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Abstract: We consider the equations of a viscous polytropic ideal gas in the domain
exterior to a ball in IR” (n =2 or 3) and prove the global existence of spherically
symmetric smooth solutions for (large) initial data with spherical symmetry. The
large-time behavior of the solutions is also discussed. To prove the existence we
first study an approximate problem in a bounded annular domain and then obtain
a priori estimates independent of the boundedness of the annular domain. Letting
the diameter of the annular domain tend to infinity, we get a global spherically
symmetric solution as the limit.

1. Introduction

The motion of a viscous polytropic ideal gas in R” (n =2 or 3) is described by
the following equations in Eulerian coordinates (cf. [4,25])

ap
Ot

p [% +(v- V)V] = pAv + (A + p)V(divv) — RV(p0),

+div(pv) =0,

00
cyp [73; +(v- V)H} = KQA0 — RpO(divv) + A(divv)? +2uD - D . (L.1)
Here p, 0, and v= (vy,...,v,) are the density, the absolute temperature and the

velocity respectively, R, ¢, and K, are positive constants; A and y are the constant
viscosity coefficients, u > 0, 1 +2u/n = 0; D = D(v) is the deformation tensor,

1 /0v;, Ov; n
Dy==—+ d D-D:= D2 .
4= (axj + 6x,~> an ,.,jzzl i
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Let Q:={x € R" | |x| > a} (a > 0) denote the domain exterior to a ball in
R” (n =2 or 3). We shall consider the initial boundary value problem of (1.1) in
the region {¢t > 0, x € Q} with the following initial and boundary conditions

p(x,0) = p°(x),  ¥(x0)=V'(x), 0(x0)=0%x), xeQ, (1.2)

00
V]se =0, —| =0, t=0, 1.3
o0 o (13)
where v denotes the exterior normal vector.

The global existence of smooth solutions to initial boundary value problems and
the Cauchy problem of (1.1) has been investigated by many authors. In one dimen-
sion, it is well known that global smooth solutions exist for smooth (large) initial
data (e.g. see [14,3,20,21,22] for initial boundary value problems, [13, 3,11] for the
Cauchy problem; also cf. [12,7-10] for real gases). In more than one dimension the
global existence of smooth solutions has been investigated for general domains only
in the case of sufficiently small initial data (e.g. see [18, 19,27] for initial boundary
value problems, [16,17] for the Cauchy problem; also see the survey article [26]).

For large initial data the global existence of solutions to (1.1) has been studied in
the case of a bounded annular domain. Nikolaev [23] in 1983 considered the initial
boundary value problem of (1.1) with vanishing velocity and constant temperature
on the boundary and proved that for (smooth) spherically symmetric initial data a
(smooth) spherically symmetric solution exists globally in time if the initial density
and temperature are strictly positive. Recently, Yashima and Benabidallah [28,29]
dealt with the case of non-negative initial density and temperature. They showed
the global existence of spherically symmetric solutions to (1.1). The boundedness
of the domain is essential in [23,28,29].

In this paper we prove the global existence of smooth spherically symmetric
solutions to (1.1)—(1.3) in the exterior domain Q2 and study the large-time behavior
of the solutions.

The paper is organized as follows: In Sect. 2 we derive the spherically symmetric
form of (1.1) and present the main result. In Sect.3 we consider an approximate
problem and prove uniform a priori estimates. The proof of the main result is
given in Sect. 4. Finally, the large-time behavior of the solutions is investigated in
Sect. 5.

Notation. Let o € (0,1) and by, b, € R with by < by. C*[by, b;] denotes the Banach
space of functions on [b1, ;] which are uniformly Holder continuous with exponent
o and C*>*%2(Gy) for the Banach space of functions on Gr := [b;, b,] x [0, T] which
are uniformly Holder continuous with exponents o in x and /2 in ¢, and || + {|c2(5,,5,]
and | - ||z, 2/2(Gy) are their norms, respectively. We define (see [6, 15])

Cm+°‘[blyb2] = {f € C’”[bl,bZ] Z() [ll;na})x] Ié,{fl + H@;”f”ca[bl,bz] < o0 } .
Jj=! 1,02

CHe+2(Gry = {g | g.g» € C***(Gr)},

CI2(Gr) == {g | 9,9x: 91, gxx € C***(G1)} .
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Denote Qr := (0,00) X (0,7) and Q% := (0,k) x (0,T) (k € N). We use
Ciog “[0,00) := { f € C"**[¢,d]|V [¢,d] C [0,00)},

Cioa ™" 4(Qr) = {g € C"H (e, d] X [0,T]) |V [e,d] C [0,00)},

loc
m=20,1,2.

Let m = 0 be an non-negative integer and let | < p < co. By W™P(by,b;) we
denote the usual Sobolev space defined over (by,b,) with norm || « ||mes,,5,) (se€
[1]); W™2(b1,by) = H™(by1,by) with norm | - [|me, ), WOP(b1,by) = LP(by,b2)
with norm ||« ||zr(s,,s,). For simplicity we also use the following abbreviations:

LP =LP(0,00), H™ =H™(0,00); | llzr =+ lzr0.00) I * llerm = || * [l11m(0,00) -

(+,-) and | -| stand for the inner product and the norm in L?(0,00) respec-
tively, and (-, -)o, for the inner product in L*(Qr). LP(I,B) resp. || - ||Lru.s)
denotes the space of all strongly measurable, p"-power integrable (essentially
bounded if p=o00) from I to B resp. its norm, / C IR an interval, B a Ba-
nach space. For a vector valued function f = (f1,...,fn) and a normed space
X with the norm ||| - |||, f € X means that each component of f is in X; we put
LA == A A - A Ll

The same letter C will denote various positive constants which do not depend
on k, but possibly on 7.

2. Spherically Symmetric Form and the Main Result

We first derive the spherically symmetric form of (1.1). Spherically symmetric
solutions to (1.1) have the form

u,-(x,t)=)§v(r,z), i=1,...,n,  pxt)=prt), Oxt) =001, (1)

where x = (x1,...,%,) € R”, r := |x|. Assuming that p°(x) = po(r), ¥°(x) = xvo(r)/
r, 0%(x) = 0o(r), and denoting B := A + 2, we thus reduce the system (1.1)—(1.3)
to the following equations for p(r,t), v(r,¢) and 6(r,t) of the form:

(n=1)
—

0p + 0r(pv) + pv=0,

p (0,0 + v0,v) = ﬁ<6,20+ (n; 1)(7‘,1)— (nr—z l)v) — R0, (pv), re€(a,0),t>0,

¢, p (2,0 +v0,60) = 1020 + 16, - D50 Rpo (a,u + - 1)0)

+/1(a,u+@v> +2u(d,v) +2ﬂ( Dy (2.2)
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with the initial and boundary conditions
p(r,0) = po(r), v(r,0) = vo(r), 0(r,0) = bo(r), r € [a,00),
v(a,t) =0, 0,(a,t)=0, t=0. (2.3)

To investigate the global existence it is convenient to transform the system (2.2)
to that in Lagrangian coordinates. The Eulerian coordinates (7,¢) are connected to
the Lagrangian coordinates (£,¢) by the relation

e = (@ + [ G, (24)

where 7(&,t) := v(r(&,t),t) and
P@ =@ )= [ s relaso).  @9)
Note that if po(s) > 0 for any s € [a,00) (which is assumed in Theorem 2.1 later),

then # as a function of r € [a,00) is invertible. Using Eq. (2.2);, (2.4) and the
boundary condition v(a,?) = 0, we obtain

r(&,1)

0, [ s" 'p(s,t)ds =0, (2.6)
a
which, by integrating with respect to ¢, turns into
(& ) ro(&) .
J s"7lp(s,t)ds = [ " po(s)ds = n(re(&)) = &. (2.7)
a a

Thus, we have under the assumption p(s,t) > 0 for any s € [a,00) and ¢ = 0
(which is a posteriori justified by (4.9) in Sect.4) that r = a iff £ =0, r — oo iff
¢ — 00, and

or(é,t)

i U G GOT (238)

For a function ¢(r,t) we write @(&,t):= o(r(&,t),t). By virtue of (2.4)
and (2.8),

at(ﬁ(é: t) = af(p(ra t) + var‘P(rat) 5

0 P&, 1) = 0rp(r, 1)0er(&, 1) = 0ro(r,1) - (2.9)

1
r=lp(r,t)
Without danger of confusion we denote (5,7,0) still by (p,v,0) and (&,¢) by
(x,t). We use u:=1/p to denote the specific volume. Therefore, by virtue of
(2.8)-(2.9), Egs. (2.2)—(2.3) in the new variables (x,¢) read

ut — (rn—lv)x S (2.10)
n—1
b = = [ﬁ(rTv)"_RgJ , x€(0,00),¢t>0, (2.11)
r2n—20x 1 1 n—1 n—2,2
ey 0 =ty | = |+ ZIBC" o) = RON™ ) = 2u(n = (") (212)
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with the initial and boundary conditions
u(x,0) = up(x), v(x,0) = vo(x), 0(x,0) = Op(x), x€[0,00), (2.13)
v(0,¢) =0, 0,(0,t) =0, ¢t =0, (2.14)

where ug := 1/pg, f = A+ 2u, and by virtue of (2.4)—(2.5), r = r(x,¢t) is deter-
mined by

t
r(x,t) = ro(x) + [v(x,7)dr, x€[0,L], t =20,
0

x 1/n
ro(x) = {a” + nfuo(y)dy} ) (2.15)
0

As mentioned in the introduction our aim is to prove a global existence theorem
for (2.10)—(2.14). For this purpose we assume that

ug — 1, vo, 0o — 1, 7y~ du, i 0o, 1T 0:00 € L2 (2.16)

Before stating the main result we introduce the following definition:

Definition. {u,v,0} is called a (global) generalized solution of (2.10)—(2.15), if
for every T > 0,

u—1,v,0—-1¢eL>(0,T,H"), u, €L>(0,T],L*),
Uty Ops Uty Vsxy Oxxy 77710k, 7200 € LX(Or) s (2.17)

and {u,v, 0} satisfies (2.10)—(2.15) almost everywhere in Qr = (0,00) x (0,T) and
takes on the given boundary and initial conditions in the sense of traces.

It should be noted that r(x,¢) = a, (x,t) € QT (cf. (3.19) in Sect.3), and if
{u,v,0} is a generalized solution, then u,v,0 € C%([0,00) x [0, T]) (see the proof
of (4.8) in Sect. 4). The main result of the paper reads:

Theorem 2.1. Assume that (2.16) is satisfied and uy(x), Op(x) > 0 for x € [0,00).
Let the initial data be compatible with the boundary conditions (2.14). Then the
groblem (2.10)—(2.15) has a unique generalized solution {u,v,0} with u,0 > 0 on
Q7. If in addition

uy € CLT[0,00), vy, Oy — 1 € C2*(0,00) for some o € (0,1),

loc loc
8200 )exs 7" 2(00)xx € L*(0,00), (2.18)

then
" u € C1+ot,(1+oc)/2(QT), b, 0 € C2+oz,1+a/2(QT). (2.19)

loc loc

The proof of Theorem 2.1 is essentially based on a careful examination of
a priori estimates and a limit procedure. Since the domain is unbounded and the
coeflicients tend to infinity as x — oo, some difficulties arise; for example, from the
a priori estimates we could get only v(x,1) = o(x~/2+1/@MY as x — oco; but this is
not sufficient to guarantee integration by parts in the proof where v = o(x~1T1/")
is required. To overcome such difficulties we first study an approximate problem
in the bounded interval (0,%) and show the a priori estimates independent of £ by
utilizing some cut-off function and modifying a technique of Kazhikhov [13,3] for
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the one-dimensional case, then letting & tend to infinity and using the obtained a
priori estimates, we get a global spherically symmetric solution as the limit.

Remark 2.2. The same techniques work and an analogous theorem is obtained when
(1.3) is replaced by the following boundary conditions:

3. A Priori Estimates for the Approximate Problem

As mentioned in the introduction, to show Theorem 2.1 we first consider an appro-
ximate problem in (0,k) (kK € N) to (2.10)—(2.15), and prove the uniform a priori
estimates for solutions of the approximate problem, then we let £ go to infinity to
get the existence.

We start with the construction of the approximate initial data {u?,1?,69}. For
k€N let ¢ be a C3-function on IR such that ¢(x) =1 for x € [0,k/2] and
¢r(x) =0 for x = k, and

0<de(x) <1, [¢P(x) < CK, i=1,23
for all x € [0,00) and k € N, (3.1)
where C is a positive constant independent of k. We define
() = (uo(x) = D) + 1, v{(x) = v0(x)pe(x) ,
09(x) := (Bo(x) — D)u(x) + 1, x €[0,00). (32)

We consider the following approximate problem to (2.10)—(2.15) in the bounded
interval (0,%):

O = (rf "ve)x (3.3)

n—1 0
Qg = 1! {ﬁ—(r" uk”")" - R;’i : (34)

r2"=2( 1
¢y 00k = 1, ["—(—’i 1B ) — RO v
Uy Uy
P

—2u(n — ) 20d)., x € (0,k), t > 0, (3.5)

with the initial and boundary conditions
w(x,0) = ud(x), ve(x,0) = 02(x), Op(x,0)=0%x), xe[0,k], (3.6)
0e(0,8) = vg(k,t) = 0,  0,04(0,8) = 0,0k (k1) =0, =0, (3.7)

where k£ € N, and
t
(1) =) + [u(xt)dr, x€[0,k], t 20,
0

x 1/n
(x) = {a” +nof ug(y)dy} ) (3.8)
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From the definition of {u?,v?,0%} it is easy to see that the initial data uf, Y,
0,‘3 are compatible with the boundary conditions (3.7) as ug, vy, 6y do, and under
the conditions of Theorem 2.1 we have

' = ux),  0(x)<co, |Rx)| S Vxe[0K], kKEN  (3.9)
for some positive constant ¢y independent of k. Moreover, one has
Lemma 3.1. Under the conditions of Theorem 2.1 we have
{us 0, 00, ()" 0y, (r))" 00, ()" 0,60}
— {uo, 0, Ho,r(;'_laxuo,r(;’_laxvo,ro”_l(?ﬂo} in L*(0,00) as k — oo .

(3.10)
If in addition (2.18) holds, then

(D200, ()2 200 — {2 o, 12 200)
in L*(0,00) as k — oo . (3.11)

Proof. In view of (2.16) we easily see that ||(u) — ug,v) — vo,6% — 0)|| — 0 as

k — oco. From (3.9) and the definition of 7o and 7{ one gets
CT'(1+x"my < ro(x), r{(x) < C(1+x")
for all x € [0,00) and k € N, (3.12)
which together with (3.1) and Cauchy—Schwarz’s inequality implies
D" Pellzee < C™ Yk 21,

D" = ra = rg ™ e £ CIIEY)" — r2lrg ™| 2oo

< Csup |ry" ') [ (1 — ¢ )1 — up)dy| < C sup x " [ |1 — wy|dy
x=0 0 x2k/2 k/2

é C“l - uO”Lz(k/Z,OO) —0 ask—o00. (3.13)
Hence from (3.12)—(3.13) and (2.16), it follows that

IO @) — 78 o]l < 11" vl + I e — 78~ 1(wo x|
< CE7lwo|| 4+ 1"~ (r — D(wo)]| + NI — 75 (w0 x|
= C{k_l/n + ”r(;l—l(%)xﬂﬁ(k/z,oo) + Il - ”6'—1]?0""+IHL°°}

—0 ask— 0.

The rest of (3.10) as well as (3.11) can be shown in the same manner. The proof
is complete. O

By virtue of the well-known global existence theorem for the problem (3.3)-
(3.8) (in bounded domains), (3.9) and Lemma 3.1 imply (see [23,28,29]).
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Lemma 3.2. Under the conditions of Theorem 2.1 there exists a unique solution
{ug, vk, O} with positive uy, 0y to (3.3)—(3.8) on [0,k] X [0,00) such that for every
T>0,

U, 0y, O € L([0, T], H'(0,k)),

@ )e> (W es Ok )es (i xts (Vi s Ok )xx € LA(OF) (3.14)

where Qf = (0,k) x (0,T). If in addition (2.18) holds, and ug, vy, 0y are compat-
ible with the boundary conditions (2.14), then

wp () € CHOF0R2GEY 0, € CIra(OFy (3.15)

In this section we show that the global solution {uy,vg, 0k} of (3.3)—(3.8) can
be uniformly bounded with respect to &, exploiting some relations associated with
the second law of thermodynamics and using the (weighted) energy method. The
main result of this section reads:

Theorem 3.3. Let the conditions of Theorem 2.1 be satisfied. Then we have for
every T > 0,

”(uk — Lok, Ok — 1)HL°°([0, T1,H1(0,k)) + ”(uk)t||L°°([0,T],L2(0,k))
+ ”((vk)t’(Hk)ts(uk)xt,(Uk)xxa(ek)xx)”LZ(Q}C) =C VieNlN. (3.16)

If in addition (2.18) holds, then

(€W Dzs O s (W st (WD Ok D | oo 0, 77, 220,
+ (@) (0 )ets O )eo)| 2oty = € VK EN. (3.17)

The proof of Theorem 3.3 is broken up into a sequence of lemmas. For sim-
plicity we will generally suppress the subscript k (and denote (uy,vi,0r,7y) by
(u,v,0,r)) in the calculations of this section that follow. We start with the follow-
ing identities:

r(x, 1) = v(x,1), PPN O, 1) = u(x,t), x€[0,k], t =0, (3.18)

which can easily be verified. In fact, by virtue of (3.3) and (3.8), r:(x,¢) = v(x,t)
and (r°)"~1(#°), = u°. So we get from (3.3) that

[P, £)re(x, ) — u(x, )], = (n — Dr" Lo + 7" o — (7" 10), =0,

which yields (3.18).

It follows from (3.18) and (3.7)—(3.8) that 7,(0,¢) = a'~"u(0,¢) > 0 for t = 0.
If r.(x,2) > 0 is violated on [0, k] X [0, 00), then there are y € (0,k] and 7 € [0, 0)
such that r,(x,¢) > 0 for 0 < x < y,0 = ¢ < 1, but r(y,7) = 0. So by continuity,
re(x,t) = 0 for x € [0,y] and ¢ € [0,7], and we have r(y,7) = r(0,7) =a > 0.
From (3.18) we get 0 = r(y,7) = ¥ "(y,7)u(y,t) > 0, which is a contradiction.
This shows r,(x,¢) > 0 for x € [0,k], ¢ = 0. Therefore

r(x,t) 2 r0,t)=a >0 forxe[0,k],t=0. (3.19)

The following lemma is motivated by the second law of thermodynamics and em-
bodies the dissipative effects of viscosity and thermal diffusion.
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Lemma 3.4. There is a positive constant ey, independent of k and t, such that

n 2 n
fU(xt)dx+ff[ 2—029 (l'l‘ )g%:l ddeée(),

Vt20,keN, (3.20)
where
U(x,t) := {v*/2 4+ R(u — logu — 1) + ¢, (0 — log 6 — 1)} (x,1) . (3.21)

Proof. Using (3.3)—(3.5), we obtain after a straightforward calculation that

+ gt oot = [t (S to - 82) | rorio,

1 2n—20x 1 B
+5, [(1—5>’ - ]x—zy(n—l)(1—5)(r" 22y, .

If we integrate the above identity over [0,k] x [0,¢] (+ = 0) and use the boundary
conditions (3.7), we obtain

Ui+

k t k =1y ) t k 7‘2" -202
J UG, t)dx + ff J‘abcafs—l-ngf —dxds
0 00 00
k (rn 202)x
= [ Ux,0)dx + 2u(n — l)ff——e—dxds, (20, (322)
0

Recalling nd +2u = 0, we make use of (3.18) to deduce

Brrog = 2un = 2oy = (14 2)

u
L2 =1) [ Y]

u N r
By virtue of Taylor’s theorem and (3.9)—(3.10), fok Ux,0)dx < C(1 + ||(uo —
1,v0,00 — 1)||*) (Vk = 1); so substituting (3.23) into (3.22), we obtain (3.20).
The proof is complete. [

[

(323)

From Lemma 3.4 we see that

i+l

f (u—logu — 1)(x,t)dx,

i+
f (0 —log0 — 1)(x,t)dx < eo/min{R,c,}, i=0,....,k—1. (3.24)

Hence by terms of the mean value theorem, for each ¢ = 0 there are points
a;i(t),bi(t) € [i,i +1] (i=0,...,k — 1) such that

0< 041 é u(ai(t)at), g(bi(t)at) é oz, ; Oa i= 07"'9k_ la (325)
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where a1, ap are two (positive) roots of the equation y —log y — 1 = e/ min{R,c, }.
Moreover, if we utilize (3.24) and apply Jensen’s inequality to the convex function
y —logy — 1, we obtain:
i+1 i+1
J u(x,t)dx —log [ u(x,t)dx—1,
i

1

i+ i+
J 0(x,t)dx —log [ O(x,t)dx — 1 < ep/ min{R,c,},

which gives o) < fj“ u(x, t) dx, ff“ O(x,t)dx < o for i =0,...,k — 1. In view
of (3.25), we thus have proved
Lemma 3.5.
it1 it
w £ [ u(x,t)dx, JO0x,0)dx <0y t20,i=0,....,k—1, (3.26)
i i

and for each t = 0 there are points a;(t),b;(¢t) € [i,i+ 1] (i=0,...,k — 1) such
that
o é u(ai(t)’t)5 H(bl(t)yt) é o, I g Oa i = 05"-,k -1 > (3'27)

where a1, ap are two (positive) roots of the equation y —log y — 1= ep/min{R,c, }
and the constant ey is the same as in Lemma 3.4.

Our next object is to derive pointwise bounds on the specific volume u.
We have

Lemma 3.6. There are positive constants u and u, independent of k, such that
u = u(x,t) =u for any x € [0,k], t €[0,T]. (3.28)

Proof. Using (3.3)—(3.4), we rewrite (3.4) as follows:

%r—"“vt + % EJ = [logul,,- (3-29)

Integrating (3.29) over [0, ¢] with respect to ¢, then over [a;(¢),x] with respect to x
forxe[i,i+1]1 (0 £i £ k—1), we obtain

R 1 0(x,s) u®(a;(1))

= —1 - _ .

5l u(x,s)ds ogu(x,t) = log D) log u(a;(¢),t)
R 1 0(ai(t),s) 1 x L
— [/ — = " odyds ,
5l wat), ) ﬁai{)of “

which, when the exponentials are taken, turns into
1 R 1 0(x,s) _ 1
D exp { 5 of u_(rs)ds} = u(ai(t),t)Y'(t)B'(x’t)’ telfo,7],

x€[ii+1,0<i<k-—1, (3.30)
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where (noting u,6 > 0)

R £ 0(ai(t),s)
Yi(t) = exp{ of e (t)’s)ds} >1, (3.31)
Of,. x t
Bi(x,t) := uzf:(l)(c;)) exp {—%a(ft) Ofr_”lv,dyds} =>0. (3.32)

Multiplying (3.30) by RO/S and integrating over [0,¢] (¢ € [0,T]) in the variable ¢,
we arrive at

R % 0(x,s) R L 6O(x,s)
n Y; i\Ay . .
e"p{ﬂ{u(md} 5] o) FOB)ds (333

Inserting (3.33) into (3.30) and utilizing (3.27), one gets for ¢ € [0, T], x € [i,i + 1],
i=0,...,k—1,

(e, Y (1B, 1) = u(a,(n,t)( ’; t 9(’(‘ ;) )Y(s)Bi(x,s)ds)
o0 ula;
<C (1 +ft0(x,s)Yi(s)B,-(x,s)ds) . (3.34)
0

If we integrate by parts with respect to ¢, use (3.18)—(3.19), Cauchy—Schwarz’s
inequality, and (3.20), (3.10), we infer

x t
[ [r " vdyds| =
a,(t) 0

X t
—"+‘u)dyds+(n—1) [ [r"v*dyds
a,-(t)O

J
a;(t)

o%h‘
&.l&

X X t
J )10y J fr_”vzdyds

ai(t)

[ rudy| + +(m-1)

a, (1)

1

i+1 t i+
<cC {f Py, t)dy + f(v P (»)dy + off
é

<C Vtel0,T], xe[ii+1,0<i<k-1. (3.35)

Recalling the definition of B;(x,t), taking (3.9), and (3.35) into account, we see
that
0<C'"<B(x,t)<C Vte[0,T], x€[i,i+1],0<i<k—-1. (3.36)

Now we integrate (3.34) over [i,i + 1] in the variable x, employ (3.26) and (3.36) to
arrive at Y;(¢) < C(1 + fot Yi(s)ds) fort € [0,T] and 0 < i < k — 1. This together
with Gronwall’s inequality leads to Y;(¢) < C forallt € [0,T]and 0 <i < k — 1,
from which, and (3.30), (3.27), (3.36), (3.34), and (3.31), one gets

t
u Zulx,t) £C (1 + / max 0(-,s)ds> ,
o lhi+l]

tel0,T], xeli,i+1,0=5i<k—-1, (3.37)

where u is a positive constant independent of i and k.
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It follows from Cauchy—Schwarz’s inequality and (3.26) that for all x € [i,i + 1],

i+1
< i u9dy>
112

i+1 02
\/@( [ ﬁ@) max u'?(,1). (3.38)

[i,i+1]

12 12

x i+1 g2
|91/2(x’t)_91/2(bi(t)’t)| < f 0‘1/2|6xldy = (f 9_x2dy)
bi(t) i u

I

Substitution of (3.38) into (3.37) and use of (3.27) yield immediately

ti+1 p2

[mi)l(]u( 1) £ C+Cff 0y dy max ur(+,s)ds . (3.39)

Applying Gronwall’s inequality to (3.39) and using (3.19)—(3.20), we see that for
any 0 =i <k—1 and ¢t €[0,7] maxp;+1ju(-,t) < u with % being a positive
constant independent of i and k. This together with (3.37) proves the lemma. (]

Next we apply the energy method to derive Sobolev-norm estimates of deriva-
tives for u, v, 6.
Denote (recall (3.18))

o(x,t) = E(r”"lv)x — RQ = —ﬂ—((n — D luw 4 "oy — RQ ,
u u u u
w(x,t) == cp(0 — 1) +v%)2. (3.40)
Using (3.3)—(3.4), we may write (3.5) in the form
,,.Zn—20
= [or" 0], + kg [ ] —2u(n — D[r" 2%, . (3.41)

Multiply (3.41) by w and integrate. Recalling the boundary conditions (3.7), inte-
grating by parts in the variable x, and making use of (3.10), (3.40),, and Cauchy-
Schwarz’s inequality, (3.19), and (3.28), we obtain

1 k

[ w(x,t)dx

N
=

2n—-2

1k »
_§f 2(x,0)dx—ff{ " IU+KQr 2 —2,u(n—1)r"‘2172}wxdxds
0

NS Cf f {r¥ 2002 + v* + 0*0*} dxds (3.42)
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for ¢ € [0,T]. To bound the term [, fok r=2p2? dxds, we multiply (3.4) by v
and integrate over [0,k] x [0,¢] to arrive at

k k t k
%f vt(x,t)dx = %f(vo)“ dx — [ [ o(x,s)(r""'v*) dxds
0 0 00

_lk 04 Lk v r*ly, 0

= ifonrar= [ {glo-nte 7] gl
X B30, + (1 — 1w’} dds

J

0

where we have used (3.10), (3.18)—(3.19), and (3.28). Note that w? + v* >
1(c3(0 - 1)* +v*). So we multiply (3.43) by (2uC)/B and add the resulting
inequality to (3.42), and utilize (3.28) and (3.20), we infer

p =22 2dxds.|_cff(v + v*60%)dxds , (3.43)

II/\
N I‘m

Ch—

k t k
[0 = 1> +v*}x,t)dx + [ [ r*"72(0? + v*v?) dxds
0 00

C+C

IIA

v* + v*0%) dxds

ol .

IIA

C+C

ol .
O O

t
vtdxds + C[ max 0*(-,s)ds . (3.44)
0 >

On the other hand, it follows from (3.20) that foranyx € [, i+ 1] (0 =i <k —1),

2 ;
(80,1~ BB (0), ) = ( J exdy> < [ G| vay
bi(t)

i+1 92 i+1 2

i 19
<2 f azdyf(G—l)zdy+2f

Therefore by (3.27) and (3.19),

[m%o (+,1) £2 max(e( L) — 0(by(2),1))* + 203
2, 450 2 £ 0y
§2oc2+4f§dxf(0—l) dx+4f§dx (3.45)
0 0 0

for all 1 € [0,7] and 0 < i < k — 1. In view of (3.19)—(3.20) and (3.28), (3.45)
implies
kg2

LK O t kg2
f[Ithl?—)l(]e( -8)ds <2“2T+4ff dx f(e—l)zdxds+ Ofbf—;dxds

tkr2n 292
<c+cff "dxf(()—l)zdxds, telo,7]. (3.46)
00
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Inserting (3.46) into (3.44), applying Gronwall’s inequality and (3.20), we obtain
immediately

Lemma 3.7. For all ¢t € [0,T] we have
k tk
[0 =172 +0*} (o t)dx+ [ [r72 {02 + v*0?} dxds
0 00

t
+ [ max 0*(-,s)ds < C. (3.47)
o [0.4]

As a consequence of Lemma 3.7 we have

Lemma 3.8. .
t
[ [r72ldxds £ C Vte€[0,T]. (3.48)
00

Proof. We first observe that (3.3) can be written as (u — 1), = ("~ !v),. Integrating
this over [0,%] and recalling the boundary conditions (3.7), we conclude

fk(u(x,t)— 1)dx=0, 0<t<T. (3.49)
0

Now multiply (3.4) by v and integrate over [0,k] x [0,¢] (0 < ¢ < T). If we in-
tegrate by parts with respect to x, utilize (3.28), (3.3), and Cauchy-Schwarz’s
inequality, (3.47), and (3.49), we obtain

t k t k
AE2 0T oY dxds < C RS [ g(r”“lv)xdxds
00 00

-1

u

C+R

‘K
("), dxds —I—Rff%dxds
00

oll .
Co—

II/\

ﬂt
CtmilC

o%w-

t k
r"Yo)ldxds + R[ [ (logu(x,t) — u(x,t) + 1),dx,
00

from which, and the fact that logu —u + 1 < 0, Taylor’s theorem and (3.9)—(3.10),
it follows that

k
(r" ') dxds < C+ C[ (u® ~logu® — 1)(x)dx
0

o .
>

k
SCHCf@—-1)Ydx£C, tel0,T]. (3.50)
0

By virtue of (3.18)—(3.19) and (3.28), (r"~'v)? = 1?22 — Cv?. Inserting this
into (3.50) and using (3.20), we obtain (3.48). This completes the proof of the
lemma. [
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Lemma 3.8 together with (3.19)—(3.20) gives immediately

t t k
[ maxv*(-,s)ds < 2 [ |vve| dxds
0 [0:A] 00

lIA

t k
C[[@+r"))dxds £C, 0<t<T. (3.51)
00

Lemma 3.9.

P2 (x,t)dx £ C, 0t <T. (3.52)

S— =

Proof. Using (3.3) and (3.18), noting that [u,/u], = [u,/ul,, we may write (3.4) as
follows:

{ﬁr"_lﬂ —v} = Rr"! [& Oux] +B(n— 1"
u t u u

Multiplying this equation by Br"~'u,/u — v and integrate over [0,k] x [0,¢], we
deduce by (3.9)—(3.10), (3.28), Cauchy—Schwarz’s inequality, and (3.19) that

k 2 tk 2
n—1Ux 2 |6xux| -
{[ﬁr ;—v} (x,t)dx§C+C0fof{r 7_,_ »2 293

u

0,0 UV T u
+rn——l | X l e 19| X ] P2 30__)25 + 22 ‘_x} dxds
u u u

t k 2 t k
sc+cf (1 +r[%a}3]((92+02)) fﬁ”*% dxds + C[ [ (v* 4+ r*~262)dxds ,
0 ’ 0 00

which together with (3.20) and (3.47) yields

k 2
J <r2" -2 x)(x t)dx

0

! k 2
2 2 2n—2 Ux
§C+be (1—1—1[13’2}3]((9 +v)>0fr ;dxds
k t k
+ C[v*(x,t)dx + C[ [ (V® + r*"~20?) dxds
0 00

t k 2
<c+cf (1 +1€ga}()]<(92+02)> frzn—ZZ—;dxds, te0,7T]. (3.53)
0 > 0

Applying Gronwall’s inequality to (3.53), utilizing (3.47), (3.51) and (3.28), we
obtain (3.52). The proof is complete. [

In the following lemma we estimate v, in the L2(Q%)-norm. The crucial step in
the proof is to bound maxiq ) |(#"~v)./u| by the LZ(Q") -norm of (+"~'v), and v,
using Eq. (3.4) and Sobolev’s imbedding theorem.
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Lemma 3.10.

k
v? dxds+0f(r2” 22 +)(x,t)dx < C, te[0,T]. (3.54)

o .
Ot

Proof Multiply (3.4) by v, and integrate over [0,k] x [0,¢]. After integrating by
parts, and making use of (3.18), (3.28), and (3.47), (3.52), (3.9)—(3.10), and
Eq. (3.3), we obtain

t k t k (r 1 ) t k 0
[ [vidxds = B[ [ ——=[r"""v]cdxds — R [ [—] "~ v, dxds
00 00 00 LU

X

n— 1
(r )*( =22\ dxds

IIA

t k n—1 t k
8] | oy dads + (- D] |
00 00

t k t k
+Cf [ {r*™26; + r* 0%} } dxds + %ffutz dxds
00 i

k r U) t k |( n—1 )3] I(rn 11)) (r" 2 2)| 2
<cC ———Xdx = ad
< { ; +0fof{ e ¢ 2}dxds
(3.55)
With the help of (3.28), (3.18)~(3.20), (3.55) implies
t k k
[ [v?dxds + [ (r"'v)i(x, t)dx
00 0
’ (r" o) £ 1Ly\2 2 2
S C+Cf max ——= [ {(r"'v)2 + v + |v|r"*|vy| } dxds
o [04] u
- [(r"to)| —1,\2 , .2 I
< C+ Cf max ——= [ {(r""'v); + v* + [v] |(r""")s|} dxds
o [0,k u
t n—1 k
sc+cf maxu {1 + [ (" 'v)? dx}ds. (3.56)
o [04] u 0

From Sobolev’s imbedding theorem (H'(0, 1)< L°(0, 1), or W"1(0,1)— L>°(0, 1)),
we get

I+ llzseivny = C - ||H1(i,i+1) =C|- “H‘(O,k) VO<i<k-1,or
[+ llzeegiiny = Cll - Mlpragivy = Cll - llwiory Y0 =i <k—1,(357)

with some constant C being independent of i and k. So the term maxpo s |(#"~'v)|/u
on the right-hand side of (3.56) can be estimated as follows, using (3.40), (3.28),
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(3.4) and (3.19),

P 0)( -t 0
max '(—)X()J < C max |o(+,t)| + Cmax (—) (-,0)
[ i+1] u [, i+1] [0,k \ u

< Cllo®ll 2,41y + NloxOll 2 i41)) + C[?}i’l‘] 0(-,1)
= C(“(""—lU)x(t)“L2(i,i+1) + ||r—n+lvt(t)“L2(i,i+1)) + C[?}i)l(] 0C-,1)

< CUE" ol 20,6 + 10Ol 20,8)) + C[?}fl(] 0C-,1), 0sisk-1.
(3.58)

Inserting (3.58) into (3.56) and applying (3.47), we conclude

dxds

caff

o
==
o%»

k
vf dxds + [ (r"'w)a(x, ) dx <
0

N I

t [k
+Cf (f (r""10)2(x,s)dx + max 0%(-,s) + 1)
0 \o [0,k]

k
x [ (" 'o)(x,s)dxds, te€[0,T],
0
which together with Gronwall’s inequality, (3.47) and (3.50) gives us

k
vy dxds + [ (r"'w)2(x,t)dx < C VYt e[0,T]. (3.59)
0

o .
Ct—

Noting that by virtue of (3.18) and (3.28), (r"~'v)2 2 1r*"~?v2 — Cv?, thus (3.59)
combined with (3.20) and Eq. (3.3) yields (3.54). This completes the proof. O

An immediate consequence of Lemma 3.10 is
v, )| £C, 0=x=<kO0=t=T. (3.60)

In fact, (3.60) easily follows from (3.57);, (3.19)—(3.20) and (3.54).
Another corollary of Lemma 3.10 is the following.

Lemma 3.11.

Tk
ffr“" 42 dxds+ffr2" 22 dxds+f max(r"'o)i(+,5)ds £ €. (3.61)
00

Proof. From Eq. (3.4) we get

ﬂrn‘](rn_lv)xx =0 +ﬂrn—1(rn_lv)xux +an—1 (Q) )
ujy

u u?
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So if we use (3.28), Lemma 3.10, (3.52), and (3.57),, (3.47), (3.3), and (3.19),
we obtain

C—N

. T
[ 2" o) dxds < C+Cf 1[183}3]( (7" o) ds
0 o

T k
+ C[ [r* 2102 + 126*]dxds
00

Tk
S CH+Cf [ {002 + 10" o)) (7" 0)e| } dxds
00
T k 2n 2Tk
< C+Cf [wdxds + So—[ [ (" '0)% dxds
00 00
LT 8 ancag -2 2
S CH <[ [r (P ?0)., dxds
250
whence
T k T k
[ [ro 2 o) dxds + [ [r*" 2k dxds < C, (3.62)
00 00

where we have also used Eq. (3.3). In view of (3.18)—(3.19), (3.28), (3.60), and
(3.57)1, we see that

1
an—4.2 m—2(,n—1,32 2 2n-2 ~2.27.
57 "l S PP o) + C0* 4 TRl el

max ("~ o). O < CUE" 0Ol + 10" 0Dl

= ”U(t)”LZ(O,k) + ”rn_lvx(t)”iZ(o,k)

+ Hr”’l(r”_’U)xx(f)“iZ(o,k)’ tefo,1]. (3.63)

Combining (3.62) and (3.63), and utilizing (3.20), (3.52) and (3.48), we obtain
(3.61). The proof of the lemma is complete. [

Similarly to Lemma 3.10 we can show the following estimates for 0:

Lemma 3.12. We have

t k k
[ [6}dxds+ [r*"20%(x,t)dx < C, 0<t<T; (3.64)
00 0

0 < 0(x,t) <0 forany xc[0,k], t€[0,7], (3.65)

where 0 and 0 are positive constants independent of k.

Proof. Multiply (3.5) by 6; and integrate over [0,k] x[0,/] (0 £t < T).
Integrating by parts, applying Cauchy—Schwarz’s inequality, and using (3.10),
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(3.18)—(3.19), (3.28), (3.60), and (3.47), (3.54), (3.20), (3.61), and Eq. (3.3) we
get

F=202(x, 1)

wnn

tk k
fo@,zdxds—l-x—gf
2050 29

t k
S C+Cf [ {r 20 u| + (r" o)t + " 0)E + (¢ 2P)E ) dxds
00
t k
< C+C[ maxu? [ r* 202 dxds
o 0K Ty

‘ k
+Cf max {" ")+ 6* + 1} [ (r**0% + v*) dxds
o [0 0

¢ L k22
S C+Cf max(r"'v); [ —= dxds, t€][0,T]. (3.66)
o (0] 0 U

Applying Gronwall’s inequality to (3.66), and recalling (3.61) and (3.28), we obtain
(3.64).
To show (3.65) we make use of (3.57);, (3.19), (3.47) and (3.64) to deduce

0*(x,1) < 2(6(x,1) = 1)’ +2 £ 2+ Cf (0 — 1) + 02)(x, 1) dx
0
<2+ cfk ((O=12 + 720" (x,t)dx < C, x €[0,k], t €[0,T]. (3.67)
0

To get a lower bound of 0(x,¢) we adapt and modify an idea of Alikakos [2] for
parabolic equations. Multiplying (3.5) by —1/6%, using (3.23) and taking

i r2n—29x i _ r2n—2 l e r2n—29)2c
¢ u | 0% oy 0).], ST

into account, we see that

2n—2 n—1
ey H' < Kp [r . (é) ] +rY ugv)", xe[0,k], t€[0,T]. (3.68)

If we multiply (3.68) by jO=/*! (j = 2 integer), integrate over [0, k] x [0,¢], em-
ploy a partial integration with respect to x, and use (3.28), we find
J J

o) ds,  (3.69)

Li(0,k)

t
. n—1
+ G max (" )]

1 J
H% LJ(0,k) = ”@

where the constant C is independent of j and k. An application of Gronwall’s
inequality to (3.69) and use of (3.61) yields

|

LI(0,k)

J J

o = |7
L(0,k) 6

CA+TY T
) e te€[0,7],

L(0,k)
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which, by taking the 1/j" power and then passing to the limit as j — oo, implies
||1/0(t)”L°°(0,k) =< CHl/eO“Loo < C for any ¢t € [0,T]. This together with (3.67)
gives (3.65). O

As a result of Lemma 3.12 one has
Lemma 3.13.

T k T
[ [r* 402, dxds + [ max[r*202)(-,s)ds < C. (3.70)
00 o [0

Proof. From Eq. (3.5), (3.18)—(3.19), (3.28), (3.47), and (3.52), (3.60), (3.20),
(3.54), and (3.61), we get (cf. the proof of (3.66))

S—~

k
[ 402, dxds
0

T
< f { r2"_29)‘7; -+ r4"_40§u§ + (r”‘lv)i + 92(1’"‘10)% + " -2 2)x} dxds
0

S

T
< C+Cf maxr®26%(-,s)ds . (3.71)
o [0.k]

Here the second term on the right-hand side of (3.71) can be estimated as
follows, using (3.57), and (3.47),

T T
cf 1[133}()](r2”_20§ds S Cf [ {20k + r10,] |[r" ' 0c)e| } dxds
o [0 0

=

2n—2

lIA

I8 2 a T o
C of { r"202 dxds + g‘ Of r¥207 dxds

II/\

P 402 dxds . (3.72)

T
J
0
Substituting (3.72) into (3.71), we get (3.70). The proof is complete. [

From (3.28), Taylor’s theorem and (3.20), it follows that [[u(¢) — 1{|;20 4y = C
for all ¢ € [0, T]. This, together with Lemmas 3.4, 3.6—3.13, yields (3.16) in The-
orem 3.3.

Now we turn to the case that ug, vy, 0y satisfy (2.18). In this case we proceed
to get estimates of high derivatives of u, v, 0 in the Z?-norm.

Using (3.18), we differentiate (3.4) with respect to ¢, multiply the resulting
equation by v, and then integrate. We integrate by parts with respect to x to arrive at

Ot

N —

+

N —
NI

fk v2(x, t)dx = fk xO)dx—ff { "), —R—ﬂ [r"'v,]; dxds
0 0 t

—(n»l)ft [g )x—Rg} [r" 2vv,], dxds, te€[0,T]. (3.73)
0

e



Global Spherically Symmetric Solutions to Ideal Gas Equations 359

It should be pointed out here that the derivation of (3.73) is informal because of the
lack of regularity in some steps. However, the rigorous derivation can be achieved
by using difference quotient (with respect to ¢) and taking to the limit (cf. Renardy,
Hrusa and Nohel [24, pp. 145-163]), or by using mollifiers.

If we apply Lemma 3.1, (3.18)—(3.19), (3.28), (3.60), and (3.65), Cauchy—
Schwarz’s inequality, (3.20), (3.54), (3.61), and (3.64) to (3.73), we infer

k t k
V20, )dx + [ [ r¥ 202, dxds
t

0 00

t k
§C+Cff {v2+v?+r2n 202+ut+(rn 1 )2 2n— 202_'_02}
00

<C teloT]. (3.74)

Similarly, differentiating (3.3) with respect to ¢ we obtain
ffu,,dxds Cff{u + 02 20 w42 dxds < €. (3.75)

It follows from (3.4), (3.65), (3.74), (3.52), and (3.64), (3.57),, and (3.59) that

k
frz”'z(r”—lv)ix(x,t)dx
0
k
< Cf o + 722 [(r" )2 + 1]+ #2202} (x, £)dx
0
k
<C+ cmyl((r"*‘u)ﬁ( ) S CHCL AT )2+ (" o) (P o)} dx
> 0
1 k 2n—2,_,n—1,2
< C+ Efr (r" o) (x,t)dx, t€[0,T], (3.76)

0
which combined with (3.63),, (3.20), (3.52) and (3.54) implies

k
S 4 v (x, t)dx < C for all £ € [0,T7].
0

From this and (3.74) we conclude:
Lemma 3.14.

k t k

fuf(x,t)dx+fr“" T2 (ut)dx + [ [r Tk dxds < C Yt e[0,T]. (3.77)
0 00

It is easy to see that by (3.57);, (3.19), (3.3), (3.59) and (3.76),

k
("0 t) + [ P2, (x, t)dx
0

k
< AT W+ 2w (nt)dx < € (3.78)
0

for any x € [0, k] and ¢ € [0, T].
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We differentiate Eq. (3.5) with respect to ¢, multiply by 6, and integrate over
[0, k] x [0,¢2] (0 = ¢t < T). Using (3.77)—(3.78), following the same procedure as
used in Lemma 3.14 we obtain the following lemma the proof of which will be
omitted here.

Lemma 3.15.
k k t k
[0 (x,t)dx + [ 202 (x,t)dx + [ [r*"720%,dxds < C Vt€[0,T]. (3.79)
0 0 00

From Lemmas 3.14-3.15, (3.75) and (3.78) we get (3.17) immediately. The
proof of Theroem 3.3 is complete.

4. Proof of Theorem 2.1

In this section let {uy, vy, 6;} denote the solution of (3.3)—(3.8). We first prove the
existence.

I Existence. Let ¢y be the same as in Sect. 3. For £k € N we define
up(x, 1) 1= (u(x, 1) — D)r(x) + 1, G(x, 1) 1= v (x, 1) e (x),
0x(x,1) := (O(x,t) — Dpp(x) + 1, x €[0,00), t € [0,T] . 4.1)
Then for any / € N we have
{u(x, 1), 5e(x, 0), O (x, 1)} = {wa(x, 1), v (x, 1), ti(x, £)}
for all (x,#) € [0,/]] X [0,7] and k = 2/. (4.2)
By virtue of (3.16) in Theorem 3.3 we have
“(“k - Lﬁkaék - 1)”L°°([0,T],H1) + ”atuk”L‘X’([O,T],LZ) + “(17ka0~k - 1)”LZ([O,T},HZ)
+ 1Btk O1Bics 0,0k, 0r0xtui )| 29,y < € for any k 2 1. (4.3)

In view of (4.3) there are functions u, v, 0, and a subsequence of {uk,ﬁk,ék}, still
denoted by {u, Dk, 0k}, such that as k — oo,

(ux — 1,0, Ok — 1, (g )ey (10 s (B x> (B )
- (u - 1,070 - laut, Uy, Uy, Ox) (Weak'*) in LOO([O, T]9L2) 5

(i )es (1 )es Ok ey (i )xe) — (2t 01, 01 t1x) - (weakly) in L2(Qr)
(B, 0 — 1) = (1,0 — 1) (weakly) in L*([0, T],H?) ; (4.4)
and

fl(u—1,0,6 — 1)“L°<>([0,T],H1) + ||ut“L°°([0,T],L2) + (| Cve, O, s, Uxx’axx)”Lz(QT) §(C .
4.5)
Furthermore by Rellich’s selection theorem and the diagonal procedure, we may
extract a subsequence of {uy, 0k, 0x }, still denoted by {u, 0,0}, such that for any
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! € N, we have
{uge, B4, O} — {u, 0,0} strongly in L2((0,1) x (0,T)) . (4.6)

Define
t
r(x,t) == ro(x) + [ v(x,7)dz,
0

x 1/n
ro(x) := {a" + nfuo(y)dy} , xt=0. 4.7)
0

Next we prove that {u,v,0} obtained in (4.4), together with r(x,¢) defined by
(4.7), is a generalized solution of (2.10)—(2.15).

The first observation is that by virtue of (4.5) and Sobolev’s imbedding theo-
rem, u— 1, v, 0 — 1 € C°([0,T],L*) N L>([0, T],H"). From this and the interpola-
tion inequality (|| - [[z» < C|| « 77| - I}, 0 <y < 1), it follows that u — 1, v,

6 — 1€ C%[0,T],H?) for any y € [0,1). So, with the help of Sobolev’s imbedding
theorem (H? — C° for y > 1/2), one finds

u,v,0 € C°([0,00) x [0,T]) . (4.8)
By (3.28), (3.65), (4.1), (4.6) and (4.8) we conclude
uLuxt)=u Q=L 0(x0) =0 V(xr)e[0,00)x[0,T]. (4.9)

Let ¢ € C;°(0,00) be arbitrary but fixed, and let supp ¢ C [0,L] for some L.
Then from (4.2), (4.4); and (3.10) we see that for any & = 2L,

(u(0) — uo, @) = (u(0) — ux(0), ¢) + (1 (0) — 1o, @)

T
= %Of (Oru(t) = O (2), @) (¢ — T)dt

1T
+ Tf (u(t) — up(t), @) dt + (1) — ug,p) = 0 as k — oo,
0

which yields u|;=o = uy. In the same manner we can show (v,0)|;=0 = (vo,6o).
Therefore, {u,v, 6} satisfies the initial condition (2.13). To show that v, 0 also satisfy
the boundary conditions (2.14), we note that by virtue of (4.5) and (4.8), v(0, - ) €
C%([0,T]) and 6,(0, -) € L*(0,T) are well-defined for ¢ € [0,7]. On account of
(3.7), (4.2) and (4.4) we conclude that for any n € C§°(0,7T),

T

T
J o0, 0n(2)dt = [ (v(0,2) — 5(0,1))n(t) dt
0 0

(v — T )u(x, 1)(x — D)n(t) dxdt

SN
o .

+
SN

1
J (= 8)xn(t)dxdt — 0 as k — oo,
0
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which implies v(0,¢) = 0 for ¢ € [0,T]. In the same way one gets 0,(0,¢) = 0 for
te[0,T]

From (4.2), (3.10)-(3.12), (3.19), and (4.6)—(4.7), it follows that for any
leN,

re — r strongly in L2 ((0,1) x (0,T)) as k — oo, (4.10)

a < r(x,t) for any (x,¢) € [0,00) X [0,77] . (4.11)

Let € C§°(Qr) be arbitrary but fixed, let suppy C [0,L] x [0, T] for some L.
Then by (4.2), (3.47), Cauchy—Schwarz’s inequality, (4.10), and (4.4) we find that
for any k = 2L,

00 or = N0 = 0w W)op + (" = YO0 VYo + 7 (O0)e Vor
< <rn_1(0 - ék)x’ lMQT + <("n—1 - r/’:_l )(ék)x’ l/’>QT + CIW“LZ(QT)
- C“‘/’HLZ(QT) as k — oo,

which gives #"~10, € L*(Qr). Analogously, we obtain »**~20,, € L*(Qr). There-
fore, to show that {u,v, 0} is a generalized solution it remains to show that
u, v, 0 satisfy Egs.(2.10)—(2.12). To this end let ¥ € C§°(Qr) with suppy C
[0,L] x [0, T] for some L, we have by (4.4), (4.2), (3.3), (4.6) and (4.10) that as
k — oo,

<6tu> Q/’)QT — <0tﬁk’ l//>QT = <atuk’ ‘//>QT = <(”Z_1Uk)xa lp)QT
= _(rz—lvk’ l//x>QT - _<rn-—lv’ !//X>QT = <(rn_lv)x’ ‘//>QT > (4~12)

which gives
u = ("), in LX(Or) (4.13)

with r(x,¢) being defined by (4.7). Recalling the definition (4.7) and using
(4.13), we deduce by the same argument as used in the derivation of (3.18)
that

P re(x,t) = u(x,t),  x €[0,00), t €[0,T]. (4.14)
In view of (4.2), (3.3), (4.4) and (4.13), we see that for any / € IN,
(7 o) = (i )y = () — e = (7"~ o)y

weakly in L2((0,1) x (0,T)) as k — oo . (4.15)

For any y € C§°(Qr) with suppy C [0,L] x [0, T'] for some L we infer by (3.3),
(4.2), integration by parts with respect to x, and (3.28), (4.9), (4.3)—(4.6), and
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(4.13), (4.15), (3.52), (3.59), (3.61) that for any k = 2L,
4 n—1r~

<<r i ¢> (g (LY <ﬂ_)‘,,>

k or Ui u or u
= <(r1r¢l—1uk),2¢ (111_k - %) ,1/1>QT — <(ﬁk)txr;:_lﬁk, %>QT

- <(ﬁk)fr1?_15k, <f> > — — <u,«xrn_10, f>

o or “/or
- <Wn—lv’<£> > - <(rn 2% l/f> : (4.16)
u x/ Qr or

or

Similarly,

<(rz_20,(2e)x,¢>gr — <(7’n 2 Z)X’W>QT < l:(r ukvk)le ,W>
x Oor

= <r"—‘ [—(rn_lv)"} ,¢> . (4.17)
u x or

Now multiplying (3.3)—(3.5) by ¢ € C§°(Qr), passing to the limit as k£ — oo,
applying (4.2), (4.4), (4.6), (4.15)—(4.17), and (4.13), we conclude that {u,v,0}
satisfies (2.10)—(2.14). Thus we have proved the existence.

II. Uniqueness. Let {u,v,0} and {,7, 9} be generalized solutions of (2.10)—(2.15)

satlsfymg (2.17) and u, 0,4, 6 >0 on QT Then by Sobolev’s imbedding theorem
(H' — L), we obtain

C' < ux,1), O(x,1), ii(x, 1), O(x,t) £ C
lo(x, )| + [6(x,0)] £ C V(x,t) € [0,00) x [0,T] . (4.18)

Here and throughout the proof of the uniqueness C denotes a generic positive
constant that may depend on u, v, 0, @, ¥ and 6.
Integration of (4.14) over [0,x] in the variable x and use of (4.18) yield (note
r > 0, see the proof of (3.19))
ClA+0)"" < r(x,t) £ CA+x)" Y(x,t) € [0,00) x [0,T]. (4.19)

By (4.14), (4.19), (2.17) and Sobolev’s imbedding theorem (H' < L), we infer
T
[ max {r?"=262 4+ P20 412 + P }(s)ds < C. (4.20)
o [0,00)

From (4.18) we see that C~'i(x,¢) < u(x,t) < Cii(x,t), which gives

CTIP" o, e, t) < PN )7, 1) S CF™ (1)l 1)
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where 7(x,t) 1= ro(x) + fot ¥(x, t)dt. Integrating the above inequality over [0,x] and
recalling 7(0,¢) = r(0,t) = a we get

“#(x,t) < r(x,t) £ Ci(x,t) Y(x,) € [0,00) x [0,T] . (421)

Let {U,V,0} := {u—i,v—5,0 —0}. Then U, V, O satisfy

U ="+ 0" = 7D, (4.22)
W L Gt 0 S (G100 1) M G
t u u uil
~n—1 ~ ~
+ﬁ(7’n I _ i 1) [(l" ~v)x} —R?‘"_l Q _ G_If
u U uu
n—1 ~n—1 é
—R(" =F7) 5—1 , (4.23)
cy®, =k r2”_2@x 4 (r2n—2 - an—Z)éX _ fzn_zéxU (rn_IU)chU
yY: 0 ” ” = —

[((rn—l _ ;n—l)v)x _|_(rn lV)x] [( n— lv)x + (fn—lﬁ)x]
u

+B

_R(l””_ul ) [@ _ Q_UJ R {((rn 1 ~n—1)v)x 4 (Fn—IV)x}

—2u(n — DI =20 + PP 0+ 6 (4.24)

If we integrate [r"/n — 7"/n], = U with respect to x, utilize (4.21), Cauchy—
Schwarz’s inequality and (4.19), we obtain

Ir(x,t) — #(x,t)] < Cr"!(x,t) [ |U|dy
0

x 1/2
< Crt(nt) (of rz”—zdy) [~ U )| < CVx| U@

< G, )| U@, x € [0,00), £ € [0,T7]. (4.25)
With the help of (3.18)—(3.19) for r resp. 7, (4.18), (4.21), and (4.25), one gets
[ (G A N O]
A (G A e Gl 1N

_ u U
[ O
r 7

<cC B|| + Cllr="(r — 78] + Cllr="(r — ) 0):|
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< C{llr"er = Pl + e = AE T o) + e U}

< Cmax (r" (.0l 0) = FCL OS] + [ 8] + Cllr U]

IIA

I UYL + (15 + a1}
Uy, 0<t=T. (4.26)

IA

Note that (4.26) still holds if ¥ resp. i, is replaced by v resp. u,.

Now multiply (4.22), (4.23) and (4.24) by r~ 22U, r~2"t2) and r~2+2@
respectively, and integrate then over [0,00) x [0,7] (0 =< ¢ < T). Keeping in mind
that ¥, @, tend to zero for a.e. £ € [0,T] as x — oo, we integrate by parts with
respect to x, we use (3.18)—(3.19) for r resp. 7, (4.18), Cauchy—Schwarz’s inequal-
ity, (4.21), (4.25), and (4.26) (as well as similar estimates like (4.26)) to arrive
at

t
“(r—n+1 U,r—”‘l'l V,r—n_‘_l @)(t)“z + f (” VXHZ + “@xllz)(s)ds
0

< Cf {14 lGur i, 77 00 )) oo I U r Y, r 7 0 (s) P dis

ol

t ~ ~
+cf max 2 = FPYC L)@ = 1,0 — 1,0, 0,,d,)(s)|ds
0 ,00

< Cf {1+ [t iy 70 )10 + [1(E = 1,0 — 1,0, 0,1, )(5) ||}
0

x | U Y e e (s)|Pds, ¢ € 0,7 (4.27)

Applying Gronwall’s inequality to (4.27), taking (2.17) and (4.20) into ac-
count, we obtain » "' U = "1y = p7"+1@ = 0, which implies U =V =0 =0
on [0,00) x [0, T]. This proves the uniqueness.

III. Regularity. In the calculations that follow C; (/ € N) will denote a generic

positive constant which may depend on /. Let {d, i, ék} denote the same subse-
quence as chosen in (4.6). If ug, vy, 0p in addition satisfy (2.18), then by virtue

of (3.17) in Theorem 3.3 we see that ||((8)e, (B )es (i )ats (B s (O D)l oo o, 77,22
and || ((@k )ets (Bi xes Ok Ixe)|| 12(gyy are uniformly bounded with respect to k. Hence
we can extract a subsequence, still denoted by {, 0, ék}, such that as &£ — oo,

(B )e> O )es (i Yt (B e (B ) — (Vs Or tha, Dy Or)  (weak=) in L=([0, T, L?)
(> B ats (O )xe) — (s Vg, 0)  (weakly) in LX(Qr) (4.28)

and
(| (Ve Ors that, Vax, O )| oo 0, 77,22y + (st Ve 050l 20,y = C (4.29)

Recalling (4.7) and (4.14), using (4.5), (4.8), and (4.29), we get
r, rere € CO[0,00) X [0,T1), 7y Far s Fes Pt € L¥([0, T1,L7)
ra € LA(Or) . (4.30)
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Employing the estimates (4.5) and (4.29), now we can derive the bounds of the
Hoélder norm of u, v, 0, r.

Lemma 4.1. For any [ € N we have

”(u, D, Uy, 9) Oxararx)“ C‘l (431)

cl/3, 1/6(Q y =

Proof. On account of (4.5), (4.29) and Sobolev’s imbedding theorem (cf. the
proof of (4.8)), one has u,v,v,,0,0, € C°(Q;). Moreover, |ul, |v],|vy],|0],|0| are
bounded (by a constant) on [0,00) X [0, T']. From (4.30) we conclude that for any
[ €N |r(x, 1), |r(x, )] < C; for all (x,¢) € [0,1] x [0,T]. We use (4.5), (4.29)
and Cauchy—Schwarz’s inequality to see that for any / € N 6(x,¢) resp. Ox(x,?)
is uniformly Hoélder continuous in ¢ resp. in x with exponent 1/2 on [0, /] x [0, T]
(also cf. [5], Lemma 3.7). A standard interpolation property (see [5, Lemma 3.3]
or [15, Chapter II, Lemma 3.1]) implies that 6, is also uniformly Holder contin-

uous in ¢ with exponent 1/6 on QIT, hence ||6,|| < C;. This immediately
yields ”0”01/3,1/6@ = sy = < C; and thereby
”U”cl/s,l/ﬁ(Q"T) <, Hu“clm/6(g , S < C). Therefore, from (4.7) and (4.14) we get

cl/3, 1/6(Q ) =
< C,. Similarly, we can show ||v,]|
1 )| gl = < C;. This completes the proof. O

Multiplying (2.11) with »="*!, integrating with respect to ¢ over [0,¢] (¢ €

[0,T]), using (2.10) and noting that [u,/u], = [uy/u], and r~"*lv, = (r~"v), +
(n — 1)r—"v?, we arrive at

—n+l £) — pomtl
ux<x,z)=u(x,¢)<<l;o>x+r o)~ rg vo>
0

p

u(x t)

f(R +(n-1)— )(x,s)ds

L O(x, s )uy(x,s)

12(x, ) ds, x€[0,00), t€[0,T]. (432)

_B( t)f

If we take the absolute value on both sides of (4.32) and apply Gronwall’s inequal-
ity, we infer by (4.30), (4.9), (4.11), and (4.31) that for any [/ € N,

<q. 4.
[0,110,71 el = G (#33)

Using an argument similar to the one used for (4.33) we obtain that for (xp,%) €
[0, 00) X [0, T] |ux(x 1) — uy(x0,%0)| < h(xo,t9,x,t) — 0 as x — xp and ¢ — £, which
gives u, € C%(Qy). Taking | - lcigs, sl (1 € N) on both sides of (4.32), again
applying Gronwall’s inequality, and takmg (4.31) and (4.33) into account, one gets

||uxllcl/3,l/6(Q y = Cl (l € N) s (434)
which, with the help of (4.14) and (4.31), leads to

”rxx||cl/3,l/6(Q'lT) =C (eN). (4.35)
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Let 2/ € N be arbitrary but fixed, let ¢,;(x) be the same as in Sect.3. We
multiply Egs. (2.10) and (2.11) by ¢; to obtain

(V"_l;ﬁzzv)x] — g [g] ot — pr! [’”"_lv(%l)x]

u

($a) — pr"! [

X

_ ﬁrn——l (rn_lv)x(d’ZI)x

u

) (4.36)

u u u

2n—2 In— e
cv(90): — xg [r—(m} = —Kg [r__{@i@,_)f] _ KQ’”Z 20x($21)s

1 . .
= —[BO" ) = ROY™ ™ 0)ehor + 20(n = 1O 207 e (4.37)
It is easy to see by the definition of ¢,;(x) and (2.14) that

(¢2:0)(0,1) = (20)(2L,1) = 0, (9210)x(0,1) = (¢20)x(2,£) =0, £ 2 0. (4.38)

Thus we may consider (4.36)—(4.37) as the linear parabolic equations (for ¢,;v
and ¢,;0) with the boundary conditions (4.38) on (0,2/) x (0,T). Moreover, by
virtue of (4.31) and (4.34)—(4.35), the coefficients and the right-hand sides of
Egs. (4.36)—(4.37) are Holder-continuous on [0,2/] x [0, T] with exponents 1/3 in
x and 1/6 in t. By the classical Schauder—Friedman estimates [15, 6] we infer ¢,;v,
$20 € CHHPI+P2(10,21] x [0, T]) with B := min{a, 1/3}, which gives

v, e C*BIHF2([0,11 % 10,T]), (4.39)

since ¢;(x) =1 for x = [. Equation (4.39) together with (2.10), (4.31) and (4.34)
implies
u, u € C'RU+P2(10, 11 x [0,7]) . (4.40)

Equations (4.39) and (4.40) imply that u, v, vy, 0, 0,, 7, r, in C“/Z(Q_IT). With the
help of this fact we can repeat the same procedure as used for (4.34)—(4.40) to ob-
tain the assertions (4.39)—(4.40) with f = min{e, 1} = «. Since / € N is arbitrary,
from (4.39)—(4.40) we get (2.19). The proof of Theorem 2.1 is complete.

5. Large-Time Behavior in the Case of n =3

In this section we show for n = 3 that as ¢ — oo, v goes to zero in L¥ for j = 2
arbitrary but fixed, and # remains uniformly bounded for all # = 0. Throughout
this section the same letter A will denote various positive constants which are in
particular independent of ¢, £ and x. We will use the same notation as in Sect. 4.
We have the following large-time behavior.

Theorem 5.1. Let n =3 and {u,v,0} be the generalized solution established in
Theorem 2.1. Assume 34+ 2u > 0. Then

i) There are positive constants y,,7, independent of t and x, such that y; <
u(x,t) <y, for all x,t = 0.
ii) For an arbitrary but fixed integer j = 2, ||v(¢)|| 2 — 0 as t — oo.



368 S. Jiang

Proof. Let {uy, vy, 0;} be the same as in Sect. 3. First we adapt and modify an idea
of Kazhikhov [12] (also cf. [3]) for the one-dimensional case in bounded intervals
to give a representation for uy.
Let t x t k
Dp(x,t) := Ofa(x,s)ds + Of{(r,?)—zu,‘g}(y)dy + 2Off {r720i}(»,s)dvds,  (5.1)
X

where ¢ is defined by (3.40) in Sect. 3. Note that in view of (3.18) @ satisfies
(rkvk)x —R—i 4 2(rk

)
” w3 fk3u§dy (52)

0,0 = plklkx

By virtue of (3.4), a partial integration in the variable ¢ and (3.18), 0,P, =1 20k
So, multiplying (5.2) by u; and using (3.3), we arrive at

2

k
v _
(ux Pp)r — (r,kadﬁc)x = —?k — RO, + ﬁ(r,ka)x + = r,ifrk 3v,zfdy
X

X

Keeping in mind that v; vanishes on the boundary and #4(0,¢) = a, we integrate
the above identity over [0,k] x [0,¢] to infer

v
fk(uk¢k)(x,t)dx :f(u @k)(x)dx — ff ( —|—R9k) dxds
0 0

243

=5 r_3v,%dxds R (5.3)

o
O

where ¢,?(x) = @y (x,0). It follows from integration of (3.3) over [0,k] x [0,¢] and
use of (3.7) that fok ug(x,t)dx = fok ud(x)dx =: u} for t = 0. Moreover, by virtue
of Lemma 3.1 u; satisfies
K2 <k —VElud =1 < up < k+VElul 1] <2k
for some kg, all k = kypandt = 0. (5.4)

Note that u; > 0. If we apply the mean value theorem to (5.4), we conclude that
for each ¢t = 0 there is an x;(¢) € [0,k] such that

1

k
Di(xe(1),1) = — {‘Pk(x,t)uk(x,l‘)dx. (5:5)
k

Therefore from (5.1), (5.3) and (5.5) we get

t x(2) t
J ok(xi(),8)ds = Pp(xi(t), 1) — [ D 200dy — 2 f f ry 302 dyds
0 0 0 xx(2)

1tk /42 243 1k
=——[[ (2% +RO) dxds — — [ [r>v} dxds
Ugp o \3 3ugo o

t ok 1k xk(1)
—2f [ rividxds + — [u§@odx — [ (r))vidy, t=0. (56)
0 x(t) U o 0
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Using (5.6), we have the following representation:

uk<x,t>=M{1 R £ 04(x.5)By(x.5)

Bi(o,t) | By Dil(xs) "S}’ x €[04, 120, (57

where

1
B | u

x(2)

1 k x x
Di(x,t) := ud(x)exp {— { Ju@odx — [ () *0dy+ [ rk"zvkdy} } ,
0 0

2
k

203 1
%k 1 RO ) dxds + —— J f 130t dydxds
3 3ugh o

VN
<

1
By(x,t) :=exp {B [u*
k
ik
+ fork_3v£dyds] } ,
0 x

and x;(¢) € [0,k] is the same as in (5.5).

In fact, note that (3.29) can be written in the form 7~ 20,0 = dyox = [B(logux ),
—RO /u;],. We integrate this over [0,¢] and then over [xk(t) x]. If we integrate by
parts with respect to ¢, utilize (3.18) and (5.6), we infer

t 0 t x t
Bloguy — Rf s = Blogul + [ ox(xi(t),s)ds + [ frk_z(vk), dsdy
0 Uk 0 X (1) 0

1 ¢ k
= Blogu) — —*ff( -I-RGk) dxds—z—a*ffrk_%,fdxds
U o 3uid o

t
—2ffrk_3v,%dyds+ f ry vkdy+ fu,?%dx—f(rk) dy,
0 X

x(t)

which, when the exponentials are taken, turns into

Bi(x,t) 1 (Rf’ Or (x, s)d >

= exp
Di(x,t)  ue(x, 1) Bo u(x,s)
Multiplying (5.8) by R6,/f and integrating over [0, ], we find that

R L Oi(x,s) R L Ox(x,5)Bi(x,s)
P (ﬁof u(5.5) " ) R T D

Substituting this into (5.8), we obtain the (5.7).
Next we derive uniform bounds on u;(x,¢) by using the representation (5.7).
Integration of the second identity in (3.18) over [0,x] and use of (3.26) lead to

(5.8)

rxt)=a +3fuk(y,t)dy 2 +3Z f ugdy 2 A2+ [x]) = A(1 +x)
i=0i—
(5.9)
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for all x € [0,k] and ¢ = 0. Recalling (5.1), we get from Cauchy—Schwarz’s in-
equality, (5.9), (3.20) and (5.4) that

,g" () vidy

X k
-2 050
[ r oy, o = | up PRdx
k|0

X (t)

1/2

<cC (Ofa +x)"“/3dx) x (gl + o (ID + 1|92 oo )™ (k + VElluo = 1]))
<A Vxel[0,k],
which, in view of the definition of Dy (x,?), leads to
0< A SDux,t) A VYxe[0,k], t=0. (5.10)

By (3.19), (3.26) and (5.4) we find

Bi(x,s) R Lk { Rocl(t—s)}
——— S exp{ — o Oc(x,s)dxds ) S expq————=7, t=s5=0.
By(x, 1) p{ g 1 O P 26
(5.11)
Similarly,
Buxs) o Ae= MU= ¢ > 5 > 0; e 2 B(x,t) =1, t=20 (512)

Bk(x,t) =

with A; being independent of ¢ and %, where we have used (3.19), (3.20) and
(3.26).
It is easy to see by (3.38) and (3.27) that

k(0,2
o Amax up( -, f (Gk)x
0

5 dx < Or(x,1)

< 20 —I—Amaxuk( t)f (Ok)"

dx xe[0k], t 20. (5.13)

Hence it follows from (5.7), (5.10), (5.11), (5.13) that for all x € [0,k],t = O,

[0,£] 0

t k _
up(x,t) £ A+ Af ( ) =47 =) g
0

A+Afma>]<ukf( kg)zxdd

Applying Gronwall’s inequality to the above inequality and utilizing (3.20), one
obtains u(x,t) < y, for all x € [0,k] and ¢t = 0, where y, is a positive constant
independent of ¢,k and x. Therefore we make use of (5.7), (5.10), (5.12), and
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(5.13) to infer

u(x,t) = Af [ Bxs), k(x,5)ds = ft (—— — Amax ukf( )"dx> e~ M=)gy

Bi(x, 1) 0 0.4 o u0?

Aoy b 4 RO _4

> = [ Mgs — Moy, [ [ ~—Fem M1V dxds
2 0 00 ukgk

Ay — Ayt oA pnt (9k) k(003
> 1 —e M) — 1 xd ds — A ~—>-dxds
- 24 ( ) f f t/fzof ukﬁk

/120(1
> >0 5.14
~ 44, ( )

for all ¢t = Ty and some (large) Ty > 0, where A, is independent of ¢,k and x.
Furthermore, from (5.7) and (5.10) we get u;(x,t) = Di(x,t)/Bi(x,t) = e~ /A
for all x € [0,k] and ¢ = 0. Combining this with (5.14) we see that there are
positive constants yi, y2 1ndependent of ¢,k and x, such that y; < wi(x,¢) < y, for
all x € [0,k], ¢t = 0. This combined with (4.2), (4.6) and (4.8) yields i) in Theorem
5.1

Note that by virtue of (5.9), (4.2), (4.4), (4.6) and (4.10), the estimates (3.20),
(3.26) and (5.9) still hold when wuy, vy, O, 7, [0, k] are replaced by u,v,0,r,[0,00),
respectively. Thus it follows from i) of Theorem 5.1 that

t
2
d
bfr?g())( [rv*](x,5) ds

Af max —f( v)xd deyds

x20 73

lIA

t x 2
[ max < f(rzv)xdy> ds
0

AN

(1 -I-x)f (r v)xd

t t oo
Af m gAff(’Tg)idygA, t20. (515)
0 00

xgo

From (3.26), (4.6) and (4.8) we get a; < fOl O(x,t)dx < o, which gives a; <

0(c(1),1) = 0(t) < oy for t = 0 and some c¢(¢) € [0,1]. It is easy to see by (5.9)
that

~

- L 00 4 o) 2
[ max [0 — 0]*(-,s)ds < Aff xdxf —dxds
0 [0.,00) 00

too42

r0;
< A+/1ff 0 dxmax[H 01 (s) ds .
Applying Gronwall’s inequality and (3.20) to the above inequality, one gets
t
f max X[0(-,s)—0(s)Pds <A forallt>0. (5.16)
0

Using (4.18), (4.20), and the estimate (r*v*)(x,t) = [[[(r?v)0 + rPvn ] <
C fo (u? + v*)dx £ C that follows from (4.20) and (2.10), we deduce that for
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each t = 0, [,(u, — RO)(r*v*)(x,5)ds — 0 as x — oo. Therefore if we multiply
(2.11) by 2jv¥ =1 (j = 2) in L*((0,00) x (0,¢)), integrate by parts with respect to
x, utilize (4.14) and i) of Theorem 5.1, we deduce

o0 t oo
Jv¥(x,0)dx + 72 [ [ ¥ 2(r%0)? dxds
0 00
r oo . i i
S A+ AR[ [ {07 + 00720 P0)] + r 0¥ ) dxds = A+ Li(t) . (5.17)
00

Denote Fj(t) := maxo<s<; [y v¥(x,s)dx. Then I; can be estimated as follows, us-
ing (3.20), (5.15)—(5.16),

L(t) < A+Aff(|(r v)e|v? + 70 )0 — 0] + 1)dxds

<A+ j‘ T{[vz + ()1 )(r*v)? + A0v*Ydxds
00

-~

f max {16 — 6 +rv2}f(v + 7~ *)dxds

0
t oo t _ o0

S A+ [ [P(r*v)2dxds + Af max |0 — 0 [ v*dxds, (5.18)
00 0 [0.00) 0

and for j = 3,

t - o] X .
I(t) £ AFFi—i(t) + A [ max {10 — 0P + v*} [ (v¥ =2 4+ v¥*)dxds
0 0oe 0

2 t 0o
+J—f [ v¥72(r?0)? dxds
2 00
j2 t oo |
< APA(Fjo + Fj)(t) + 5 [ [ ¥ (rPv)2 dxds . (5.19)
00

Inserting (5.18)—(5.19) into (5.17), applying Gronwall’s inequality and (5.16) if
Jj =2, we arrive at

t oo
Fi(t)+ [ [ oY (Po);dxds < A{1+ PFya(0) + j(J = 2)F;2(0)}, j 2 2,
00
which by induction leads to
oo t oo
[ ¥, tydx+ 2 [ 2(r*o)idxds < T; Yt 20, j=2, (5.20)
0 00

where I'; is a constant that depends only on j and A.
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Using Eq.(2.11), (5.15)—(5.16), following the same arguments as used for

(5.17)—(5.19), we get for j = 2,

(% / v¥(x,t)dx

[e ol o] A
ds < A+ Af* [ [ v¥72(r*v)2 dxds
00

o0
+ A — 2)jm>a())( [ @72+ 0¥ dx < 00,
=0 ¢

which together with (5.15) and (5.20) yields ii) of Theorem 5.1. The proof is
complete. O
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