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Abstract: In the framework of noncommutative geometry we describe spinor fields
with nonvanishing winding number on a truncated (fuzzy) sphere. The correspond-
ing field theory actions conserve all basic symmetries of the standard commutative
version (space isometrics and global chiral symmetry), but due to the noncommu-
tativity of the space the fields are regularized and they contain only a finite number
of modes.

1. Introduction

The basic notions of the noncommutative geometry were developed in [2,3], and,
in the form of the matrix geometry, in [4,5]. The essence of this approach
consists in reformulating first the geometry in terms of commutative algebras and
modules of smooth functions, and then generalizing them to their noncommutative
analogues.

In standard field theory, to any point x of some space(-time) manifold M the
values of various fields are assigned:

j c G A f — > Φ ( x ) 9 A ( x ) 9 . . . ,

as sections of some bundles over M, e.g. the line bundle of functions, or the spinor
bundle, etc. The smooth functions on M form a commutative algebra jtf = J*(M)
with respect to the standard pointwise product: (/#)(*) = f(x)g(x\ x G M. The
bundle of smooth spinor fields ^(M) on M is an ^/-module with respect to the
multiplication by smooth functions, which simply means that any spinor can be
multiplied by a scalar field. In the same way the linear spaces of gauge and other
fields are j/-modules. If there exists a sequence of deformations of the commutative
algebra s$ of the smooth functions on the manifold M, such that the deformed
algebras are finite dimensional, we may attempt to formulate a deformed field theory
which would possess just a finite number of degrees of freedom. Needless to say,
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this may be a promising avenue towards a suitable regularization of ill-defined field
theoretical path integrals.

Having the finite deformations of the algebra of scalar fields (= functions on
the manifold M) a further step has to be made in order to obtain a physically useful
regularization. It consists of building up deformed spinor bundles, gauge fields, etc.,
which would be also just the finite-dimensional vector spaces and at the same time
modules of the deformed algebra stf of the scalar fields. For a fixed deformation
of j/ there may be many inequivalent deformations of the corresponding modules.
Therefore we would like to have a guiding principle that would select the defor-
mations which could legitimately be called the noncommutative spinor bundles or
spaces of noncommutative connections. In the general case of an arbitrary com-
pact Riemannian manifold we are still missing this principle; however, for practical
applications in Euclidean field theories it is enough to understand the noncommuta-
tive deformations of the spheres Sn. Then the guiding principle reads: build up the
noncommutative modules, which would be representation spaces of the symmetry
group that rotates the sphere Sn.

It is also natural to require that the regularized field theory path integral respects
the rotational symmetry. This significantly narrows the room for the possible de-
formations. Further restrictions come from a claim that some other desirable field
theory symmetries are preserved in the deformed level. Amazingly, our experience
so far shows that all relevant symmetries can be incorporated while preserving the
finiteness of the number of degrees of freedom. To our knowledge this is an unusual
(and very favourable) property; for instance the fashionable lattice regularization
does not enjoy it.

In our previous investigations [6,7], we dealt with the two-dimensional field
theories, i.e. the manifold M was the sphere S2. The real scalar field on a trun-
cated (=deformed) sphere was considered in [6] and, recently, we found a proper
supersymmetric extension of this formalism [7]. In particular, the latter accounts
for the description of the (chiral) spinor fields with vanishing topological charge
and gives a manifestly supersymmetric regularization of two-dimensional super-
symmetric theories. Historically, the truncated two-sphere1 was introduced in [1],
where the deformed algebra of functions emerged upon geometric quantization
of the (symplectic) volume form on the sphere. Later the concept was redis-
covered in [10,12,9]. The first attempts to construct a field theory on the truncated
sphere were undertaken in [12,8]; in [6,7] we have included the details of the
perturbation expansion for the deformed quantum scalar field, the construction
of the deformed chiral spinors and the regularization of the supersymmetric
theories.

In this article, we continue these investigations by constructing the deformed
topologically nontrivial spinor bundles needed for the inclusion of the monopoles.
As was argued in [11], the correct infinite volume limit (which means that the
radius of the sphere approaches infinity) requires the consideration of the monopole
configurations of the gauge fields interacting with the spinors. Hence, having in
mind our ultimate goal of the physical applicability of the construction, we have
to incorporate the spinor bundles with a nontrivial winding number. Remarkably,
this can be done already at the "kinematical" level of the configuration space of the
deformed field theory as opposed to the case of the lattice regularization, where the
topologically nontrivial configurations emerge only dynamically [13].

1 Also referred to as "fuzzy", "noncommutative" or "quantum" sphere in the literature [1,10,12].



Topologically Nontrivial Field Configurations in Noncommutative Geometry 509

The plan of the paper is as follows: All basic notions we need on complex scalar
and spinor fields in the standard (commutative) case are summarized in Sect. 2. In
Sect. 3 we first describe the topologically nontrivial configurations of a complex
scalar field on a standard sphere in a more algebraic language, and then we gen-
eralize them to the noncommutative situation. In Sect. 4 we extend our approach
to the topologically nontrivial spinor field configurations on the noncommutative
sphere and write down a chirally symmetric field theory action. Section 5 contains
concluding remarks.

2. Topologically Nontrivial Fields on the Sphere

Here we briefly describe the topologically nontrivial configurations of complex scalar
and spinor fields on the standard two-sphere. The embedding S2 ̂  R3 is specified
by the Cartesian coordinates

cj = r cos φ sin θ , %2 — r sin φ sin θ , x^ — r cos θ , ( 1 )

where r > 0 is fixed, 0 ^ 0 ^ π, — π ^ φ r g +π.
The complex scalar field Φ on the upper hemisphere V+ (S2 without south pole,

0φπ) is a function of the variables

χ(=r^Cosθ-, χ'2 = -r^smθ-e^, (2)

which are well defined on F+:

φ' = W,/*) = Σ < W2xP;T2;«2 - 0)
The monomials in this expansion are characterized by their phase on the equator
(θ = π/2)

e^-^ = ύ*m'l2*m2tfl2n2\^/2

In the same way, the complex scalar field Φ on the lower hemisphere V- (S2

without north pole, 0ΦO) is a function of the variables

K = ̂ 2cos^-<>, ^-r'/'sin^. (4)

Thus,

Φ" = Φ"(χ",χ"*) = Σa'ήιm2nιn2xΓlxΓ2x"nίX2n2 (5)

Now, the monomials in this expansion have the following phase on the equator
(θ = π/2):

I(Λ! -mi )φ _ "*rnλ //*m2 "«ι //n2 1 . .„
e — Λ l Λ2 Λ l Λ2 |0=π/2

As J&k,k G |Z, we denote the line bundle of sections with the same expansion
coefficients as in Eqs. (3) and (5):

« 2 Λl Λ2 Λl Λ2

ii _ φ(Ύ" y//*\ _ V π Ύ"*mι

 Ύ"*m2Ύ'/nl Ύ— ψ\jί ? Λ ) — Z^ «w 1w 2«ι« 2Λl Λ2 Λl Λ
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and with k = \(m\ + m^ — n\ — ΠΊ) fixed. On F+ Π V- they are related by the
singular gauge transformation

where K = 2k is the so-called topological winding number. Obviously, stf = J&Q is
an algebra, and J&k are ^/-modules (with respect to the usual multiplication by
functions from j/).

The presence of the gauge transformation (7) requires the use of the covariant
derivatives:

D'μ = id'μ+A'μ, o n F + ,

D"μ=ics"μ+A"μ, o n K _ . (8)

Here we introduced the topological (/c-monopole) fields

A'μ = iκχ'+d'μχ', o n F + ,

4' = /Kχ"Xχ", o n F _ . (9)

On V+ Π V- they are related by the singular gauge transformation (7):

A'μ=AΪ-ihdμh-l

9 h = eίκ(? . (10)

Note. We would like to stress that the presence of the topological jc-monopole field
is dictated by the nontrivial topology, and not by the dynamics of a system in
question. The dynamical gauge field stfμ — stfμ(x) is globally defined on S2, and it
could be added to the topological one. In what follows, we shall not consider this
possibility.

The action for the complex scalar field on S2 can be written in the form

S[Φ9Φ*] = fd3χδ(χ2 -r2)[Φ*£>2Φ+ F(Φ*Φ)] , (11)

where V( ) is a polynomial bounded from below.
In the same manner, the spinor field Ψ we define separately on the upper and

lower hemisphere:

y" = n ' o n F + '
As &ΊI we denote the bundle of spinor fields, which have their components from

v v v
Λ2 /I /

\ "*m2 >'n\
A2

where A: = \(rn\ -\- πi2 — n\ — n^) is fixed. Obviously, ̂  are ^/-modules.
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Alternatively, we can write the elements of the ̂  in the form

flftf, r
λ2,

, ] + #(/',/'*) ί _ 2 //* j , on V- . (14)

The advantage of this form lies in the fact that both the / and g parts of this
decomposition are separately eigenfunctions of the chirality operator

Γ — - σ j X i , σ/— Pauli matrices , (15)

with the eigenvalues +1 and —1 respectively:

''χ' Λ-ti*

*'{

^The action of the (Dirac) spinor field can be written as

S[Ψ,Ψ*] = — fd3x δ(x2 -r2) [ Ψ D Ψ + W ( Ψ , Ψ ) ] 9 (16)
2nr

where Ψ = Ψ+σ2, W( , ) is a gauge- and chiral-invariant potential describing the
selfinteraction of the spinor field, and D is a Dirac operator defined as

on F_ . (17)

Here σμ — σ/ef (ef denote corresponding zwei-beins). Only the topological (κ>
monopole) gauge field enters into Z), and not a dynamical one. The Dirac operator
anticommutes with the chirality operator,

DΓ + ΓD = 0 .

This guarantees the chiral invariance of the action (16).
In the next two sections we first rewrite all relevant formulas in more algebraic

terms, and then we introduce their truncated noncommutative analogues.

3. Complex Scalar Field

We start with the Hopf fibration obtained from the mapping C2 —> R3 defined by
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where
*ί = χ+σ, χ , 1 = 1,2,3. (18)

The restriction χ+χ = r > 0 implies xf — r2, i.e. we obtain the fibration S3 — > S2

of a three-sphere in C2 with the radius ^/r onto the two-sphere in R3 with the
radius r. Since JQ do not change under the transformation

*->****, χ+->*-*V, (19)

we see that the fibre is U(l).
As Jti?k9k ^ \^ we denote the linear space of functions in C2 (or in S3 after

the restriction) of the form

Σ (20)

with k = \(m\ + πi2 — n\ — #2) fixed (* denotes complex conjugation). Under (19)
the functions from J% transform as

φ _> e~
ίkΦφ

They are eigenfunctions of the operator

K0 = l-[χ;dχΐ - χxdχj (21)

with the eigenvalue k:
K0Φ = kΦ, Φ G ̂  .

We have an involutive gradation

with respect to the point-wise multiplication of functions

*) = Φι(χ,xΊ Φ2(χ,χΊ . (22)

The space j/ = Jfo endowed with the product (22) is a commutative algebra, which
is isomorphic to the algebra of all polynomials in the variables xi9i = 1,2,3. Obvi-
ously, all Jtf*k are jtf -modules.

The differential operators

Jk = iW&a - Iβ^Λ , k= 1,2,3, (23)

map Jjfk to Jjfk and satisfy in ̂  the 5 w(2)-algebra relations2

[Ji9Jj] = isίjkjk . (24)

The formulas

JjXβ = σίβX* > JJ X*β = -σ?βti >

2 It is important to note that the operators Jk and KQ do commute with the restriction χ+χ — r,
so they naturally act on the algebra of functions on S3.



Topologically Nontrivial Field Configurations in Noncommutative Geometry 513

guarantee that χ and χ* transform like spinors under transformations generated by
(24), and consequently x transforms like a vector in R3. Moreover, the function
C(x) = x2 = (χ+σzχ)2 satisfies

JiC(x) = Q , i= 1,2,3, (25)

i.e. C(x) is an invariant function as expected.
Besides these operators we introduce operators K+ and K- defined as

K+Φ = isΛβ i:(dIβΦ), K-Φ = iεΛβ (d$Φ)χβ . (26)

They map ̂  to 3tfk+\ and J^-i respectively. The operators K± and KQ satisfy
su(2) algebra relations

Only products K±K^ act in J f^, and KQ takes there the constant value k. The
operators K0,K± commute with Ji9 ί = 1,2,3, but they are not independent as the
corresponding Casimir operators are equal:

J? = K% + \(K+K- + K.K+). (27)
2

To any Φ <G stf we assign the standard integral over S2,

/^[φ] = — Γ d 3 x δ(x2 - r2) Φ(x) . (28)
2πr J

This allows the introduction of the scalar product on Jf^ as follows:

We identify the complex scalar field Φ with the topological charge κ3 with the
elements of J%. The corresponding field action is given as

(30)

where F( ) is a polynomial bounded from below. According to Eq. (27) the

ΐ <
1

differential operator ^(K+K- +K-K+) can be rewritten in J% as follows:

-(K+K_+K-K+)=J? - k2. (31)

We stress that formula (30) for the action is equivalent to (11).
We obtain the noncommutative (fuzzy) line-bundles by replacing the commuting

parameters χ^X^, % = 1,2, by the noncommutative ones, expressing them in terms
of annihilation and creation operators as

, (32)

where
R=A*ΛAΛ, (33)

In other words: the section of the line-bundle with the winding number K.
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so that the condition χ*χα = 1 is satisfied (without lack of generality, we choose the
unit radius r = 1 of the sphere). The operators χα are well defined on all vectors
except vacuum; we complete the definition by postulating that they annihilate the
vacuum. The operators A^ and A* (* denotes Hermitian conjugation) act in the
Fock space 3F spanned by the orthonormal vectors

where |0) is the vacuum defined by ^4ι|0) = A2\0) = 0. They satisfy in 2F the
commutation relations

[AΛ9Aβ] = [A*Λ9A*β] = 0 , [AΛ9A*β] = δΛβ . (34)

The operators R and

Rj = 2 ^*σχβ^β (35)

satisfy in J^ the u(2) algebra commutation relations

Equation (35) is the Schwinger-Jordan realization of the su(2) algebra. On the other
hand, it is just the noncommutative (quantum) version of the Hopf fibration (18).

As J^k.k G ̂ Z, we denote the linear space spanned by the normal products

%ι X2 X\ X2 (3/)

with k = \(m\ + m2 - n\ — n2) fixed. Obviously, jtf = Jfo is the noncommutative

algebra generated by R.RjJ — 1,2,3 with relations (36). The spaces J^ are j/-

bimodules. The operators Jj act in Jf^ as follows:

Jjf = [ R J 9 f ] 9 (38)

and they satisfy in J^- the su(2) algebra commutations relations.
For the following discussion, it is useful to consider (TV + 1 )-dimensional sub-

spaces
^N = {\nι9n2)9 flι+«2=TV}, TV = 0,1,2,... ,

of the Fock space 2F. The operator R takes in ^N the constant value R = TV.
The subspace 3Fχ is the representation space of the unitary irreducible spin y-
representation of the su(2) algebra in which the Casimir operator

+ ) , R±=Rι± ΐR2 , (39)

takes the value

-f(H
As J^MN we denote the space of linear mappings from 3FN to ̂ M spanned by the

monomials (37) with m\ + m2 ^ M, n\ + n2 ^ TV, m\ + m2 — n\ — n2 = M — N.
Obviously,
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Any operator Φ G JMN maps 3Fχ to J^M, and can be represented by an (M + 1)
x (N + 1 ) matrix. There is an antilinear isomorphism between J&MN and J&NM
represented as the (matrix) Hermitian conjugation. In J^MN we introduce the scalar
product

- TrN(Φ\Φ2)

#2> Φ *W, (41)

where J — \(M +TV) and TrNι denotes the trace in the space 3&N/Nf.

In particular, s^N=^NN is an (TV + I)2-dimensional algebra generated by

R(N\R^\ j = 1,2,3, where R^N\R^ denote the restriction of R and Rj in <FN.

This restriction generates the algebra homomorphism si —> si^f. We point out that
in S$N there is an additional relation

(42)

which expresses the fact that JV is the space of an irreducible representation of
su(2). To any operator Φ G s4χ we assign the integral

(43)

In [7], we proved that for N —> oo the algebras si^ approach the standard com-
mutative algebra of functions stf^ and /τv[Φ] -^/oo[Φ]. Obviously, $MN is a left
j/M-module and a right ^Af-module.

The generators of su(2) rotations Jj in J^MN are given by

jjφ = R^φ - φRW . (44)

This su(2) algebra representation is reducible and is equivalent to the direct product
of two irreducible su(2) representations:

M N
-®- = |t|Θ(|*| + l) θ.7, (45)

where k — \(M — N) and J = \(M + TV). This means that any operator Φ G $MN

can be expanded into operators Φ^m, belonging to the representations indicated in
(45):

Putting J±=J\± L/2 we obtain the highest-weight functions

(46)
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satisfying «/+ΦJ£/ — 0. Here the normalization constant Njkj with respect to the scalar
product (41) is given by the equation

,_
(47)

(we used Eqs. (26) on p. 608 and (43) on p. 618 of Ref. [14]). The other normalized
functions ΦJ

Jkm, m = 0,±l,...,±y, in the irreducible representation containing Φj^.
are given by

I \

φ rί = \ I —J{_ M Φ FJ- .

V

Now we are ready to discuss the commutative limit J —> oc, k fixed. Not only
in this limit do χ* and χ commute among themselves, also the normalization factor
Njkj approaches 1 and expression (46) becomes the standard Wigner D-function

Z)jjL expressed in terms of χα,χ* instead of Euler angles. Since [Ji,R] = 0, the same

remains true for the functions Φj^ given in (48). The normalization coefficient Njkj
is also a cut-off factor, as can be seen from (47), because Njjy = 0 for y > J. If we
vary k while keeping J fixed, then χ* and χ will cease to commute for J — \k\ —» 0,
even though J can be very large. This is in accordance with the general principle
(cf. [7]) that approaching the maximal spin J of the truncation the multiplication
becomes noncommutative.

In the noncommutative case we identify a section Φ of a complex line bundle
with fixed winding number with an element of ^MN- The corresponding field theory
action we take in the form

SMN[Φ,Φ*] = TrN -Φ*(K+K- + K-K+)Φ + F(Φ*Φ) , (49)

where in the noncommutative case the operators K± are defined by

K+Φ = zεα/^[Φ,Λ*] , K_Φ = ίεΛβ[AU9 Φ]Aβ . (50)

Note that the "topological charge" operator KQ defined as

KQΦ = -[R9Φ] (51)

takes in J^MN the constant value k = \(M — N). The order of operators in (50) is
essential because it guarantees that the operators K± act on monomials exactly in
the same way as in the commutative case.

Note. We would like to stress that for the description of topologically nontrivial
field configurations (with JCΦO), two algebras J&M and s^N (with M — TV = κφO)
are needed. This is the reason why the discussion within only one matrix algebra
(M = N} corresponds to the topologically trivial situation (see e.g. [5-8]).

If the winding number of the field Φ is not fixed, we work with fields from the
space

-2̂ 7 /T\ I//? / C O \

<™(J) — v±7 JKMN -> P^J
M+N=2J
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and the corresponding action we take as

*] = Σ WΦ,Φ*] (53)

The action (53) has the following basic properties:

1) it has the full su(2) symmetry corresponding to the rotations of S2;
2) it describes a model with a finite number of modes since, in fact, it corre-

sponds to a particular matrix model; and
3) it approaches in the limit J — > oo the commutative action (for any given

polynomial field Φ).

In general, the complex scalar field from J fς/) can be expanded as

*=Σ Σ "LΦL (54)
y=0 k,m=-j

The quantum field mean value of a functional F[Φ9 Φ*] is defined as

(DΦDΦ*e~s(Jϊ[φ'φ*]F\Φ Φ*l(F\Φ ΦΊ\ - j ^L^,<^ J

( L ' J; ~

where DΦDΦ* = Πy/bw ^akm^akm *s a ^n^te product of the standard measures in
the complex plane. The quantum mean values are well defined for any polynomial
functional F[Φ, Φ*].

Under rotations specified by the Euler angles α, /?, γ the coefficients of the field
expansion transform as

These are the unitary transformations not changing the measure DΦDΦ*. This com-
pletes the proof of rotational invariance of the model at the quantum level.

4. Spinor Fields

For construction of the topologically nontrivial spinor fields we use the superspace
approach developed in [7]. First we perform the Λf — 1 superextension of the Hopf
fibration described in the previous section. We obtain it from the mapping C2'1 —»
R3'2 given by

ίxι\
ξ=\X2\ -* (Xi,θμ), i= 1,2,3, μ = +,-,

V a )

where
xt = ξ+Σtξ , θμ = ξ+Fμξ . (56)
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Here ξ+ = (χ*,χ|,β*), and Σ± = Σ\ ± iΣ2, Σ3 and F± are 3 x 3 matrices given
by

0

The quantities χα, χ* (α = 1,2) and a, a* are respectively even and odd coordinates
of the superspace C2'1; * denotes the graded involution [15,7] characterized by the
properties

(ab)* = (-l)desfl des bb*a*9 a** = (-l)desfl a .

Note that a restriction χ*χ\ + χ2X2 + #*# = 2p implies x2 + θ+θ- = p2. Thus we
obtain the Hopf superfibration sS3 — » sS2 of the 3-supersphere in C2'1 with the
fibration basis being the two-supersphere in R3>2.

It is worth noting that Σj and Fμ are respectively even and odd generators of
the osp(2, 1 ) superalgebra:

[Σ3,F±] = ±-F± , [Σ±,F±] = 0 , [Σ±9F^] = F± ,

[F±,F±] = ±Σ± , [F+,F-] = -Σ3 (58)

Here and in what follows, the symbol [A,B] denotes a supercommutator, i.e. the
commutator AB — BA if either A or B is even, and the anticommutator AB -f BA if
both A and B are odd.

A superίunction Φ = Φ(ξ,ξ*) on sS3 is represented as a linear combination of
monomials

*Wι *Wo «ι «o # / / v /ff\\

Xι %2 Xι%2<* <* > (59)

where mα, wα are non-negative integers and μ, v = 0, 1.4 The representatives, which
are identical on the surface χ*χι + χ%X2 + ^*« = τ% correspond to the same su-
perfunction Φ on sS3. To any such monomial we assign the topological charge
2k = m\ + ni2 + μ — n\ — ti2 — v. As sJ^k, k ^ ^L, we denote the linear space
spanned by the monomials with fixed k. Any superfunction Φ G s^k can be ex-
panded as

χ* )« + 0(x, χ* )«* + F(χ, χ* )α*fl , (60)

where Φ$,F G ̂  are even and / G ̂ +ι, Q G ^_ι are odd. The space sJ fo is

a superalgebra sstf with respect to the supercommutative "point-wise" product of
parameters ξ,ζ*. The spaces sJ^k are sj/-bimodules.

4 If the monomial in (59) is odd, then it appears with an odd coefficient in the decomposition
of the superfunction Φ in the linear combination of the monomials (59). Thus the superfunction
Φ itself is an even element of the Grassmann algebra.
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The differential operators generating the osp(2,1) algebra acting on
given by

(61)

The function C(x, θ) — x2 + \(θ+θ- — Θ-Θ+) is an invariant superfunction from
sJ^Q:

JiC(x, θ) = 0 , vμC(x, 0) = 0 . (62)

The condition C(x, θ) = p2 defines the supersphere in R3'2.
In SJ^Q we can introduce a standard Berezin integral over the supersphere [7]

as

s!oo[Φ] = -fd3xdθ+dθ-δ(x2 + 0+0_ - p2) Φ(χ, θ) , (63)

where the super ^-function should be understood as

δ(x2 + θ+θ^_-p2) = δ(x2-p2) + θ+θ-δ'(x2 - p2) ,

(this formula is obtained by a Taylor expansion of the super ^-function). Expressing
θμ in terms of α, α* we obtain

^oo[Φ] - ̂ Jd3xda*da[δ(x2 - p2) + pa*aδ'tf - p2)] Φ(jc,α) , (64)

where one can now expand Φ directly as in (60). Much as before, we can introduce
the inner product in

=^/oo[ΦίΦi], (65)

where (cf. (60))

The spinor field Ψ we identify with the odd part of the superfield Φ:

> + ^teχ*X, (66)
where / and g are also odd (cf. footnote 4). As <%, k G ̂ Z we denote the set of
spinor fields from sJ4fk, i.e. with / G #?k+\ and g € ^k_\\ ^k are ^-bimodules

(but not sj/-(bi)modules). The formula (66) induces the decomposition of the
spinor space:

^k~} > (67)

where « 9 + corresponds to the first term in (66), and ^"^ to the second one.
The chirality grading operator Γ we define as the operator taking in £/*jf* the value

*)a-g(M*)a*. (68)

The operator Γ can be realized as the differential operator

(ada-a*da*}Ψ . (69)
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We define the free Dirac operator D as the following mapping from «% to «%:

(K-f)a*. (70)

It can be expressed as the second-order (in even and odd parameters) differential
operator

DΨ = (ada*K-+a*daK+)Ψ . (71)

The Dirac operator anticommutes with the chirality operator:

DΓ + ΓD = 0. (72)

The action for spinor field we define in terms of the Berezin integral

S[ψ, ψ*] = slao^DΨ + W(Ψ*9 Ψ)] , (73)

where W(Ψ*,Ψ) is a suitable potential describing the self-interaction of the spinor
field.

Note. We would like to stress that the formalism for the spinor field presented
above is equivalent to the usual one described in Sect. 2, but it is better suited for
the non-commutative generalization.

In the noncommutative case, we replace χα, χ*, and a, α* by bosonic and
fermionic annihilation and creation operators

Λ _ A D-l/2 -* _
~" ~

a = ωr 1/2 , a* = R~l/2b* , (74)

where now

R = AlA« + b*b, (75)

so that the condition χ*χα + a* a = 1 is satisfied (this corresponds to the radius
of the two-sphere p = 1/2). The operators Aa,A*,b,b* act in the Fock space s^
spanned by the orthonormal vectors

where «ι,«2 are non-negative integers, v = 0, 1 and |0) is the vacuum defined by
A\\Q) = A2\0) = b\0) = O.5 The annihilation and creation operators in question sat-
isfy in s^ the supercommutation relations

[Aa,b] = [A*Λ,b\ = [Aa,b*] = [A',,b*] = 0 ,

Z>2 = (6*)2 = 0, [b,b*] = l. (76)

5 Note that * still denotes the graded involution. This means that b* is the adjoint operator
of b in the standard fermionic Fock space, but b** = —b.



Topologically Nontrivial Field Configurations in Noncommutative Geometry 521

The operators

V+ = -(-Aΐb - b*A2) , V- = -(-^ + £*Λι), (77)
V2 γ2

then satisfy in the Fock space s3F the as/? (2, 1) superalgebra commutation relations
(58) (with an obvious change in the notation).

As s$k we denote the linear space of superfields (60) with Φ0, F G Jf^

/ £ ^jt+i an(* # G ^t-i Obviously, sjtf — SJ&Q is a superalgebra, and sJ-f^ are

s^-bimodules. The subalgebra jtf is naturally embedded into ssf (as the set of
Φ0's in the decomposition (60) for k — 0). The generators Jj and i^μ of osp(2, 1)

act in the space s3&k by means of the superadjoint action (cf. [7])

JjΦ = [RJ9Φ]9 TμΦ = [ V μ , Φ } . (78)

Obviously, this is a reducible representation of the superalgebra osp (2, 1) in
The spinor field Ψ we identify with the odd part of the superfield Φ:

As :̂, A: e ^Z we denote the set of spinor fields from sJ^k, i.e. with / e ̂ +ι

and g G ̂ _ι ^c are ja/-bimodules (but not ,sj/-(bi)nιodules).

Formula (79) induces the decomposition of the spinor space:

(80)

Λ / _ \

nd &k to the second one
grading Γ we define in the same way as in (68):

/ ι Λ Λ / _ \

where ̂  corresponds to the first term in (79), and &k to the second one. The

χ)ά - flf(f,χ)ώ*. (81)

It can also be written as
ΓΨ = - [b*b, Ψ] . (82)

Thus the grading is directly related to the fermion number and it takes, in &k ,
the value μ = ±1.

The free Dirac operator D we define as in (70):

DΨ = (K+g)ά + (K-f)ά*9 (83)

where K± were defined in (50). The Dirac operator maps ̂  into ̂  and it anti-
commutes with the chirality grading operator:

DΓ + ΓD = Q . (84)

As s^N we denote the subspace

es&tΠi +n2 + v = N} , (85)
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in which the operator R takes the value R = N. Obviously, S^N is a (27V-h 1)-
dimensional superspace

i , (86)

where s3F$ is the subspace with Nf bosons and v fermions, sJ^0) is the even

subspace of s J^y, and s^\ is the odd one. The space s<FN is the representation
space of the irreducible representation of the superalgebra osp (2, 1 ) (generated by
RJ, Vμ given above) in which the Casimir operator

C = R2

3 + ~(R+R- + *_*+)+ i(F+F_ - F_F+) (87)

takes the value

C=^N(N+l). (88)

As SJMN we denote the space of linear mappings from s^N to s^M spanned
by the operator monomials

with m\ + πi2 4- μ ^ M, n\ + n-i + v ̂  AT and m\ + rri2 -}- μ — n\ — n^ — v = M — TV.
Any operator Φ G ̂  JfW can be represented by a (27V + 1 ) x (2M -f- 1 ) supermatrix.
In SJ^MN we introduce an inner product

(89)

where J = ^(M +7V) and sTr^ denotes the supertrace in the space sJm As in

the purely bosonic case, the action of su(2) generators Jι on S$MN is given by the
formula (44) with Rt given by (77).

As &MN we denote the space of spinor fields from

where / e $M,N-\ and gf € $M-\,N This gives the decomposition

where &MN contains spinor fields with the chirality μ = ±l. The operators K±,

entering the Dirac operator D (83), act in &MN\ moreover, KQ takes in &MN the

constant value \(M — N + μ). The spinor field operators from ^MΛ^ are odd map-
pings sJV — > S&'M, namely:

J N M "> y ' JV M \-*^)

According to (45), / and g can be expanded into operator functions belonging to
the representations:

AT __ 1 1 / 1 \

, f o r / ,

f o r g f , (91)

M

2

M - 1

2

T V - 1

2

TV
/CΛ

~ 2

1
+ 2

1

* 2

Θ /TN 1 Γ

" I 2

f r l\Θ ΓΓ\ I f 1
\U 1 *̂  — 1
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where k = ^(M — N) and J = \(M + N). This means that / can be expanded

into the functions ΦJj_\ , \ with j = \k + ^\9...9J — \, m\ ^7, and, in the

same way, g into the functions ΦJ

 γ l with j = \k — ̂ |,...,J — ̂ , \m\ ̂  j

(cf. (48)). The admissible values of j are:

J=\k\~\> \k\ + ̂ ...,J-\.

They can be seen from the representation content in Eqs. (91):

(i) The first value j = \k\ — \ is admissible only for fcφO, and for k > 0 it is
present in g (chirality —1), whereas for k < 0 it is present in / (chirality +1). It
corresponds to the \M — N\ (normalized) zero modes of the Dirac operator given
by

mO+ V OT1 W2 ^βmi^p ^ {oτ k= (mι + W2 + !) > 0 ^

(92)

Note that the normalization does not depend on the cut-off spin J; therefore the
correct commutative limit is obvious.

(ii) The remaining eigenvalues j =\k\ + ^,...,J — \, correspond to non-zero

modes of the Dirac operator. Consider (normalized) functions ΦJ

Jkm with a given
chirality μ = ±1 given by

φi» = *ί-μ-i..β"* ' < = ^-μ+i^ ' (93)

where Φjk/m were defined in (46) and (48). Using the definition of the Dirac oper-
ator (83) and the formula6

κ±ΦJ

Jlm = v / ( y ± / + i)(yτ/)φl / ± 1 > m , (94)

we obtain the equation

where

E"j = J(j + ̂ J -k2. (96)

Thus the functions

L (97)

are (normalized) eigenfunctions of the Dirac operator with the eigenvalues

6 Formula (94) follows from the properties of the Wigner functions (cf. the discussion after

(48)) because K± act on the second subscript of Φjlm in exactly the same way as J± act on the

third subscript.
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Note. We would like to stress that in the standard commutative case exactly the
same formula is obtained for the spectrum, except for the fact that the admissible
values of j are not truncated. As the number of degrees of freedom is finite, this
will lead to a non-perturbative UV-regularization (for a real scalar field this was
demonstrated in [6]).

The action for the self-interacting (Dirac) spinor field Ψ E &MN with a fixed
winding number we define as follows:

SMN[Ψ*> Ψ] = sTrN[Ψ*DΨ + W(Ψ*9 Ψ)] , (98)

where Ψ = fa + ga*9 Ψ* — ag* — a*f*, and W( , ) is an interaction term. We
do not wish to fix the winding number of the field Ψ\ instead we take Ψ from the
space

«?(./)= Θ &MN, (99)
M+N=2J

and we define the corresponding action as

s(J)[Ψ*,Ψ]= Σ sMN[ψ\ψ}. (loo)
M+N=2J

This action has the following basic properties:

1) It is invariant with respect to the space isometrics, i.e. the rotations of the
sphere, and the chiral transformations

provided that the interaction term is rotationally and chirally invariant.
2) It describes the system with a finite number of degrees of freedom.
3) It approaches for J — » oo the commutative action.

Note. The rotational invariance of the action SMN follows from the rotational invari-
ance of the truncated Dirac operator. The chiral invariance of the action is obvious,
because the Dirac operator D anticommutes with the grading Γ (cf. (84)).

The spinor field Ψ E &MN can ^e expanded as

JΣ Σ

where the first sum corresponds to the zero modes (92) and the remaining two
sums are related to the non-zero modes (96). All expansion coefficients a" in
(102) are supposed to be independent anticommuting Grassmannian variables. In the
same way, the field Ψ* E &NM is supposed to have an expansion with independent
Grassmann coefficients a*-.

The quantum field mean value of a functional F[Ψ, Ψ""] is given as

( y φ )
( l ' "MN

where J[DΨ]MN[DΨ*]NM - denotes the finite-dimensional Berezin integral over all
admissible coefficients a" and α*" with fixed k = ^(M — N) and J = |(M -f N).
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Taking into account that Φj^ and the zero modes for k > 0 correspond to

g, and similarly Φj^ and the zero modes for k < 0 correspond to /, the chiral
transformations (101) can be written as

"«£ , (104)

where ε(k) is the sign function. We see that the phase contributions to the measure
[DΨ]MN from the non-zero modes cancel. As expected, the only contribution comes
from \κ\ zero modes (K = M — N):

[DΨ]MN -+ e-ίκ« [DΨ]MN .

Analogous rules are valid for expansion coefficients of the field Ψ*. The phase fac-
tors from non-zero modes cancel, and there is just the same phase contribution from
zero modes (since the conjugation and the change M — N — > N — M compensate
each other in the phase factors):

[DΨ*]™ -> e~iKΛ [DΨ*]NM .

Thus, the total change of the measure [DΨ]MN[DΨ*]NM is

[DΨ]MN[DΨ*]NM -> e-2iκ«[DΨ]MN[DΨ*]NM . (105)

We see that assuming fixed kή=Q, the chiral symmetry is violated on quantum
level. However, simultaneously taking into account fields with given k and —k,
as e.g. in &(j)9 the chiral symmetry is restored. Thus, the measure DΨDΨ* —

entering the quantum mean value over

, ψ*]' J

is invariant under chiral transformations (101) or (104), since DΨDΨ* — » DΨDΨ*

5. Summary and Outlook

In treating the topologically nontrivial complex scalar field configurations in the non-
commutative case, our main tool was the noncommutative version of the Hopf fibra-
tion encoded in the noncommuting parameters χα, χ*, α = 1,2. Any field configura-

tion with the topological winding number K was expanded into the functions Φj^,

k = \(M — TV), m ^ j — \ k \ 9 . . . , \(M + TV), where Φ]

Jkm are noncommutative ana-

logues of the standard D-functions D^. Thus we gave an algebraic characterization
of the winding number K = 2k, which is directly related to the index k of the
D-functions in question. On the matrix level this leads to the (M + 1) x (TV + 1 )-
matrix representation of fields from the space J^MN The usual matrix geometry
models correspond to M — TV, and this is the reason why they describe the topo-
logically trivial configurations only.

The same procedure applied for the treatment of the topologically nontrivial
spinor field configurations, too. Moreover, here the natural supersymmetry of the
problem, introduced in [7], was essential; we described the topologically nontrivial
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spinors on S2 as the odd sections of nontrivial super-line bundles on the supersphere
sS2. For this purpose we used the noncommutative Hopf superfibration in terms of
even noncommutative parameters χα, χ*, α — 1,2, to which we added a pair a, a*

of odd noncommutative parameters. We identified the spinor bundle &MN as the
smallest space that is invariant under action of the Dirac operator D. The bundle

&MN is spanned by \M — N\ zero modes of D and by the functions ΦJ

τ } λ a*,
J — j , K— 7y, m

ΦJ , , a corresponding to the non-zero modes of D.
J-^,k+^,m r σ

The models (98) and (100) are rotationally invariant and contain only a finite
number of degrees of freedom on both classical and quantum levels. This truncation
of the modes has the consequence that their quantum version is UV-regular (there
are only finite sums instead of singular integrals and/or infinite series). A detailed
discussion of these aspects in the case of a real scalar field can be found in [6].

The supersymmetry approach proposed in [7] proved to be useful in describ-
ing the chiral properties of spinors. Our spinor-field models have chirally invariant
actions; however, the field functional measure [DΨ,DΨ*]MN is not invariant for a
fixed M — N =(= 0 and, under chiral transformations, it is modified due to the zero
modes by the factor eiκcί. Only when the fields with given K and —K are treated
simultaneously the chiral invariance is recovered. Thus the chiral properties of the
theory are the same as those in the standard untruncated case.

It would be desirable to include the gauge fields into our approach. Even more
desirable and important is to extend our scheme to the four-dimensional (super)
sphere S4. We hope to attack these problems in a near future.
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