Commun. Math. Phys. 178, 265-280 (1996)

Growth and Oscillations of Solutions of Nonlinear Schrödinger Equation

Sergei B. Kuksin

Steklov Mathematical Institute, Vavilova St. 42, 117966 Moscow, Russia

Received: 20 May 1995/Accepted: 29 August 1995

To the memory of Natasha and Sergei Kozlov

Abstract: We study the nonlinear Schrödinger equation in an *n*-cube, n = 1, 2, 3, under Dirichlet boundary conditions, treating it as a dynamical system in a function space formed by sufficiently smooth functions of x. We show that this space contains a distinguished small subset \mathfrak{A} which is a recursion subset for the dynamical system and describe the dynamics of the equation in terms of the trajectory's recurrence to \mathfrak{A} . We use this description to estimate from below the space- and time-space oscillations of solutions in terms of a quantity, similar to the Reynolds number of classical hydrodynamics.

Introduction

We consider the nonlinear Schrödinger equation

$$-i\dot{u} = \delta(-\Delta u + V(x)u) + |u|^2 u, \quad u = u(t,x), \ \delta > 0,$$
(1)

with the space-variable x in the *n*-cube $K^n = \{0 \le x_j \le \pi\}, n = 1, 2, 3,$ under Dirichlet boundary conditions

$$u|_{\partial K^n} = 0. (2)$$

We study the problem (1), (2) as a dynamical system in a function space Z formed by sufficiently smooth complex functions u(x),

$$Z \subset C^m(K^n; \mathbb{C}), \quad m \ge 3, \tag{3}$$

which vanish at ∂K^n . That is, given $u_0 \in Z$ we interpret the solution u(t,x) of (1), (2) with $u(0,x) = u_0(x)$ as a curve $u(t) \in Z$ and study the trajectories u(t) as well as the flow-maps $S^t: Z \to Z$, $u_0 \mapsto u(t)$.

The problem (1), (2) is well-known to be Hamiltonian with the Hamiltonian \mathcal{H} ,

$$\mathscr{H}(u(x)) = \int \left(\frac{\delta}{2} |\nabla u(x)|^2 + \frac{\delta}{2} V(x) |u(x)|^2 + \frac{1}{4} |u(x)|^4\right) dx / (2\pi)^n, \quad (4)$$

which is an integral of motion for the dynamical system:

$$const = \mathscr{H}(u(t)) =: E^2 , \qquad (5)$$

(see [7] and below).

In the space Z we define the subset \mathfrak{A}^{δ} ,

$$\mathfrak{A}^{\delta} = \left\{ u(x) \in Z \mid |u|_{\infty} < K\delta^{\mu} \, \|u\|^{1-2\mu} \right\},$$

where $|\cdot|_{\infty}$ is the L^{∞} -norm, $\|\cdot\|$ is the norm in Z, K is an absolute constant and

$$\mu = \mu(m) = \frac{m(m-1)}{2m^2 + 3m - 3}$$

(so $\mu(3) = \frac{1}{4}$ and $\mu \nearrow \frac{1}{2}$ as *m* grows).

For reasons we explain later, we call \mathfrak{A}^{δ} "the essential part of the phase-space Z." The set \mathfrak{A}^{δ} becomes small with δ and becomes relatively small as ||u|| grows. Indeed, when $\delta \searrow 0$ the sets \mathfrak{A}^{δ} form a sequence of embedded domains with zero intersection, besides for δ fixed and for $S_r = \{||u|| = r\}$ the intersection $\mathfrak{A}^{\delta} \cap S_r$ in the L^{∞} -norm has diameter $\leq 2K\delta^{\mu}r^{1-2\mu}$, thus forming a relatively small part of the sphere S_r which has the L^{∞} -diameter $\geq C^{-1}r$.

For *m* large we have $\mu \approx 1/2$, $1 - 2\mu \approx 0$ and in a finite part of the space Z the set \mathfrak{A}^{δ} looks like a tube of the L_{∞} -diameter $\sim K\sqrt{\delta}$.

In parts 2,3 we show that – in a sense – dynamics of (1), (2) outside \mathfrak{A}^{δ} is simple and the whole dynamics of (1), (2) is determined by its rather complicated behavior in \mathfrak{A}^{δ} . More exactly, we prove

Theorem. If u(t,x) is a solution of (1), (2) with $u(0,x) = u_0 \notin \mathfrak{A}^{\delta}$, $||u_0|| = r$, then there exist $t',t'' \leq Cr^{-a}\delta^{-b}$ such that ||u(t')|| = 2r and $u(t'') \in \mathfrak{A}^{\delta}$. The positive numbers a, b, C are δ, r -independent.

Due to the theorem, a trajectory of (1), (2) either

i) moves outside \mathfrak{A}^{δ} toward this set, finally entering \mathfrak{A}^{δ} and increasing its Z-norm (at least doubling it),

or

ii) moves inside \mathfrak{A}^{δ} .

Since the hamiltonian \mathscr{H} is an integral of motion, then the growth of the "smooth" Z-norm at the stage i) means that low Fourier modes (in x) of the solution decrease while high modes increase – energy of this solution goes to high frequencies (the phenomenon also known as the *direct cascade of energy*, see more on the subject in [11, 8, 9]). Very likely during the stage ii) the Z-norm decreases (the energy goes to low modes – the *inverse cascade of energy*) and finally the solution leaves \mathfrak{A}^{δ} , if E in (5) is sufficiently large (more precisely, if large is the ratio E/δ). This is certainly the case for solutions of the Zakharov–Shabat equation (Eq. (1) with $V \equiv 0$, n = 1) which start outside \mathfrak{A}^{δ} since this equation is integrable and all its solutions are almost-periodic in time; they must decrease the Z-norm somewhere, so – inside \mathfrak{A}^{δ} .

In [4] Ju.S. Ilyashenko obtained a description of dynamics of the Kuramoto-Sivashinsky equation, similar to i), ii). Since that equation is parabolic, its solutions tend to a bounded finite-dimensional attractor in the corresponding function phasespace. On its way to the attractor each trajectory changes from i) to ii) a finite

number of times and ends at the stage ii) in the vicinity of the attractor (see [4], especially Part 2.2).

Since $||u|| \ge K^{1/(2\mu)}\sqrt{\delta}$ for each $u \notin \mathfrak{A}^{\delta}$, then by the time

$$T_{\text{pull}} = C_1 \delta^{-b-a/2}, ^1$$

the flow $\{S^t\}$ will pull the whole space Z through a narrow slit formed by the set \mathfrak{A}^{δ} . Phenomenons of this kind are typical for Hamiltonian partial differential equations considered in smooth function spaces [8]. For deep symplectic reasons they are impossible in some distinguished function phase-spaces of low smoothness (see [8, 9] and references therein).

By the theorem a solution u(t) of (1), (2) either is in \mathfrak{A}^{δ} , or it moves fast toward \mathfrak{A}^{δ} . In Part 4 we use this description of the dynamics of (1), (2) to estimate oscillations of its solutions u(t,x). As a measure of the oscillations we propose the function

$$\omega_m(t) = \|u(t)\|/|u(t)|_{\infty}$$

(Due to (3) this is something like the C^m -norm of the solution divided by its L^{∞} -norm). The theorem implies that $\omega_m(t)$ becomes large at some point t_* of each time-interval of the length *l*,

$$l = C/\sqrt{E\delta}$$

(E was defined in (5); the factor $\delta^{-1/2}$ corresponds to a natural time-scaling, see Part 4). Here "large" means that

$$\omega_m(t_*) \ge C^{-1} (E/\delta)^{\kappa} \tag{6}$$

with some $\kappa > 1/5$.

We also consider a quantity which takes into account time-oscillations of solutions. We define the function $\Omega_m(t)$ as

$$\Omega_m = \frac{\|u(t)\| + C \|\dot{u}(t)\|/\sqrt{E\delta}}{|u(t)|_{\infty}}$$

and prove that averaging of Ω_m along each time-interval of length $\geq 3l$ is at least one-sixth of the r.h.s. of (6). Roughly,

$$\langle \Omega_m \rangle_{
m loc} \geq C^{-1} (E/\delta)^{\kappa}$$

(here $\langle \cdot \rangle_{\text{loc}}$ stands for local averaging in t).

Thus, solutions of (1), (2) oscillate at least as (E/δ) in a positive degree. We suppose that for (1), (2) (and other Hamiltonian PDE's) the quantity E/δ plays a role similar to the role of the Reynolds number for the equations of hydrodynamics [MY, Chapter 1].

The theorem describes behavior of solutions of the problem (1), (2) for $0 \leq T_{pull}$ (since $t', t'' \leq T_{pull}$) and gives no information on long-time behavior of individual solutions. Based on the fast² growth of the norms ||u(t)|| of solutions outside \mathfrak{A}^{δ} one could conjecture that the solutions grow fast (at least - grow indefinitely) as t grows. This guess fails since the problem (1), (2) with n = 1, $V \equiv 0$ is integrable – all its solutions are almost-periodic in time (and so are bounded). One could try

¹ $=C_1\delta^{-1}$ since a + b/2 = 1 - see in Part 3. ² In fact - super exponentially fast.

to save the conjecture imposing the additional restriction that the Eq. (1) must be "typical" (and so non integrable), but this also does not help since for n = 1, 2 and for typical V(x) the problem (1), (2) has abundance of time-quasiperiodic solutions (see [7] for n = 1 and [3] for n = 2). These solutions jointly are dense near zero and their Z-norms jointly are unbounded (cf. Proposition in the introduction of [8]). It is an interesting open problem if the problem (1), (2) with $n \ge 2$ has unbounded (in Z) solutions.

We remark that even in the integrable case (V = 0, n = 1) the Eq. (1) with small δ is rather complicated. Limiting (as δ goes to zero) behaviour of its solutions is studied in [5]; detailed analysis of solutions with fixed $0 < \delta \ll 1$ was not done yet.³

A few words on the notations we use: by C, C_1 etc. we denote different positive constants, independent of the main parameters (like δ and E), by $\|\cdot\|_s$ denote the C^s -norms, by $|\cdot|_p$ – the L^p -norms. We write a function u(t,x) as u(t) when we treat it as a curve in a function space of functions of x.

1. The Equation and its Phase-Space

We study the nonlinear Schrödinger equation in the *n*-cube $K^n = \{x \in \mathbb{R}^n | 0 \le x_j \le \pi\}$, n = 1, 2, 3, under Dirichlet boundary conditions:

$$-i\dot{u} = \delta(-\Delta u + V(x)u) + |u|^2 u, \quad u = u(t,x), \ x \in K^n ,$$
(1.1)

$$u|_{\partial K^n} = 0, \qquad (1.2)$$

where $0 < \delta \leq 1$ and V is a smooth real potential. It is convenient to extend V(x) to an even 2π -periodic function V(x), $x \in T^n = \mathbb{R}^n / 2\pi \mathbb{Z}^n$,

$$V(x_1,\ldots,x_n)=V(x_1,\ldots,-x_j,\ldots,x_n), \quad j=1,\ldots,n,$$

and extend solution u(t,x) to an odd 2π -periodic function u(t,x), $x \in T^n$,

$$u(x_1,...,x_n) = -u(x_1,...,-x_j,...,x_n), \quad j = 1,...,n,$$
(1.3)

thus recasting (1.2) as odd periodic boundary conditions (1.3).⁴

We suppose that the potential V(x) as a function on the torus T^n is even and smooth,

$$V \in C^{\infty}(T^n, \mathbb{R})$$
,

and denote by A the linear operator

$$A(u(x)) = -\Delta u + V(x)u .$$

Let us take any Banach space H of complex functions u(x), $x \in T^n$, with the norm $\|\cdot\|$, which is a Banach algebra with involution (i.e., $\|\bar{u}\| = \|u\|$ and $\|uv\| \leq C\|u\| \|v\|$). Suppose that H is embedded to some space $C^m = C^m(T^n, \mathbb{C}), m \geq 3$:

$$H \subset C^m, \qquad \|u\|_m \le \|u\| . \tag{1.4}$$

³ Investigation of finite-gap solutions of (1) (V = 0, n = 1) with small δ is interesting since there are good hopes that using the KAM-theorems [7] one can study solutions of (1) with nonzero potential V and large values of E/δ as perturbations of the finite-gap trajectories.

⁴ Clearly u(x) ($x \in T^n$) as in (1.3) meets (1.2) being restricted to K^n .

Suppose also that H is invariant for the flow of (1.1) (solution of (1.1) with initial data from H stays in H for all t). Then the subspace $Z \subset H$ formed by odd functions,

$$Z = \{u(x) \in H \mid u \text{ meets } (1.3)\},\$$

also is invariant. We equip Z with the norm $\|\cdot\|$ and take it for the phase space of the problem (1.1), (1.3).

Example 1 (n = 1). Since the L_2 -norm and the Hamiltonian \mathscr{H} (see below) are integrals of motion for Eq. (1.1), then the Sobolev H^1 -norm (in x) of a solution u(t,x) can be estimated via the H^1 -norm of the initial data u(0,x) uniformly in t. Therefore, Eq. (1.1) is well-posed in the space $H^1(T^1; \mathbb{C})$. Simple induction shows that it is also well-posed in the spaces $H^1(T^1; \mathbb{C})$, $l \ge 1$. Since $H^l \subset C^m$ if $l > m + \frac{1}{2}$, then we can take

$$H = H^{l}(T^{1}; \mathbb{C}), \quad l > m + \frac{1}{2}$$

Example 2 $(n = 2, 3, V \equiv 0)$. Now the equation also is well-posed in the Sobolev spaces H^l , $l \ge 1$ – this is a rather nontrivial result of J. Bourgain [2] – and we can take $H = H^l(\mathbb{T}^n; \mathbb{C})$, where

$$l > \begin{cases} m+1, & n=2, \\ m+\frac{3}{2}, & n=3, \end{cases}$$

since these spaces are embedded to $C^m(T^n; \mathbb{C})$. For V nonzero see Part 5.4 below.

We supply the linear space Z with the skew-symmetric two-form, defining the skew-product of functions u(x), $v(x) \in Z$ as

$$-\mathrm{Im}\int u\bar{v}\,dx/(2\pi)^n$$

This two-form defines a constant-coefficient symplectic structure in the phase-space Z and (1.1) becomes the Hamiltonian equation with the Hamiltonian \mathcal{H} ,

$$\mathscr{H}(u) = \int_{T^n} \left(\frac{\delta}{2} |\nabla u(x)|^2 + \frac{\delta}{2} V(x) |u(x)|^2 + \frac{1}{4} |u(x)|^4 \right) dx / (2\pi)^n .$$

In particular, $\mathscr{H}(u(t, \cdot)) = \text{const for any solution } u \text{ of } (1.1) \text{ in } Z \text{ (see e.g. in [7])}.$

Multiplying (1.1) by $\bar{u}(t,x)$, integrating over T^n and taking the imaginary part of the equality we get that

$$|u(t, \cdot)|_2 = \text{const}$$

for any solution u.

We also observe that since $H \subset C^m$, then by the Gagliardo–Nirenberg inequality

$$\|u\|_{k} \leq C_{k} \|u\|_{\infty}^{\frac{m-k}{m}} \|u\|^{\frac{k}{m}}, \quad 0 \leq k \leq m$$
(1.5)

(see [1]; the special case of the inequality we use now goes back to Hadamard-Landau-Kolmogorov).

2. The Main Estimate for the Flow

In this part, we study solutions $u(t) \in Z$ of (1.1) such that $u(0) = u_0$, where

$$||u_0|| = 1, \qquad |u_0|_{\infty} = \varrho$$
 (2.1)

S.B. Kuksin

and

$$\varrho \ge K\delta^{\mu} \quad \text{with} \quad \mu = \mu(m) = \frac{m(m-1)}{2m^2 + 3m - 3}$$

(clearly $\varrho \leq 1$). The function μ increases with $m \geq 3$ and

$$\mu(3) = \frac{1}{4}, \qquad \mu(m) \nearrow \frac{1}{2} \quad \text{as } m \longrightarrow \infty .$$
 (2.2)

We study the solutions for $0 \leq t \leq T$, where

$$T = K_1 \varrho^{-\frac{2m+1}{m}} \le K_1 K^{-\frac{2m+1}{m}} \delta^{-\nu}, \quad \nu = \frac{2m+1}{m} \mu.$$
 (2.3)

The *m*-independent positive constants K, K_1 are such that

$$K \ge 2\sqrt{C_+K_1}, \quad K \ge 2, \qquad (2.4)$$

where C_+ is an absolute constant from the inequality (2.8) below. The values of K, K_1 will be specified later.

We shall show that each solution of (1.1), (2.1) doubles its Z-norm somewhere on the time-segment [0, T]. To prove the doubling we suppose that on the contrary

$$\|u(t)\| \le 2 \quad \text{for all } 0 \le t \le T , \tag{2.5}$$

and shall extract a contradiction from this assumption.

Below by C, C_1 , etc., we denote different positive constants independent of δ, ϱ and K, K_1 (which can depend on *m*).

Elementary calculations show that for T as above we have

$$T \leq K_2 \varrho^{2/m} \delta^{-1}, \qquad K_2 = K_1 K^{-\frac{2m+3}{m}} < \frac{1}{4C_+}.$$
 (2.6)

Suppose that for some $T_1 \leq T$ we have

$$|u(t)|_{\infty} \leq 2\varrho \quad \text{if } 0 \leq t \leq T_1 . \tag{2.7}$$

Then by (2.5) and (1.5),

$$|Au(t)|_{\infty} \leq C ||u(t)||_{2} \leq C_{+} |u(t)|_{\infty}^{\frac{m-2}{m}} \leq 2C_{+} \varrho^{\frac{m-2}{m}}.$$
 (2.8)

Take any $x \in T^n$. Multiplying (1.1) by $\bar{u}(t,x)$ and taking the imaginary part we get

$$\left|\frac{1}{2} \frac{d}{dt} |u(t,x)|^2\right| \le \delta |Au(t,x)| |u(t,x)| \le 2\delta C_+ \varrho^{2-\frac{2}{m}}.$$
(2.9)

In particular, $|u(t,x)|^2 \leq \varrho^2 + 4t\delta C_+ \varrho^{2-\frac{2}{m}}$ and using (2.6) we see that

$$|u(t,x)|^2 \leq \varrho^2(1+4K_2C_+) < 2\varrho^2$$
.

It means that for each solution which satisfies (2.1), (2.5) the estimate (2.7) holds with $T_1 = T$:

$$|u(t)|_{\infty} \leq 2\varrho \quad \text{if } 0 \leq t \leq T .$$

$$(2.10)$$

Now let us denote

$$w(t,x) = |u(t,x)|^2 - |u_0(x)|^2$$
.

Then $w(0,x) \equiv 0$ and by (2.9),

$$\left|\frac{d}{dt}w(t,x)\right| \leq C\delta\varrho^{2-\frac{2}{m}}.$$

Therefore

$$|w(t)|_{\infty} \leq C t \delta \varrho^{2-\frac{2}{m}} .$$
(2.11)

Since H is a Banach algebra, then by (2.5), $||w(t)|| \leq C$ for all $0 \leq t \leq T$. Now by (1.5) and (2.11),

$$\|w(t)\|_{k} \leq C(t\delta\varrho^{2-\frac{2}{m}})^{\frac{m-k}{m}}.$$
(2.12)

We rewrite (1.1) as

$$\dot{u} - i(|u_0|^2 + w)u = i\delta Au$$

Treating this equation as a nonautonomous linear ordinary differential equation for the complex function $t \mapsto u(t,x)$ with the right-hand side $i\delta Au$, we write its solution u as

$$u(t,x) = i\delta \int_0^t \exp\left(i(t-\tau)|u_0|^2 + i\int_{\tau}^t w(\theta,x) d\theta\right) Au(\tau,x) d\tau$$
$$+ \exp(it|u_0|^2) \exp\left(i\int_0^t w(\tau,x) d\tau\right) u_0(x) =: u_1 + u_2$$

 $(u_1 \text{ denotes the first summand and } u_2 - \text{the second})$. We wish to estimate $||u(t)||_1$ from below. To do so we shall estimate $||u_1(t)||_1$ from above and $||u_2(t)||_1$ from below.

Since both the functions $|u_0(x)|^2$ and $w(\theta, x)$ are real, then the norm of the exponential factor under the integral in u_1 equals one. Any first-order x-derivative of u_1 contains two terms (since we differentiate either Au or the exponent). By (1.5) and (2.10),

$$\|u(t)\|_{k} \leq C\varrho^{\frac{m-k}{m}} \quad \text{for } 0 \leq k \leq m.$$
(2.13)

As $||Au||_k \leq C_k ||u||_{k+2}$, then from (2.13) with k = 2,3 we have

$$\|u_1(t)\|_1 \leq C\delta \int_0^t \left((t-\tau) \left(\|u_0 \bar{u}_0\|_1 + \sup_{\theta \leq t} \|w(\theta)\|_1 \right) \varrho^{\frac{m-2}{m}} \right) d\tau + C\delta \varrho^{\frac{m-3}{m}} t.$$

By (2.13) with k = 1 and (2.12), (2.5), $||u_0\bar{u}_0||_1 + ||w(\theta)||_1 \leq C \varrho^{2\frac{m-1}{m}}$. Therefore

$$\|u_1(t)\|_1 \le C\delta \varrho^{\frac{3m-4}{m}} t^2 + C\delta \varrho^{\frac{m-3}{m}} t.$$
 (2.14)

Now we pass to the function $u_2(t,x)$ and write it as $u_2 = u_2^1 u_2^2 u_0$, where

$$u_2^1 = \exp{(it|u_0|^2)}, \qquad u_2^2 = \exp{i\int_0^t w(\tau,x)\,d\tau}.$$

Clearly

$$|u_2||_1 \ge \sup_{x} |(\nabla_x u_2^1) u_2^2 u_0| - ||u_2^2||_1 |u_2^1|_{\infty} |u_0|_{\infty} - ||u_0||_1 |u_2^2|_{\infty} |u_2^1|_{\infty} .$$
 (2.15)

We shall estimate the three terms in the r.h.s. As $|u_2^1| \equiv 1$, $|u_2^2| \equiv 1$, then we already know that

$$|u_2^1|_{\infty} = 1, \qquad |u_0|_{\infty} = \varrho, \qquad |u_2^2|_{\infty} = 1, \qquad ||u_0||_1 \le C \varrho^{\frac{m-1}{m}}.$$
 (2.16)

S.B. Kuksin

Since $|u_2^2| \equiv 1$, then

$$\sup_{x} |(\nabla_{x} u_{2}^{1}) u_{2}^{2} u_{0}| = t \sup_{x} |u_{0}(x) \nabla_{x} |u_{0}|^{2}| = \frac{2}{3} t \sup_{x} |\nabla_{x} |u_{0}|^{3}| \ge t C^{-1} \varrho^{3}, \quad (2.17)$$

where the last estimate follows from (2.1) since u_0 vanishes at ∂K^n .

It remains to estimate $||u_2^2||_1$. Using (2.12) we get that

$$\|u_2^2\|_1 \le t \sup_{0 \le \tau \le t} \|w(\tau)\|_1 \le Ct(t\delta\varrho^{2-\frac{2}{m}})^{\frac{m-1}{m}}.$$
(2.18)

Now the estimates (2.14)-(2.18) jointly imply the estimate for u(t,x) from below:

$$\|u(t)\|_{1} \geq C_{1}^{-1} t \varrho^{3} - C_{2} t^{2} \delta \varrho^{\frac{3m-4}{m}} - C_{3} t \delta \varrho^{\frac{m-3}{m}} - C_{4} t^{\frac{2m-1}{m}} \varrho^{1+2(\frac{m-1}{m})^{2}} \delta^{\frac{m-1}{m}} - C_{5} \varrho^{\frac{m-1}{m}} .$$
(2.19)

By (2.13) we have

$$||u(t)||_1 \le C_* \varrho^{\frac{m-1}{m}} \text{ for } 0 \le t \le T.$$
 (2.20)

On the other hand, by (2.19),

$$\|u(t_*)\|_1 \geq 2C_*\varrho^{\frac{m-1}{m}}$$

if t_* meets the following system of inequalities:

$$C_{1}^{-1} t \varrho^{3} \geq (5C_{*} + C_{5}) \varrho^{\frac{m-1}{m}} ,$$

$$C_{2} t^{2} \delta \varrho^{\frac{3m-4}{m}} < C_{*} \varrho^{\frac{m-1}{m}} ,$$

$$C_{3} t \delta \varrho^{\frac{m-3}{m}} < C_{*} \varrho^{\frac{m-1}{m}} ,$$

$$C_{4} t^{\frac{2m-1}{m}} \varrho^{1+2(\frac{m-1}{m})^{2}} \delta^{\frac{m-1}{m}} < C_{*} \varrho^{\frac{m-1}{m}} ,$$

or

$$\begin{cases} t \ge C_1' \varrho^{-2 - \frac{1}{m}}, \\ t < C_2' \delta^{-\frac{1}{2}} \varrho^{-\frac{2m-3}{2m}}, \\ t < C_3' \delta^{-1} \varrho^{\frac{2}{m}}, \\ t < C_4' \delta^{-\frac{m-1}{2m-1}} \varrho^{-\frac{2m^2 - 3m+2}{m(2m-1)}}. \end{cases}$$
(2.21)

The first two inequalities in (2.21) are consistent if

$$\varrho > C_1'' \,\,\delta^{\frac{m}{2m+5}} ;$$

the first and the third are if

$$\varrho > C_2'' \,\,\delta^{rac{m}{2m+3}}$$
;

and the first and the fourth are if

$$\varrho > C_3'' \,\delta^{\mu}, \qquad \mu = \mu(m) \quad \text{as in (2.2)}.$$

Let us denote $\tilde{C} = \max\{C_1'', C_2'', C_3''\}$. Then the system (2.21) is consistent if

 $\varrho > \tilde{C}\delta^{\mu}$.

We choose in (2.3) $K_1 = C'_1$ and take for K any number such that

$$K > \tilde{C}, \qquad K \ge 2, \qquad K \ge 2\sqrt{C_+K_1}$$

With this choice of K, K₁ the assumptions (2.4) are met and $t = T := K_1 \varrho^{-2-1/m}$ satisfies (2.21). Thus, $||u(T)||_1 \ge 2C_* \varrho^{(m-1)/m}$ in a contradiction with (2.20).

Since the assumption (2.5) led to a contradiction, then the solution u(t) doubles its norm for some $t \leq T = K_1 \varrho^{-(2m+1)/m}$ with K_1 as above and we get

Theorem 1. There exist constants K, K_1 such that if u(t) is a solution of (1.1) and $u(0) = u_0$ satisfies (2.1) with some

$$\varrho \ge K \,\delta^{\mu}, \qquad \mu = \mu(m) = \frac{m(m-1)}{2m^2 + 3m - 3},$$

then there exists t_1 ,

$$t_1 \leq K_1 \varrho^{-2-1/m} \leq C \delta^{-\nu}, \qquad \nu = \frac{(2m+1)(m-1)}{2m^2 + 3m - 3} < 1,$$

such that $||u(t_1)|| \geq 2$.

Remark 1. The statement and its proof remain true if we replace $\mu(m)$ and $\nu(m)$ by any $\tilde{\mu}, \tilde{\nu}$ such that $0 < \tilde{\mu} \leq \mu(m), \ \tilde{\nu} = \frac{2m+1}{m} \tilde{\mu}$.

3. Rescaled Estimates and the Essential Part of the Phase-Space

We define a subset $\mathfrak{A} \subset Z$ which we call "essential part of the phase-space Z" as follows:

$$\mathfrak{A} = \{ u(x) \in Z \mid |u|_{\infty} < K\delta^{\mu} ||u||^{1-2\mu} \},$$

with μ and K as in Theorem 1. Since $|u|_{\infty} \leq ||u|| = (||u||/\sqrt{\delta})^{2\mu} \delta^{\mu} ||u||^{1-2\mu}$, then \mathfrak{A} contains the ball

$$\{u \in Z \mid ||u|| < \sqrt{\delta} K^{1/(2\mu)}\}$$
(3.1)

(and \mathfrak{A} does not contain some points of the norm $C\sqrt{\delta}$, where $C > K^{1/(2\mu)}$ is δ -independent).

Now let us consider a solution of (1.1) with any initial condition outside \mathfrak{A} :

$$u(0,x)=u_0(x)\notin\mathfrak{A}$$
.

We denote $r = ||u_0||, v = u/r$. Then

$$v(0,x) = v_0(x) = u_0/r, \qquad ||v_0|| = 1,$$
 (3.2)

and

$$-i\dot{v} = \delta Av + r^2 |v|^2 v \,.$$

So if we stretch the time t as

$$t=r^{-2}\tau,$$

then we get for v the rescaled equation:

$$-iv'_{\tau} = \delta_1 A v + |v|^2 v, \quad \delta_1 = \delta/r^2.$$
 (3.3)

S.B. Kuksin

Since $u_0 \notin \mathfrak{A}$, then by (3.1) $r \ge \sqrt{\delta} K^{1/(2\mu)} > \sqrt{\delta}$. So

$$\delta_1 \leq 1$$
 and $||v_0|| = 1$, $|v_0|_{\infty} = |u_0|_{\infty} / r \geq K (\delta/r^2)^{\mu} = K \delta_1^{\mu}$.

Now application of Theorem 1 with $\delta = \delta_1$ to the problem (3.2), (3.3) implies existence of $\tau_1 \leq C \delta_1^{-\nu}$, corresponding to $t_1 = r^{-2} \tau_1 \leq C r^{-2} (\delta/r^2)^{-\nu}$, such that

$$r_1 := ||u(t_1)|| \ge 2r = 2||u_0||$$

If still $u(t_1) \notin \mathfrak{A}$, then we can iterate the procedure to find $t_2 \leq C r_1^{-2} (\delta/r_1^2)^{-\nu}$ such that

$$r_2 := \|u(t_1 + t_2)\| \ge 2^2 \|u_0\|$$

We can iterate further, provided that $u(t) \notin \mathfrak{A}$, to find t_1, \ldots, t_M such that

$$r_M := \|u(t_1 + \dots + t_M)\| \ge 2^M \|u_0\|$$
(3.4)

and

$$t_M \leq C r_{M-1}^{-2} (\delta/r_{M-1}^2)^{-\nu}$$
.

Denote $u_M = u(t_1 + \cdots + t_M)$. Since the flow of (1.1) preserves the Hamiltonian \mathscr{H} , then

$$|u_M|_4 \leq 4 \ \mathscr{H}(u_M) = 4 \mathscr{H}(u_0)$$

By Sobolev's theorem and the Gagliardo-Nirenberg inequality (see [1]),

$$|u_M|_{\infty} \leq C ||u_M||_{1,4} \leq C_1 ||u_M||^{\frac{1}{m}} |u_M|_4^{\frac{m-1}{m}} \leq C r_M^{\frac{1}{m}}, \qquad (3.5)$$

where $\|\cdot\|_{1,4}$ stands for the norm in the Sobolev space $W^{1,4}(T^n; \mathbb{C})$ (we recall that $n \leq 3$). If $u_M \notin \mathfrak{A}$, then we have $|u_M|_{\infty} \geq K \delta^{\mu} r_M^{1-2\mu}$. Using (3.5) we find that

$$C \ge K \,\delta^{\mu} \, r_M^{1-2\mu-1/m}$$

Suppose for a moment that n = 2 or 3. Then $1 - 2\mu > 1/m$ and we see that the norms r_M are bounded by an *M*-independent constant. Now (3.4) implies that $M \leq M(u_0)$. It means that after a finite number of steps the solution u(t) hits to \mathfrak{A} . The total time the solution u(t) spends outside \mathfrak{A} is estimated:

$$t_1 + \dots + t_M \leq C \,\delta^{-\nu} (r^{2\nu-2} + r_1^{2\nu-2} + \dots)$$
$$\leq C \,\delta^{-\nu} r^{2\nu-2} (1 + 4^{\nu-1} + 4^{2(\nu-1)} + \dots) \,.$$

Since $v = 1 - \frac{5}{2m} + O(m^{-2}) < 1$, then

$$t_1 + \dots + t_M \leq mC \,\delta^{-\nu} r^{2\nu-2} \,. \tag{3.6}$$

If n = 1, then $|u_M| \leq C ||u_M||_{2/3,2} \leq C_1 ||u_M||^{2/(3m)} |u_M|_2^{(3m-2)/(3m)} \leq C r_M^{2/(3m)}$ and (3.6) also follows.

We have proved the following result:

Theorem 2. If u(t,x) is a solution of (1.1) with $u(0,x) = u_0(x) \notin \mathfrak{A}$, $||u_0|| = r$, then

- 1) there exists $t' \leq C_1 r^{2\nu-2} \delta^{-\nu}$ such that $||u(t')|| \geq 2r$,
- 2) there exists $t'' \leq C_2 r^{2\nu-2} \delta^{-\nu}$ such that $u(t'') \in \mathfrak{A}$.

Here v = v(m) as in Theorem 1.

Remark 2. The arguments we used to prove Theorems 1,2 are applicable as well to negative times t < 0. Thus, we can find negative $-t'_1, -t''_1$ such that t'_1, t''_1 meet the same estimates as t', t'' and $||u(-t'_1)|| \ge 2r$, $u(-t''_1) \in \mathfrak{A}$.

In particular, \mathfrak{A} is a recursion subset of the phase-space Z – each trajectory of (1.1) in Z visits \mathfrak{A} at arbitrarily large values of times.

In addition, since by (3.1) $r \ge \sqrt{\delta} K^{1/(2\mu)}$ for each $u_0 \notin \mathfrak{A}$, then $t'' \le C\delta^{-1}$ and by the time

$$T_{\text{pull}} = C \, \delta^{-1}$$

the flow $\{S^t\}$ will pull the whole space Z through its essential part \mathfrak{A} .

4. Oscillations of Solutions

In this part we discuss properties of solutions u(t) with large values of the quantity R,

$$R = \frac{E}{\delta}$$
 where $\mathscr{H}(u(t)) \equiv E^2$.

(We denote the ratio by R to note its similarity with the Reynolds number of classical hydrodynamics [10].) To do so, it is convenient to introduce the "fast time" $\tau = \sqrt{\delta} t$, so

$$rac{\partial}{\partial t} = \sqrt{\delta} \; rac{\partial}{\partial au} \; ,$$

and to write (1.1) as

$$-i\sqrt{\delta} u_{\tau}' = -\delta \Delta u + |u|^2 u .$$
(4.1)

Our goal is to study the function

$$\omega(\tau) = \omega_m(\tau) = \frac{\|u(\tau)\|}{|u(\tau)|_{\infty}}$$

which we propose to use as a measure of the oscillating solutions of (4.1). (The subindex *m* recalls that $H \subset C^m$ – we treat $\|\cdot\|$ as an "almost C^m -norm.") We shall show that Theorem 2 implies estimates for averaged characteristics of ω_m in terms of *R*.

Consider any solution $u(\tau) \in Z$, $0 \leq \tau \leq T$, of (4.1) such that $\mathscr{H}(u(\tau)) \equiv E^2$, where E is bounded from below by a positive δ -independent constant, $E \geq C^{-1}$. Let us denote $||u(\tau)|| = r(\tau)$. Since

$$C^{-1} \leq E^2 = rac{\delta}{2} |
abla u|_2^2 + rac{1}{4} |u|_4^4 \leq rac{\delta n}{2} r^2 + rac{1}{4} r^4 ,$$

then

Let us denote

$$\tilde{\varDelta}(\tau) = r(\tau)^{2(\nu-1)} \,\delta^{-\nu+1/2}$$

 $r(\tau)^2 \geq E/C_1 \; .$

Then by (4.2),

$$\tilde{\varDelta} \leq C_2 \varDelta, \qquad \varDelta = E^{\nu - 1} \delta^{-\nu + 1/2},$$

and by Theorem 2 if $u(\tau_0) \notin \mathfrak{A}$, then

$$\|u(\tau_0 + \tau_1)\| = 2 \|u(\tau_0)\| \quad \text{for some } \tau_1 \leq C_1 \Delta \leq C' \Delta , \qquad (4.3)$$

$$u(\tau_0 + \tau_2) \in \mathfrak{A}$$
 for some $\tau_2 \leq C_2 \tilde{\varDelta} \leq C \Delta$. (4.4)

(4.2)

Since for $u(\tau) \in \mathfrak{A}$ we have

$$\omega_m(\tau) \ge K^{-1} (r^2/\delta)^{\mu} \ge C_1^{-1} R^{\mu}$$
(4.5)

(we use (4.2)), then by (4.4) we get

Proposition 1. For each solution as above we have

$$\sup_{\tau_1 \le \tau \le \tau_1 + C\Delta} \omega_m(\tau) \ge C_1^{-1} R^{\mu(m)}$$
(4.6)

if $0 \leq \tau_1 \leq T - C\Delta$.

We recall that $\mu = \mu(m) \ge 1/4$ tends to 1/2 as $m \to \infty$. Next we estimate an average of the function

$$\widetilde{\Omega}_m = \omega_m + C \varDelta \, \left| \omega'_m \right|$$

and start with

Lemma. If $u(\tau_0) \in \overline{\mathfrak{A}}$ is such that $u(\tau_0 + \varepsilon) \notin \mathfrak{A}$ for all sufficiently small $\varepsilon > 0$, then there exists $\tau_* > \tau_0$, $\tau_* \leq \tau_0 + C\Delta$, such that $u(\tau_*) \in \mathfrak{A}$ and

$$\frac{1}{\tau_* - \tau_0} \int_{\tau_0}^{t_*} \widetilde{\Omega}_m(\tau) d\tau \ge \omega_m(\tau_0) .$$
(4.7)

Proof. Since the set \mathfrak{A} is open, then $u(\tau_0) \notin \mathfrak{A}$ and we can find $\tau' = \tau_1$ as in (4.3). We can suppose that $||u(\tau)|| < 2||u(\tau_0)||$ for $\tau_0 \leq \tau < \tau'$. Then by the estimate (2.10) from the proof of Theorem 1, $|u(\tau')|_{\infty} \leq 2|u(\tau_0)|_{\infty}$. Therefore $\omega(\tau') \geq \omega(\tau_0)$. If $\tau' \in \mathfrak{A}$ then at the moment τ'' of the next doubling of the *H*-norm we also have $\omega(\tau'') \geq \omega(\tau') \geq \omega(\tau_0)$. Finally, due to the proof of the second statement of Theorem 2, we shall find a point $\tau_* = \tau^{(N)} \in \mathfrak{A}$ such that $\omega(\tau_*) \geq \omega(\tau_0)$ and $\tau_* \in [\tau_0, \tau_0 + C\Delta]$.

Let us denote

$$\theta = \sup\{\tau \in [\tau_0, \tau_*] \, \big| \, \omega(\tau) \leq \omega(\tau_0)\} \, .$$

Then $\omega(\theta) = \omega(\tau_0)$ and $\omega \ge \omega(\tau_0)$ everywhere in $[\theta, \tau_*]$. Therefore denoting $f(\tau) = \omega(\tau) - \omega(\tau_0)$ we get:

$$\frac{1}{\theta - \tau_0} \int_{\tau_0}^{\theta} \widetilde{\Omega}_m(\tau) d\tau = \omega(\tau_0) + \frac{1}{\theta - \tau_0} \int_{\tau_0}^{\theta} (f(\tau) + C\Delta |f'(\tau)|) d\tau$$
$$\geq \omega(\tau_0) + \int_{\tau_0}^{\theta} (-|f'(\tau)| + \frac{C\Delta}{\theta - \tau_0} |f'(\tau)|) d\tau \geq \omega(\tau_0)$$

(to prove the last inequality we use that $f(\tau_0) = f(\theta) = 0$). Since $\widetilde{\Omega}_m \ge \omega_m \ge \omega(\tau_0)$ in $[\theta, \tau_*]$ then (4.7) follows. \Box

Proposition 2. For $\tau_2 > \tau_1 + 3C\Delta$ we have

$$\frac{1}{\tau_2 - \tau_1} \int_{\tau_1}^{\tau_2} \widetilde{\Omega}_m(\tau) d\tau \ge \frac{1}{3} C_1^{-1} R^{\mu} .$$
(4.8)

The constants C, C_1 are the same as in Proposition 1.

Proof. Let $a_1 \ge \tau_1$ be the first moment when the trajectory enters $\overline{\mathfrak{A}}$ and $b_1 \ge a_1$ be the moment of its first exit from $\overline{\mathfrak{A}}$. Let $a_2 = \tau_*(b_1) > b_1$, where τ_* is as in the lemma (with $\tau_0 = b_1$). Let $b_2 \ge a_2$ be the moment of the next exit from $\overline{\mathfrak{A}}$, etc.

We consider only the worst situation when $a_1 > \tau_1$ and $b_r < \tau_2 < a_{r+1}$ for some r. Since at each segment $[a_j, b_j]$ we have $\widetilde{\Omega}_m \ge \omega_m \ge C_1^{-1} R^{\mu}$ (see (4.5)), then averaging of $\widetilde{\Omega}_m$ along $[a_j, b_j]$ is $\ge C_1^{-1} R^{\mu}$. Averaging of $\widetilde{\Omega}_m$ along any segment $[b_j, a_{j+1}]$ by the lemma also is $\ge C_1^{-1} R^{\mu}$. Therefore averaging of $\widetilde{\Omega}_m$ along $[a_1, b_r]$ is $\ge C_1^{-1} R^{\mu}$.

By (4.4), $|a_1 - \tau_1| + |\tau_2 - b_r| \le 2C\Delta$. So $|\tau_2 - \tau_1| \le 3|b_r - a_1|$ and (4.8) follows. \Box

The number Δ contains the factor $\delta^{-\nu+1/2}$, where $\nu > 1/2$ and the factor is large for small δ . We can drop it, simultaneously changing the r.h.s. of (4.6), (4.8). Indeed, by Remark 1 we can replace μ and ν by $\tilde{\mu} \leq \mu$, $\tilde{\nu} = \frac{2m+1}{m} \tilde{\mu}$. Since $\mu \geq 1/4$ (see (2.2)), then we can take $\mu = m/(4m+2) < 1/4$. Then $\tilde{\nu} = 1/2$ and we get versions of the Propositions 1 and 2:

Proposition 1'. For $\tau_2 \geq \tau_1 + C/\sqrt{E}$ we have

$$\sup_{\tau_1 \le \tau \le \tau_2} \omega_m(\tau) \ge C^{-1} R^{m/(4m+2)} .$$
(4.6')

Proposition 2'. If $\tau_2 \geq \tau_1 + 3C/\sqrt{E}$, then

$$\frac{1}{\tau_2 - \tau_1} \int_{\tau_1}^{\tau_2} \left(\omega_m + \frac{C}{\sqrt{E}} |\omega'_m| \right) d\tau \ge \frac{1}{3} C^{-1} R^{\frac{m}{4m+2}} .$$
 (4.8')

We note that since $\mu(m)$ tends to 1/2 as *m* grows, then for large *m* the exponents of *R* in the r.h.s.'s of (4.6'), (4.8') are almost twice as small as in (4.6), (4.8).

If we treat (4.1) as a partial differential equation rather than a dynamical system in Z, then it is more natural to choose as a measure of space-time oscillations of a solution u not $\tilde{\Omega}_m$ but the function Ω_m ,

$$\Omega_m(\tau) = \frac{\|u(\tau)\| + C' \Delta \|u'(\tau)\|}{|u(\tau)|_{\infty}}$$

with C' as in (4.3). Observe that

$$\Omega_m(\tau) \ge \frac{\|u(\tau)\| + C' \Delta \left| \frac{\partial}{\partial \tau} \|u(\tau)\| \right|}{|u(\tau)|_{\infty}} \,. \tag{4.9}$$

We think that the quantity Ω_m is a natural measure for solution's oscillations and name the related statement "theorem":

Theorem 3. If $\tau_2 \geq \tau_1 + 3C' \Delta$, then

$$\frac{1}{\tau_2 - \tau_1} \int_{\tau_1}^{\tau_2} \Omega_m(\tau) d\tau \ge \frac{1}{6} C_1^{-1} R^{\mu} ; \qquad (4.10)$$

if $\tau_2 \ge \tau_1 + 3 C/\sqrt{E}$, then

$$\frac{1}{\tau_2 - \tau_1} \int_{\tau_1}^{\tau_2} \frac{\|u(\tau)\| + C E^{-1/2} \|u'(\tau)\|}{|u(\tau)|_{\infty}} d\tau \ge \frac{1}{6} C_2^{-1} R^{\frac{m}{4m+2}} .$$
(4.11)

Proof of (4.10) essentially follows the proof of Proposition 2. Let $b_1 \ge a_1 \ge \tau_1$ be the numbers from that proof and $b_1^2 > b_1$ be the first moment of doubling the solution's norm. If $u(b_1^2) \notin \mathfrak{A}$, let b_1^3 be the moment of the second doubling, etc. Finally, we shall find $b_1^j \in \mathfrak{A}$, $j \ge 2$, and by (4.3),

$$|b_1^p - b_1^{p-1}| \leq C' \Delta \quad \forall p \leq j.$$

$$(4.12)$$

Denote $a_2 = b_1^j$, denote by b_2 the moment of the next exit from $\overline{\mathfrak{A}}$, construct b_2, b_2^2, \ldots, a_3 as above, etc.

Clearly, the average of Ω_m along each segment $[a_r, b_r]$ (or along $[a_r, \tau_2]$ if $a_r < \tau_2 < b_r$) is $\geq C^{-1}R^{\mu}$. To study a segment $[b_r^p, b_r^{p+1}]$ let us take any sequence $b_r, b_r^2, \ldots, b_r^j = a_{r+1}$ and denote for short

$$x_1 = b_r, \qquad x_2 = b_r^2, \dots, x_j = b_r^j = a_{r+1}.$$

As in the proof of the lemma,

$$\omega(x_1) \leq \omega(x_2) \leq \cdots \leq \omega(x_j).$$
(4.13)

Besides for each $\tau \in [x_p, x_{p+1}]$ we have $|u(\tau)|_{\infty} \leq 2 |u(x_p)|_{\infty}$. By this inequality and (4.9), (4.12) for each p < j we have:

$$\begin{split} \frac{1}{x_{p+1} - x_p} \int_{x_p}^{x_{p+1}} \Omega_m(\tau) d\tau \\ &\geq \frac{1}{2(x_{p+1} - x_p) | u(x_p) |_{\infty}} \int_{x_p}^{x_{p+1}} \left(\|u(\tau)\| + C' \varDelta \left| \frac{\partial}{\partial \tau} \|u(\tau)\| \right| \right) d\tau \\ &\geq \frac{\|u(x_p)\|}{2 | u(x_p) |_{\infty}} + \frac{1}{2 | u(x_p) |_{\infty}} \int_{x_p}^{x_{p+1}} \left(- \left| \frac{\partial}{\partial \tau} \|u\| \right| + \frac{C' \varDelta}{x_{p+1} - x_p} \left| \frac{\partial}{\partial \tau} \|u\| \right| \right) d\tau \\ &\geq \frac{\|u(x_p)\|}{2 | u(x_p) |_{\infty}} = \frac{1}{2} \omega(x_p) \,, \end{split}$$

where we have used the elementary inequality $A^{-1} \int_0^A f(t) dt \ge f(0) - \int_0^A |f'(t)| dt$, valid for each C^1 -smooth f.

Now (4.13) implies that

$$\frac{1}{x_{p+1}-x_p}\int_{x_p}^{x_{p+1}}\Omega_m(\tau)\,d\tau \ge \frac{1}{2}\ C_1^{-1}R^{\mu}\,.$$

So we estimated the averages along all the segments with the possible exception of the segments $[\tau_1, a_1]$ (and $[b_r^j, \tau_2]$ if $\tau_2 \in [b_r^j, b_r^{j+1}]$). Since both the segments are shorter than $C'\Delta$, the result follows.

The estimate (4.11) results from (4.10) in the same way as Proposition 2' from Proposition 2. \Box

5. Some Generalizations

5.1. Periodic Boundary Conditions. The Eq. (1.1) can be studied under periodic boundary conditions – i.e., in the whole space H of the periodic functions

 $u(x), x \in T^n$ (see (1.4)). In this case for c > 0 we should consider the subsets $\mathscr{L}_c \subset H$,

$$\mathscr{L}_c = \{ u(x) \in H \mid |u(x)| = c \ \forall x \in T^n \}.$$

The sets \mathscr{L}_c are smooth Lagrangian submanifolds of the phase-space H which is given the symplectic structure defined in Part 1. Next we define the "frame" \mathscr{L} as the union of all \mathscr{L}_c ,

$$\mathscr{L} = \cup_c \mathscr{L}_c ,$$

and define essential part \mathfrak{A}_p of the phase-space H as

$$\mathfrak{A}_p = \{u(x) \, \big| \, \operatorname{dist}_{\infty}(u, \mathscr{L}) \leq K \delta^{\mu} \|u\|^{1-2\mu} \} \, .$$

Theorem 2 remains true for the periodic boundary value problem for Eq. (1.1) if we replace \mathfrak{A} by \mathfrak{A}_p , cf. [8] where a weaker form of this result was obtained for nonlinear wave equations.

5.2. Polynomial Nonlinearities. Theorems 1 and 2 and propositions from Part 4 remain true (after correcting the constants K, K_1 and the exponents μ and ν) if we replace the nonlinearity $|u|^2 u$ by any $|u|^2 p u$ (p is a positive integer) or by a polynomial

$$(a_1|u|^2 + a_2|u|^4 + \cdots + a_p|u|^{2p})u$$
,

where $a_j \ge 0$ for all j and $a_p > 0$. The proofs go without any changes.

5.3. Focusing Equation. Consider Eq. (1.1) with V = 0 and with the changed sign in front of the Laplacian:

$$-i\dot{u} = \delta \Delta u + |u|^2 u . \tag{5.1}$$

If the phase-space Z is a Sobolev space as in Examples 1 and 2 from Part 1, then solutions of (5.1) in Z are well-defined locally in time (see e.g., [2]) but can blow up in finite time if n > 1 (see [6]). So (5.1) defines in Z a local flow. Still statements of Theorems 1 and 2 remain true with the natural refinement that the solutions of (5.1) exist until the correspondent times t_1 and t', t''. The only difference comes during proving the second statement of Theorem 2 since in the focusing case (5.1) we cannot use the Hamiltonian \mathcal{H} to majorize the L^4 -norm of the solution. Instead we can use in the estimate (3.5) the L^2 -norm (which still is an integral of motion) under the additional restriction:

$$m \ge 4$$
 if $n = 3$.

5.4. Local Flow. Suppose that a phase space $Z \subset C^m$ for the problem (1.1), (1.2) is chosen in such a way that solutions $u(t) \in Z$ are defined only locally in time (or we cannot prove that they are defined globally, as in the case when n = 2, 3, $V(x) \neq 0$ and Z is the Sobolev space as in Example 2). Then – as in the previous item – the statements of Theorems 1, 2 remain true with the same obvious refinement that the solutions do exist till the times t_1, t', t'' .

Acknowledgements. This paper was done at the Institute for Advanced Study (Princeton). I sincerely thank I.A.S. for their hospitality and Tom Spencer for useful discussions.

References

- 1. Adams, R.S.: Sobolev spaces. New York: Academic Press, 1975
- 2. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Geom. and Funct. Anal. 3, 107–156 and 209–262 (1993)
- 3. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Preprint (1994)
- Il'yashenko, Ju. S.: Global analysis of the phase-portrait of the Kuramoto-Sivashinsky equation. J. Dynamics Diff. Eq. 4, 585-615 (1992)
- 5. Jin, S., Levermore, C.D., McLaughlin D.W.: The semiclassical limit of the defocusing NLS hierarchy. Preprint (1995)
- 6. Kavian, O.: A remark on the blowing-up of solutions of the Cauchy problem for nonlinear Schrödinger equation. Trans. Am. Math. Soc. 299, 193-203 (1987)
- 7. Kuksin, S.B.: Nearly integrable infinite-dimensional Hamiltonian systems. Lecture Notes Math. **1556**, Berlin-Heidelberg-New York: Springer, 1993
- 8. Kuksin, S.B.: On squeezing and flow of energy for nonlinear wave equations. Geom. and Funct. Anal. 5:4 (1995)
- 9. Kuksin, S.B.: Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE's. Commun. Math. Phys. 167, 531–552 (1995)
- Monin, A.S., Yaglom, A.M.: Statistical fluid mechanics: Mechanics of turbulence, Vol. 1. Moscow: Nauka Press, 1965; English trans. Cambridge–London: The MIT Press, 1971
- 11. Pomeau, Y.: Asymptotic time behavior of nonlinear classical field equations. Nonlinearity 5, 707-720 (1992)

Communicated by A. Kupiainen