\V = {X,X)υ for X £ ker(ady). From Sect. 3.2.1,
is @o\υ for v G 9 — V$. Thus for any tangent vector to g that lies in @o, its norms
with respect to (, ) and ((, )) are the same. Consequently, any path that lies in
some Cartan subalgebra has the same length with respect to either ( , ) or ((,)).
Together with the previous corollary then implies that all the aίϊine lines in g that lie
in a Cartan subalgebra are bi-infinite geodesies with respect to ((, )). Particularly,
all the half lines from the origin are infinite geodesic rays with respect to ((, )).
Thus the exponential map at the origin with respect to ((, ))

Expo

is well-defined on the whole 7bg. It actually coincides with the exponential map
with respect to (, ). By Hopf-Rinow theorem [C-E] this shows that

Corollary 3.2. (g, ((, ))) is a complete metric space.

Since G is compact connected, for any v G g, its stabilizer Stab(ι ) under the
Ad-action is a connected closed subgroup in G [He] with

C ΓeStab(ϋ).

Since the jump of the dimension of ker(ady) when varying v is always even,

= r(i.e. rank G) if v G g — VQ

dim Stab(ι )
1 ^ r + 2 if v G Vo .

On the other hand, for any closed Weyl chamber C in a fixed Cartan subalgebra,

g - Vo = Ad G Int C and

Vo = Ad G - dC .

This implies that Vo is a homogeneous variety of codimension ^ 2 and hence the
isometric embedding

9-^0^(9, ((, )))
is distance-preserving. In other words, (g, ((, ))) is the metric completion of
(g — Vo, ((, ))\Q-v0) by a subset of codimension ^ 2 in g. Consequently, the generic
part g — Vo itself captures nearly all the metric properties of the whole (g, ((, ))).

3.4. Riemannian Geometry of the T-Dual Metric. Due to the fact that the Ad-
action of G on g — Vo has stabilizers isomorphic to a maximal torus T of G and
that the quotient space is the interior of a Weyl chamber C which is contractible,
one has the following trivial fibration:

G/T -> g - F 0

I p r

I n t C .

Also recall the common Ad-invariant orthogonal decomposition

with respect to both (, ) and ((, )). The following proposition shows that the T-
dual metric on g is a polarized conformal deformation of the flat Killing metric
and the generic part is a polarized warped-product of the flat cone Int C with G/T.
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Proposition 3.3. Let

with respect to the above decomposition. Then, for any v G g — VQ,

1
α l y >

where ϋ — pr(ι ) G Int C.

Proof. Since £̂ o> ̂ α's are invariant under the Ad-action, the decomposition of (, )
is also invariant under the Ad-action. Without loss of generality, we may assume
that the open Weyl chamber Int C is embedded in g — VQ and contains v. Now for
X e %, Y e@β (α, β could be 0), one has

((X9 Y)) = ((id - a d . Γ ^ I d - a d , ) " 1 ^

^ ( ^ ( I d - ί a d , ) 2 ) - 1 ^ .

Notice that (ady)
2 is symmetric with respect to (, ). The eigenspace decomposition

of Tv$ for (ad^)2 coincides with (^ 0 θ (®ΛeΔ+%))\υ- For Z G %,

(ad,)2(Z) = α(t;)2Z .

Thus

This concludes the proof. D

Notice that a(v) is purely imaginary, thus

Since g — Fo is open and dense in g, we have

Corollary 3.3. For any X G Γ*g, {(X9X)) g

As y approaches the characteristic variety Vo, some of the α(zJ)'s get closer and
closer to 0. In the limit, their corresponding ^ α ' s are absorbed into the undistorted
flat directions at the limit point in VQ.

The explicit expression in the set of the polarized conformal factor {ι_\ϋ)2}
together with the polarized waφed-product structure on g — VQ gives a clear picture
of what the T-dual g looks like as a Riemannian manifold (Fig. 4). We summarize
them partially as

Proposition 3.4 (Asymptotic stability). Let γ(t) be a ray in Int C from the origin
parameterized by arc-length. Let (G/T)t be the fiber over y(t) in the polarized
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CIΓ(G/Γ)tl (G/T)t2

ray γ

IntC

Fig. 4. Asymptotic stability of the T-dual Riemannian geometry. With a neighborhood of VQ
deleted, the rest of the metric space looks like a cone on a sufficiently large scale.

warped-product. Then (G/T)t is a polarized conformal deformation of(G/T)\ with
polarization {β^\ and family of factors

l - ί 2 α ( y ( l ) ) 2 J α '

Consequently, (G/T)^ is a polarized conformal deformation of(G/T)\ with factors
{— * 2 } α and hence is compact. With a neighborhood of Vo deleted from g, the

rest is quasi-isometric [Gr] to the base cone with a neighborhood of boundary
deleted.

Proof. All this follows from the fact that the collection of Riemannian manifolds
{(G/T)t} forms a radial infinite cone at the origin with base (G/T)\. Using the
radial projection from (G/T)t to (G/T)\ and the invariance of % under radial
scaling maps, one immediately justifies all the claims. This concludes the proof.

D

Remark. When applied to the special pair, SU(2) and su(2),

Vo = the origin, Int C = a half line Z,+, and G/T = S2 .

The proposition says that su(2) — {origin} with the T-dual metric is a warped-

product of L+ with S2 with factor γhp9 whose limit is \ as t —> oo. One can

check that this coincides with the known results from the literature.

3.5. The B-Field. Recall that, with respect to the Ad-invariant metric (, ), g has a
Poisson structure given by a closed 2-form ζ with

for X, Y in Γ ĝ. Its symplectic leaves are the Ad-orbits. Analogous to the T-dual
metric, B can be written as a polarized conformal deformation of ζ. Explicitly,
assuming that v is in g — Vo, let X, Y G J^g and decompose

x =
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where Xa9 7α £ % (α could be zero here). Straightforward computation then gives

which, for the special case of SU(2)-%VL{2) pair, again gives the known 5-field.

However, direct checking shows that, after this polarized distortion, B is no longer

closed for general simple Lie algebras; nor do the Ad-orbits remain symplectic

in general. It's not clear to us at the moment what kind of geometry this ΐ?-field

provides on g in general.
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