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Abstract: We study the nonlinear Schrόdinger equation in an «-cube, n = 1,2,3,
under Dirichlet boundary conditions, treating it as a dynamical system in a function
space formed by sufficiently smooth functions of x. We show that this space contains
a distinguished small subset 31 which is a recursion subset for the dynamical system
and describe the dynamics of the equation in terms of the trajectory's recurrence
to 9ί. We use this description to estimate from below the space- and time-space
oscillations of solutions in terms of a quantity, similar to the Reynolds number of
classical hydrodynamics.

Introduction

We consider the nonlinear Schrodinger equation

-ίu = δ(-Δu + V(x)ύ) + u\2u, u = u(t,x), δ > 0 , (1)

with the space-variable x in the w-cube Kn = {0 ^ xj ^ π}, n = 1,2,3, under
Dirichlet boundary conditions

U\BK* = 0 . (2)

We study the problem (1), (2) as a dynamical system in a function space Z formed
by sufficiently smooth complex functions u(x),

ZcCm(Kn (Cl m ^ 3 , (3)

which vanish at dKn. That is, given UQ G Z we interpret the solution u(t,x) of (1),
(2) with «(0,jt) = MO 00 as a curve u(t) G Z and study the trajectories u(t) as well
as the flow-maps S*: Z —>• Z, UQ ι—>• u(t).

The problem (1), (2) is well-known to be Hamiltonian with the Hamiltonian Jf,

|VM(*)|2 + ~ V(x) \u(x}\2 + J|«(x)|4 <fc/(2πy , (4)
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which is an integral of motion for the dynamical system:

const = 3f(u(t)) =: E2 , (5)

(see [7] and below).
In the space Z we define the subset 2Γ5,

Si* - {u(χ) e z I \u\ao < κδμ IMI1-2"} ,

where | |oo is the L°°-norm, || || is the norm in Z, K is an absolute constant and

m (m — 1)
μ = μ(m) =

2m2 4- 3m - 3

(so μ(3) = \ and μ / \ as m grows).

For reasons we explain later, we call 2Γ5 "the essential part of the phase-space
Z." The set 2Γ5 becomes small with 5 and becomes relatively small as \\u\\ grows.
Indeed, when δ \ 0 the sets 2I*5 form a sequence of embedded domains with zero
intersection, besides for δ fixed and for Sr = {\\u\\ = r} the intersection 21̂  Π Sr in
the Z,°°-norm has diameter ^ 2Kδμrl~2μ, thus forming a relatively small part of
the sphere Sr which has the L°°-diameter ^ C~lr.

For m large we have μ w 1/2, 1 — 2μ w 0 and in a finite part of the space Z
the set $lδ looks like a tube of the LOO-diameter ~ j^v^S.

In parts 2,3 we show that - in a sense - dynamics of (1), (2) outside 8P5 is
simple and the whole dynamics of (1), (2) is determined by its rather complicated
behavior in ̂ . More exactly, we prove

Theorem. Ifu(t,x) is a solution o/(l), (2) with u(Q,x) = UQ φ 9lδ, \\UQ\\ = r, then
there exist t'9t" ^ Cr~aδ~b such that \\u(t')\\ = 2r and u(t") G 9I5. 7%e positive
numbers a, b, C are δ, r-independent.

Due to the theorem, a trajectory of (1), (2) either

i) moves outside 2Iό toward this set, finally entering ty6 and increasing its
Z-norm (at least doubling it),

or
ii) moves inside (Άδ.

Since the hamiltonian ffl is an integral of motion, then the growth of the
"smooth" Z-norm at the stage i) means that low Fourier modes (in x) of the solution
decrease while high modes increase - energy of this solution goes to high frequen-
cies (the phenomenon also known as the direct cascade of energy, see more on
the subject in [11,8,9]). Very likely during the stage ii) the Z-norm decreases (the
energy goes to low modes - the inverse cascade of energy} and finally the solution
leaves 9I5, if E in (5) is sufficiently large (more precisely, if large is the ratio E/δ).
This is certainly the case for solutions of the Zakharov-Shabat equation (Eq. (1)
with V = 0, n = 1) which start outside tyiδ since this equation is integrable and all
its solutions are almost-periodic in time; they must decrease the Z-norm somewhere,
so - inside SlΛ

In [4] Ju.S. Ilyashenko obtained a description of dynamics of the Kuramoto-
Sivashinsky equation, similar to i), ii). Since that equation is parabolic, its solutions
tend to a bounded finite-dimensional attractor in the corresponding function phase-
space. On its way to the attractor each trajectory changes from i) to ii) a finite
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number of times and ends at the stage ii) in the vicinity of the attractor (see [4],
especially Part 2.2).

Since \\u\\ ^ Kll(2^\fδ for each u φ 2Γ5, then by the time

rp ^ ζ—b—a/2 1
-'pull = t-W 5

the flow {S*} will pull the whole space Z through a narrow slit formed by the
set tyiδ. Phenomenons of this kind are typical for Hamiltonian partial differential
equations considered in smooth function spaces [8]. For deep symplectic reasons
they are impossible in some distinguished function phase-spaces of low smoothness
(see [8,9] and references therein).

By the theorem a solution u(t) of (1), (2) either is in SI*5, or it moves fast
toward 2Γ5. In Part 4 we use this description of the dynamics of (1), (2) to estimate
oscillations of its solutions u(t,x). As a measure of the oscillations we propose the
function

(Due to (3) this is something like the Cm-norm of the solution divided by its
L°°-norm). The theorem implies that o}m(t) becomes large at some point 4 of each
time-interval of the length /,

I = C/VEδ

(E was defined in (5); the factor (5~1//2 corresponds to a natural time-scaling, see
Part 4). Here "large" means that

com(t*) ^ C~l(E/δ)κ (6)
with some K > 1/5.

We also consider a quantity which takes into account time-oscillations of solu-
tions. We define the function Ωm(t) as

Ωm=\-

and prove that averaging of Ωm along each time-interval of length ^ 3/ is at least
one-sixth of the r.h.s. of (6). Roughly,

(Ωm)loc ^ C-l(E/δ)«

(here { }ιoc stands for local averaging in t).
Thus, solutions of (1), (2) oscillate at least as (E/δ) in a positive degree. We

suppose that for (1), (2) (and other Hamiltonian PDE's) the quantity E/δ plays a
role similar to the role of the Reynolds number for the equations of hydrodynamics
[MY, Chapter 1].

The theorem describes behavior of solutions of the problem (1), (2) for 0 ^ Γpun
(since t'9 tff ^ Tpu\\) and gives no information on long-time behavior of individual
solutions. Based on the fast2 growth of the norms \\u(t)\\ of solutions outside 9Iό

one could conjecture that the solutions grow fast (at least - grow indefinitely) as t
grows. This guess fails since the problem (1), (2) with w = 1, V = Q is integrable -
all its solutions are almost-periodic in time (and so are bounded). One could try

1 =Cιδ~l since α + b/2 = 1 - see in Part 3.
2 In fact - super exponentially fast.
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to save the conjecture imposing the additional restriction that the Eq. (1) must be
"typical" (and so non integrable), but this also does not help since for n — 1,2 and
for typical V(x) the problem (1), (2) has abundance of time-quasiperiodic solutions
(see [7] for n = 1 and [3] for n = 2). These solutions jointly are dense near zero
and their Z-norms jointly are unbounded (cf. Proposition in the introduction of [8]).
It is an interesting open problem if the problem (1), (2) with n ^ 2 has unbounded
(in Z) solutions.

We remark that even in the integrable case (V = 0, n = 1) the Eq. (1) with
small δ is rather complicated. Limiting (as δ goes to zero) behaviour of its solutions
is studied in [5]; detailed analysis of solutions with fixed 0 < δ<^l was not done
yet.3

A few words on the notations we use: by C, C\ etc. we denote different positive
constants, independent of the main parameters (like δ and £), by || \\s denote the
C5-norms, by \p — the Lp-norms. We write a function u(t,x) as u(t) when we
treat it as a curve in a function space of functions of x.

1. The Equation and its Phase-Space

We study the nonlinear Schrodinger equation in the w-cube Kn={x£ΊRn |0^x/^π},
n = 1,2,3, under Dirichlet boundary conditions:

-iύ = δ(-Δu + V(x)ύ) + \u\2u, u = u(t,x)9 x G Kn , (1.1)

κ a * » = 0 , (1.2)

where 0 < δ ^ 1 and V is a smooth real potential. It is convenient to extend V(x)
to an even 2π-periodic function V(x\ x E Tn = ΊR.n/2πZn,

V(xι,...,xn)= V(xι,...9-Xj,...9xn), j=l,...9n,

and extend solution u(t,x) to an odd 2π-periodic function u(t,x), x e Tn

9

u(x\,...,xn) = -u(xι,...9-Xj,...9xn), j=l,...9n, (1.3)

thus recasting (1.2) as odd periodic boundary conditions (1.3).4

We suppose that the potential V(x) as a function on the torus Tn is even and
smooth,

F e C°°(r,IR),

and denote by A the linear operator

A(u(x)) = -Δu + V(x)u .

Let us take any Banach space H of complex functions u(x\ x G ΓM, with the
norm || ||, which is a Banach algebra with involution (i.e., \\u\\ = \\u\\ and \\uv\\ ^
C||M|| IHI). Suppose that H is embedded to some space Cm = CW(Γ",(C), m ^ 3:

H C Cm, \\u\\m g \\u\\ . (1.4)

3 Investigation of finite-gap solutions of (1) (K = 0, n = I) with small δ is interesting since
there are good hopes that using the KAM-theorems [7] one can study solutions of (1) with nonzero
potential V and large values of E/δ as perturbations of the finite-gap trajectories.

4 Clearly u(x) (x 6 Γ") as in (1.3) meets (1.2) being restricted to Kn.
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Suppose also that H is invariant for the flow of (1.1) (solution of (1.1) with initial
data from H stays in H for all t). Then the subspace Z c H formed by odd
functions,

Z = (u(x) eH\u meets (1.3)} ,

also is invariant. We equip Z with the norm || || and take it for the phase space
of the problem (1.1), (1.3).

Example 1 (n = 1). Since the L2-norm and the Hamiltonian ffl (see below) are
integrals of motion for Eq. (1.1), then the Sobolev Hl-norm (in c) of a solu-
tion u(t,x) can be estimated via the Hl-norm of the initial data u(Q,x) uniformly
in t. Therefore, Eq. (1.1) is well-posed in the space Hl(Tl;(C). Simple induction
shows that it is also well-posed in the spaces H l ( T l m

9 ( C ) , / ^ 1. Since H1 C Cm if
/ > m + ^, then we can take

Example 2 (n = 2,3, V = 0). Now the equation also is well-posed in the Sobolev
spaces H1, I ^ 1 - this is a rather nontrivial result of J. Bourgain [2] - and we
can take H = Hl(Έnι C), where

( m+l, n = 2,
/ > < -i

[m+j, n = 3 ,

since these spaces are embedded to Cm(Γw;(C). For V nonzero see Part 5.4 below.
We supply the linear space Z with the skew-symmetric two-form, defining the

skew-product of functions u(x), v(x) G Z as

-Im / uv dx I (2π)n .

This two-form defines a constant-coefficient symplectic structure in the phase-space
Z and (1.1) becomes the Hamiltonian equation with the Hamiltonian Jf,

\u(X)\2 + - \u(X)\4 dx(2πγ .
τn

In particular, 3^(u(t, )) = const for any solution u of (1.1) in Z (see e.g. in [7]).
Multiplying (1.1) by ύ(t,x), integrating over Tn and taking the imaginary part

of the equality we get that
u(t, )b = const

for any solution u.
We also observe that since H c Cm, then by the Gagliardo-Nirenberg inequality

m— k £

\\u\\k ^Cku^ \\u\\*, 0 ^k ^ m (1.5)

(see [1]; the special case of the inequality we use now goes back to Hadamard-
Landau-Kolmogoro v ) .

2. The Main Estimate for the Flow

In this part, we study solutions u(t) G Z of (1.1) such that u(0) = UQ, where

ι, l«ol«, = e (2.1)
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and

(clearly ρ ^ 1). The function μ increases with m ^ 3 and

μ(3)=-, μOn)/1- as m — > oo . (2.2)

We study the solutions for 0 ^ ί ^ Γ, where

'*Lδ-\ v=2-^±lμ. (2.3)

The ra-independent positive constants K,K\ are such that

K ^ 2^/C+Kι, K ^ 2 , (2.4)

where C+ is an absolute constant from the inequality (2.8) below. The values of
K, K\ will be specified later.

We shall show that each solution of (1.1), (2.1) doubles its Z-norm somewhere
on the time-segment [0, T]. To prove the doubling we suppose that on the contrary

\\u(t)\\ ^2 for all 0 g t ^ T , (2.5)

and shall extract a contradiction from this assumption.
Below by C, Ci, etc., we denote different positive constants independent of <5, ρ

and K,K\ (which can depend on m).
Elementary calculations show that for T as above we have

Γ << v π* m s—i t^ v v— 1 ^ /o £\
^ A2ρ () , A2 = AiA w < . V^ βJ

Suppose that for some T\ ̂  Γ we have

WOloo ^ 2ρ if 0 g ί ^ Γi . (2.7)

Then by (2.5) and (1.5),

m-2 m_2

M"(0|oo ^ CHOlh ^ C+|w(0|oow ^ 2C+ρ"^~ . (2.8)

Take any x £ Tn. Multiplying (1.1) by ΰ(t,x) and taking the imaginary part we get

1 d , . ,
9 /// i*"'^</' ' v ^l == ^ ^-^«" v"? ' v y i i""v ι'5 ' v / ι = *-v,^_,_ρ w . (^Δ.y)

In particular, |w(ί,x)|2 ^ ρ2 + 4ί(5C+ρ2~"^ and using (2.6) we see that

u(t,x)\2 ^ ρ2(l +4K2C+) < 2ρ2 .

It means that for each solution which satisfies (2.1), (2.5) the estimate (2.7) holds
with T\ = T:

|«(0|oo ^ 2ρ if 0 g ί g Γ . (2.10)

Now let us denote
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Then w(0,*) = 0 and by (2.9),

271

d_

di
^ Cδρ,2-i

Therefore
|w(0|oo ^ Ctδρ2-™ . (2.11)

Since H is a Banach algebra, then by (2.5), \\w(t)\\ ^ C for all 0 ^ t ^ T. Now
by (1.5) and (2.11),

INOlk ^ C(ί(Sρ2-*)^. (2.12)

We rewrite (1.1) as
ύ — z( |wo| 2 + w)w = iδAu .

Treating this equation as a nonautonomous linear ordinary differential equation for
the complex function t *—» u(t,x) with the right-hand side iδAu, we write its solution
u as

t / ί \
w(f,jc) = /<5/ expl z'(f - τ) \UQ

 2 + ifw(θ,x)dθ Au(τ,x)dτ

+ exp(zY|w0 |
2)exp( ifw(τ,x)dτ I i/o(x) =: u\ + 1/2

\ o /

(MI denotes the first summand and M2~the second). We wish to estimate ||w(
from below. To do so we shall estimate | |MI(*)| |I from above and ||M2(0||ι
below.

Since both the functions |wo(;c)|2 and w(θ,jc) are real, then the norm of the
exponential factor under the integral in u\ equals one. Any first-order jc-derivative
of u\ contains two terms (since we differentiate either Au or the exponent). By
(1.5) and (2.10),

^ Cρ^ for 0 ^ k g m . (2.13)

As \\Au\\k ^ Q||M||A;+25 then from (2.13) with k = 2,3 we have

By (2.13) with k = 1 and (2.12), (2.5), | |M O M O | | I + ||w(θ)||ι g Cρ2^ . Therefore

||«ι(0llι ^ Cδρ^t2 + Cδρ^t . (2.14)

Now we pass to the function U2(t,x) and write it as M2 = U^U^UQ, where

t
u\ = exp(zϊ|Mo|2), M2 = exρ//w(τ,jc)ί/τ .

Clearly

| |«2| |l ^ SUp|(VX)l^M0| - | |wi | | l |w2loo |w 0 | oo ~ | |w0 | | l |«i|oo |«2loo - (2.15)
x

We shall estimate the three terms in the r.h.s. As u\\ = 1, \u]\ = 1, then we already
know that

|w0|oo = ρ, (2.16)
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Since u\\ = 1, then

u0 = -
3

^ tC~lρ3 , (2.17)

where the last estimate follows from (2.1) since u0 vanishes at dKn.
It remains to estimate ||«|||ι. Using (2.12) we get that

| | w 2 H ι ^ t sup I -)-^. (2.18)

Now the estimates (2.14)-(2.18) jointly imply the estimate for u(t,x) from
below:

IkOll i ^crV-ι

By (2.13) we have

H/)|)ί ^

On the other hand, by (2.19),

2LzIyi«.«=ί ~ 2zJ:
»» y () w — L<0 m .

for 0 ̂  / ̂

(2.19)

(2.20)

if ί# meets the following system of inequalities:

or

"~%^~< C20"

w-1 2ffl2-3w+2

< C'4δ
 2m~l ρ m(2m-l) f

The first two inequalities in (2.21) are consistent if

(2.21)

the first and the third are if
ρ>C"

and the first and the fourth are if

ρ > C" δμ, μ = μ(m) as in (2.2) .

Let us denote C = max{C",C2,C"}. Then the system (2.21) is consistent if

ρ > Cδμ .
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We choose in (2.3) K\ = C( and take for K any number such that

K > C, K^2, K ^

With this choice of K, K\ the assumptions (2.4) are met and t = T := K\ρ~2~l/m

satisfies (2.21). Thus, \\u(T)\\ι ^ 2C*ρ(w-1)/Λf in a contradiction with (2.20).
Since the assumption (2.5) led to a contradiction, then the solution u(t) doubles

its norm for some t ^ T = K\Q~(2m+λ^m with K\ as above and we get

Theorem 1. There exist constants K,K\ such that if u(t) is a solution of (I.I) and
u(0) — UQ satisfies (2.1) with some

then there exists t\9

t, < KlQ-2-^ < Cδ-\ v = (a*+l)0*-D
1 - ^ - 2m2 + 3m -3

such that \\u(t\)\\ ^ 2.

Remark 1. The statement and its proof remain true if we replace μ(m) and v(m)
by any μ, v such that 0 < μ ^ M/w), v = ̂ ^ μ.

3. Rescaled Estimates and the Essential Part of the Phase-Space

We define a subset 91 C Z which we call "essential part of the phase-space Z" as
follows:

91 - {u(x) e Z I \u oo < Kδμ\\u\\λ-2μ} ,

with μ and K as in Theorem 1. Since \u\^ g ||w|| - (||w||/V^)2μ ί'l||M||1-2μ

5 then
91 contains the ball

(3.1)

(and 91 does not contain some points of the norm cVδ, where C > Kl^2μ^ is
(5-independent).

Now let us consider a solution of (1.1) with any initial condition outside 91:

We denote r — \\UQ\\, v — u/r. Then

ϋ(0,αO = ϋ0(x) = Wr, H ϋ o| | = l , (3-2)

and

So if we stretch the time / as
t =,

then we get for v the rescaled equation:

-X - δι Av + |ί;|2t;, (5ι - (5/r2 . (3.3)



274 S.B. Kuksin

Since UQ ^91, then by (3.1) r ^ V^1/(2μ) > Vδ. So

δι ^ 1 and HI = 1, Moo - Noo/r ^ K(δ/riyί =

Now application of Theorem 1 with <5 — δ\ to the problem (3.2), (3.3) implies
existence of τ\ ^ C(Sfv, corresponding to t\ — r~2τι ^ Cr~2(δ/r2)~v, such that

If still u(t\) $ 9ί, then we can iterate the procedure to find h ^ Cr^2(δ/r\ )~v such
that

We can iterate further, provided that u(t) ^91, to find /ι,...,4r such that

r j»/ := |kΊ + + te)ll ̂ 2M | |W o | | (3.4)
and

tM^Cr-^δ/rif^Γ^
Denote UM = u(t\ + ---- h *M )• Since the flow of (1.1) preserves the Hamiltonian
Jf , then

By Sobolev's theorem and the Gagliardo-Nirenberg inequality (see [1]),

i ffl-i 1
\UM\OO ^ C\\uM\\ι,4 ^ CI\\UM\\* UM 4

m ^ Cr™ , (3.5)

where || ||ι,4 stands for the norm in the Sobolev space Wl>4(Tn\<L} (we recall that

n ^ 3). If UM ^21, then we have |WM |OO ^ Kδ»rl~2μ. Using (3.5) we find that

C ^Kδ»rl

M-2μ~l/m .

Suppose for a moment that n = 2 or 3. Then 1 — 2μ > l/m and we see that
the norms ΓM are bounded by an M-independent constant. Now (3.4) implies that
M ^ M(UQ). It means that after a finite number of steps the solution u(t) hits to 91.
The total time the solution u(t) spends outside 9ί is estimated:

t\ + - + tM g c<rVv~2 + r2v-2 + . . -)

g C (ΓV2v-2(l + 4v-! + 42(v-1} + - - . ) .

Since v = 1 - ^ + O(m'2) < 1, then

*!+••• + tM ^ mC δ~vr2v~2 . (3.6)

If n= 1, then |WM| ^ C||^||2/3,2 ^ Q H ^ l P ^ ^ M l " ^ ^ Cr2 and
(3.6) also follows.

We have proved the following result:

Theorem 2. Ifu(t,x) is a solution 0/(l.l) with w(0,;c) = UQ(X) ^ 91, | |wo| | = ̂

1) ίAβre exists t' ^ d r2v-2(5~v ^wcA that \\u(t')\\ ^ 2r,
2) there exists t" ^ C2r

2v~2<5-v such that u(t") e 9ί.

Here v = v(m) as in Theorem 1.
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Remark 2. The arguments we used to prove Theorems 1,2 are applicable as well
to negative times t < 0. Thus, we can find negative —t[,—t" such that t(,t" meet
the same estimates as t', t" and | |M(— t { ) \\ ^ 2r, u(—t") G 91.

In particular, 91 is a recursion subset of the phase-space Z - each trajectory of
(1.1) in Z visits 9ί at arbitrarily large values of times.

In addition, since by (3.1) r ^ \^δKl^2μ^ for each UQ ^91, then t" ^ Cδ~l and
by the time

^pull

the flow {£'} will pull the whole space Z through its essential part 91.

— Cδ

4. Oscillations of Solutions

In this part we discuss properties of solutions u(t) with large values of the quan-
tity R,

= 2R= - where Jf(u(t)) = E2 .
o

(We denote the ratio by R to note its similarity with the Reynolds number of
classical hydrodynamics [10].) To do so, it is convenient to introduce the "fast
time" τ = ̂  t, so

and to write (1.1) as

-iVδ u( = -δAu+\u\2u. (4.1)

Our goal is to study the function

which we propose to use as a measure of the oscillating solutions of (4.1). (The
subindex m recalls that H C Cm - we treat || || as an "almost C^-norm.") We
shall show that Theorem 2 implies estimates for averaged characteristics of ωm in
terms of R.

Consider any solution u(τ) G Z, 0 ^ τ g Γ, of (4.1) such that 3ff(u(τ)) = E2,
where E is bounded from below by a positive (5-independent constant, E ^ C"1.
Let us denote ||w(τ)|| = r(τ). Since

then
r(τ)2 ^ Eld . (4.2)

Let us denote

Then by (4.2),

Δ

and by Theorem 2 if M(TQ) ^ 21, then

HΦo + τι)|| = 2 ||M(TO)|| for some τ, ^ Q 2 ^ C'J , (4.3)

u(τ0 + τ2) e 91 for some τ2 g C2<5 < Czl . (4.4)
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Since for w(τ) G 21 we have

ωw(τ) ^ K-l(

(we use (4.2)), then by (4.4) we get

Proposition 1. For each solution as above we have

sup ωm(τ) ^ C

i/O ^ τi ^ Γ-CA

We recall that μ = μ(m) ^1/4 tends to 1/2 as m — > oo.
Next we estimate an average of the function

(4.5)

(4.6)

and start with

Lemma. If W(TO) G 21 w swc/z /Aαί W(TO + ε) φ 21 /0r #// sufficiently small s > 0,
τ* > TO, τ* ^ τ0 -f Cd, such that u(τ*) G 21 and

) rfτ ̂  ωm(τ0) . (4.7)

Proof Since the set 21 is open, then W(TO) ^2ί and we can find τ' = τ\ as in (4.3).
We can suppose that | |w( τ)ll < 2||w(τo)|| for TO ^ τ < τ7. Then by the estimate
(2.10) from the proof of Theorem 1, ^ 2|w(τo)|oo Therefore ω(τ7) ^
ω(τo). If τ' G 2ί then at the moment τ" of the next doubling of the //-norm we
also have ω(τ") ^ ω(τ7) ^ ω(τo). Finally, due to the proof of the second statement
of Theorem 2, we shall find a point T* = τ^ G 21 such that α>(τ*) ^ ω(τo) and
τ* G [τo,τ0 + C/4].

Let us denote
θ = sup{τ G [τ0,τ*] | ω(τ) g ω(τ0)} .

Then ω(θ) = ω(τo) and ω ^ ω(τo) everywhere in [θ,τ*]. Therefore denoting
/(τ) - ω(τ) - ω(τ0) we get:

Ωm(τ)dτ = ω(τ0) (/(τ) + CΔ

(to prove the last inequality we use that
in [θ,τ*] then (4.7) follows. D

Proposition 2. For 12 > τ\ + 3Czl we

ΓΛ
\f'(τ)\)dτ ^ ω(τ0)

= 0). Since Ωm ^ ωw ^ ω(τo)

^ Cf'Λ" .J
(4.8)

constants C,C\ are the same as in Proposition 1.
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Proof. Let a\ ^ τ\ be the first moment when the trajectory enters 91 and b\ ^ a\
be the moment of its first exit from 21. Let a2 = τ*(b\) > b\, where τ* is as in the
lemma (with TO = b\ ). Let b2 ^ #2 be the moment of the next exit from 21, etc.

We consider only the worst situation when a\ > τ\ and br < τ2 < ar+\ for
some r. Since at each segment [aj,bj] we have Ωm ^ ωm ^ C^~lRμ (see (4.5)),

then averaging of Ωm along [0/,6/] is ^ C^~lRμ. Averaging of Ωm along any seg-

ment \bj9aj+\\ by the lemma also is ^ C^~lRμ. Therefore averaging of Ωm along

[fliA] is ^ Cf1^.
By (4.4), \aι-τι\ + \τ2-br\ ^2CA. So |τ2 - τλ\ ^ 3\br - aλ\ and (4.8)

follows. D

The number Δ contains the factor c)~v+1/2, where v > 1/2 and the factor is
large for small δ. We can drop it, simultaneously changing the r.h.s. of (4.6), (4.8).
Indeed, by Remark 1 we can replace μ and v by μ ^ μ, v = ^p- μ. Since μ ^ 1/4
(see (2.2)), then we can take μ = m/(4m + 2) < 1/4. Then v = 1/2 and we get
versions of the Propositions 1 and 2:

Proposition V. For 12 ^ τ\ + C/v^ w^ /zβf^

sup ωm(τ) ^ c~lRm/(4m+2} . (4.67)
τι^τ^τ 2

Proposition 2r. If τ2 ^ τλ +3C/VE, then

a < r ' * .

We note that since μ(m) tends to 1/2 as m grows, then for large m the exponents
of R in the r.h.s.'s of (4.6'), (4.8') are almost twice as small as in (4.6), (4.8).

If we treat (4.1) as a partial differential equation rather than a dynamical system
in Z, then it is more natural to choose as a measure of space-time oscillations of a

solution u not Ωm but the function Ωm,

with C as in (4.3). Observe that

\\u(τ)\\+CfA\^\\u(τ)\\\
Ωm(τ) ^ " V ;" , , Λ

 a τ " V ;I" . (4.9)
|w(τ)|oo

We think that the quantity Ωm is a natural measure for solution's oscillations and
name the related statement "theorem":

Theorem 3. If τ2 ^ τ\ +3CfA, then

—^— jΩm(τ)dτ ^ l- C~lRμ (4.10)
τ2 - τi τι 6

// τ2 ^ τi 4- 3 C/v/E, then

6^-
 2
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Proof of (4.10) essentially follows the proof of Proposition 2. Let b\ ^ a\ ^ τ\
be the numbers from that proof and b\ > b\ be the first moment of doubling the
solution's norm. If u(b\) ^91, let b\ be the moment of the second doubling, etc.

Finally, we shall find b{ G 91, j ^ 2, and by (4.3),

|ftf - bp

λ~
l I g C'zl Vp^j. (4.12)

Denote a2 — b{, denote by 62 the moment of the next exit from 2ί, construct

Z>2, &2> ' fl3 as above, etc.
Clearly, the average of ί2w along each segment [ar,br] (or along [ar^2\ if

βr < i2 < 6r) is ^ C~lRμ. To study a segment [6f,6f+1] let us take any sequence
br,b

2

r,...,bi = ar+\ and denote for short

x\ = br, x2 = b2,... ,Xj = b>r = ar+\ .

As in the proof of the lemma,

ω(*ι) ^ ω(jc2) ^ g ω(*, ) . (4.13)

Besides for each τ G [^.x^+i] we have M(T)|OO ^ 2|M(^ jp)|00. By this inequality
and (4.9), (4.12) for each p < j we have:

Xp+\

1 XP+1 ί fi \\
\dτ

Λp

1 Xp~ ,
+ Tuzhr/ (-

£ \W\.\p)\(X> χ

C'Δ -IHIIUτ

where we have used the elementary inequality A l J0 f ( t ) dt ^ /(O) — J0

valid for each C1-smooth /.
Now (4.13) implies that

1 Xpϊ*

~XP Xp

So we estimated the averages along all the segments with the possible exception of

the segments [TI,^I] (and [6/,τ2] if ^2 G [&/,6/+1[). Since both the segments are
shorter than C1Ά, the result follows.

The estimate (4.11) results from (4.10) in the same way as Proposition 2' from
Proposition 2. D

5. Some Generalizations

5.1. Periodic Boundary Conditions. The Eq. (1.1) can be studied under pe-
riodic boundary conditions - i.e., in the whole space H of the periodic functions
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u(x\x G Tn (see (1.4)). In this case for c > 0 we should consider the subsets
&CCH9

^c = {M» G H I u(x)\ = c V c G Tn} .

The sets J£?c are smooth Lagrangian submanifolds of the phase-space H which is
given the symplectic structure defined in Part 1. Next we define the "frame" & as
the union of all J5?c,

y = (jc^c ,
and define essential part SΆP of the phase-space H as

Wp = (u(x) distoo(κ,JS?) g Kδμ\\u\\l~2μ} .

Theorem 2 remains true for the periodic boundary value problem for Eq. (1.1) if
we replace 31 by 91^, cf. [8] where a weaker form of this result was obtained for
nonlinear wave equations.

5.2. Polynomial Nonlίnearίties. Theorems 1 and 2 and propositions from Part 4
remain true (after correcting the constants K,K\ and the exponents μ and v) if
we replace the nonlinearity \u 2u by any \u\2pu (p is a positive integer) or by
a polynomial

where α7 ^ 0 for all j and ap > 0. The proofs go without any changes.

5.3. Focusing Equation. Consider Eq. (1.1) with V — 0 and with the changed sign
in front of the Laplacian:

-iύ = δAu + \u\2u . (5.1)

If the phase-space Z is a Sobolev space as in Examples 1 and 2 from Part 1,
then solutions of (5.1) in Z are well-defined locally in time (see e.g., [2]) but
can blow up in finite time if n > 1 (see [6]). So (5.1) defines in Z a local flow.
Still statements of Theorems 1 and 2 remain true with the natural refinement that
the solutions of (5.1) exist until the correspondent times t\ and t' ,t" . The only
difference comes during proving the second statement of Theorem 2 since in the
focusing case (5.1) we cannot use the Hamiltonian 3/C to majorize the L4-norm of
the solution. Instead we can use in the estimate (3.5) the L2-norm (which still is
an integral of motion) under the additional restriction:

m ^ 4 if n = 3 .

5.4. Local Flow. Suppose that a phase space Z C Cm for the problem (1.1), (1.2) is
chosen in such a way that solutions u(t) G Z are defined only locally in time (or we
cannot prove that they are defined globally, as in the case when n = 2, 3, F(JC) φ 0
and Z is the Sobolev space as in Example 2). Then - as in the previous item - the
statements of Theorems 1 , 2 remain true with the same obvious refinement that the
solutions do exist till the times t\,t' ,t" .
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