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Abstract: Let us consider a family of maps Q,(x) = ax(1 — x) from the unit interval
[0,1] to itself, where a € [0,4] is the parameter. We show that, for any f < 2, there
exists a subset £ 3 4 in [0,4] with the properties

(1) Leb([4 — &,4] — E) < & for sufficiently small &> 0,
(2) Q, admits an absolutely continuous BRS measure y, when a € E, and
(3) u, converges to the measure y4 as a tends to 4 on the set E.

Also we give some generalization of this results.

1. Introduction

We consider (real) one dimensional dynamical systems, that is, iterations of smooth
maps f from a closed interval (or a circle) to itself. The orbit of a point x is a
sequence of points

x,f(X),fz(.X),f3(X),... .

In describing the distribution of the orbit, we use a sequence of probability measures
1 =1
ﬂn(x): - Zéfj(x)a n= 1a2>'~' 5
n Jj=0

and, if this sequence converges to a probability measure u as n — oo, we call u
the asymptotic distribution of the orbit of x. Here the convergence is that in the
sense of weak topology, that is,

1 n=1 .
Jodun(x) = - ;} o(f'(x)) = [edu as n— oo

for every continuous function ¢ on the interval. So the statistical properties of the
orbit are given by the asymptotic distribution p, if it exists.
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We call a probability measure y on the interval the Bowen—Ruelle—Sinai measure
for f if the asymptotic distribution of the orbit exists and equals u for almost every
point in the interval with respect to the Lebesgue measure.

The problem we shall consider in this article is how the BRS measure depends
on the parameter in families of maps. To fix our idea, let us consider the quadratic
family Q,(x) = ax(1 —x):[0,1] — [0, 1], where a € [0,4]. There are two typical
classes of dynamics in this family. The first one is the so-called hyperbolic sys-
tems, that is, the class of O, which has a hyperbolic attracting periodic orbit. In
this case, the attracting periodic orbit is unique and the invariant probability mea-
sure on it is the BRS measure for Q,. The second is the class of maps which
admits an absolutely continuous invariant probability measure (acim). In this case
the acim is unique and it is the BRS measure for Q,[1]. For example, Q4 admits
an absolutely continuous BRS measure us = 1/(m1/x(1 — x))dx. The set of parame-
ters corresponding to hyperbolic systems are open and hence has positive Lebesgue
measure. On the other hand, Jakobson’s theorem [3] tells that the set of parameters
corresponding to the systems with acim has positive Lebesgue measure. It remains
unknown whether the union of these two subsets of parameters has full Lebesgue
measure in the parameter space [0,4] or not.

Let us denote, by u,, the BRS measure for Q, if it exists. If Qp is hyperbolic
for some parameter b, the nearby systems in the family are also hyperbolic and the
BRS measure y, depends on a continuously in a neighborhood of b, because the
attracting periodic orbit for O, survives under small perturbations. However, when
the case Q) admits an acim, the situation is quite different. Let us consider the case
b =4 where Qp = Q4 admits an acim p4. Though some numerical experiments
seem to show that the distributions of the orbits for O, converge to us as a — 4,
the dependence of the BRS measure u, on the parameter a is quite irregular. For
example we have

Theorem 1.1. There exists a subset F C [0,4] of parameters with the properties:

(1) Leb(F N [4 — &,4]) > ce? for some constant c,

(2) Q, is hyperbolic when a € F, and

(3) the BRS measure i, for Q, converges to the Dirac measure at the point 0
when a approaches to 4 on the set F.

The proof is simple. Let a, be a (unique) parameter with the kneading data
0,,(0) >0, ,{n(O) <0 for j=23,...,n—1, and Q; (0)=0.

Then we can see that 4 —a, ~ 47" as n goes to infinity. Let F, be the interval
containing a, on which the attracting orbit for Q,, survives. Easy calculations show
that |F,| ~ 472" So if we put F = UF,, F satisfies the conditions in the theorem.

Remark 1.2. Similarly, we can show that there exists a subset F’ of parameters
satisfying the conditions (1) and (3) in the above theorem, with F replaced by F’,
and

(2) Q, admits absolutely continuous BRS measure p, when a € F’.

In fact, the system Q, with a € F, is once renormalizable and thus there is an
interval F,' D F, which consists of parameters such that O, admits the same type
of renormalization. Let F, C F,’ be the set of parameters a € F, such that Q,
admits an acim. Then applying Jakobson’s theorem to the renormalized family, we
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can see that Leb(F,)/Leb(F,’) is bounded away from 0 uniformly for n. F” = UF)/
is required.

Remark 1.3. See the work [2] of Hofbauer and Keller for more interesting results
on the singular phenomena in families of unimodal maps. For example, they showed
that there exists uncountable parameters for which 0, has no BRS measure.

Now our result is

Theorem 1.4. For any given } <2, there exists a subset E > 4 of parameter space
[0,4] with the properties:

(1) Leb([4 — &,4] — E) < &P for sufficiently small &> 0,
(2) Q, admits an absolutely continuous BRS measure u, when a € E, and
(3) ua converges to the measure uy as a tends to 4 on the set E.

This result means that, though the BRS measure does not depend on the
parameter continuously at a = 4, the set which gives the discontinuity such as F' in
Theorem 1.1 is relatively small. Actually this theorem follows from a more general
result which we will state in the next section. We will see that similar results hold
for many families and at many parameters.

The author learned from Hans Thunberg that the BRS measures for hyperbolic
systems can behave regularly at most points in the parameter set constructed in the
proof of Jakobson’s theorem [6]. Also the author learned from him that M. Rychlik
has already obtained a result similar to Theorem 1.4 [5, Proposition 1]. A result
in [5] gives the continuity in L?(p = 1) topology on the density functions of BRS
measure, which is much finer than weak topology, and Theorem 1.4 follows from
Rychlik’s result except for the claim (1).

2. Main Result

Let fo be a C? map from M = [0,1] (or M = S' := R/Z) to itself and let C(fp)
be the set of its critical points. We assume that f; satisfies the following four
conditions:

(ND) All critical points of f are non-degenerate.
(CE) There exist k9 >0 and ry >0 such that, for any critical point ¢ and
n=0.
() |dfy (fo(e))] > exp(ron — ko),
(i) |df5( fo(2))| > exp(ron — o) for any z € f5"(c).

(Hyp) All periodic points of f; are hyperbolic repelling.
(W) liminf, .o < log|dfy( f3(a))| = 0 for any critical value a.

Let F: M x [0,1] — M be a one-parameter family of class C? with F(x,0) =
fo(x). We denote f;( + )= F( - ,t) for parameters ¢ € [0, 1]. Assume that the family
F satisfies the condition

) s GE€).0)

.= - +0 for any critical point ¢ € C( fp).
)
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The following is the main result in this paper.

Main Theorem. For any given B <2, there exists a subset E >0 of parameter
space with the properties:

(1) Leb([0,¢] — E) < &* for small «.

(2) Each map f; with t € E admits a finite number of ergodic acim’s. For
Lebesgue almost every point on M, the asymptotic distribution of the orbit exists
and coincides with one of the ergodic acim’s.

(3) If t(p) € E, p=1,2,..., approaches to 0 and if pu,, an acim for fyp),
converges to a measure [l as p — 0o, then u is an acim for fp.

Since Q4 has a unique acim yu4, Theorem 1.4 follows from the main theorem.
Moreover, for a subset of a € [0,4] with positive Lebesgue measure, the families
ft:= Qi_4 and f; := Q,—, satisfy the assumptions of the Main Theorem and a result
similar to Theorem 1.4 holds for such families. (See [7, Theorem 1].)

The support of each ergodic acim for fy, which is a union of finite number
of closed intervals [4], contains at least one critical point, because if otherwise,
the return map on a component of the support would be monotone and have a
nonrepelling periodic point. So, if f; in the Main Theorem has only one critical
point, f; admits a unique acim and, hence, a result similar to Theorem 1.4 holds
for the family in the Main Theorem.

If each critical point of fy is not eventually periodic in the Main Theorem, it
is not difficult to see that the support of each ergodic acim for f; has an absorbing
neighborhood. So, under this additional assumption, we can obtain a result similar
to Theorem 1.4 by restricting ourselves to one of the absorbing neighborhoods.

In [7], we have proved that there exists a subset of parameters satisfying the
conditions (1) and (2) in the Main Theorem. Here we shall prove that the additional
condition (8) holds for the parameter set constructed in [7]. We shall summarize
some results in [7] which we will use in this article. But before mentioning it, let
me explain the idea of the proof. The idea of the proof is similar to that in [8].

Let pu, be the sequence of measures in (3) of the Main Theorem. Then each of
them satisfies the entropy formula

huy,(fup) = [ logldfy,)()ldp -

See [4]. Also we can prove easily that

lim sup A, ficp)) < hul fo) - @.1)

p—0o0

A proof of (2.1) will be given in the appendix at the end of this paper.
Suppose that we have proved

liminf [ 10g |, ()ldu, 2  1og |dfoo)lda (22)

It follows
hu( fo) Z [ log |dfy(x)|du .

Since the inequality in the converse direction (Ruelle inequality) holds for any
invariant probability measures, we obtain the entropy formula for u,

hu( fo) = [ log|dfy(x)|du .
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Since the (upper) Lyapunov exponent for fy is positive at all points but the
preimages of critical points [7, Corollary 4.4], this implies that y is an acim
[4, Theorem 3].

Therefore it is sufficient to prove (2.2) in order to prove the claim (3) of the
Main Theorem. Equation (2.2) is equivalent to the condition

lim liminf [ log|df; ,y(x)ldu, =0, (23)
6—0 p—oo C(fz(p),é)

where C(f,0) is the open d-neighborhood of the set C( f) of critical points of f.
This is what we shall prove in the next section.

In the next section, we need the following fact which follows from the argument
in [7] immediately. (See Remark 2.1 below.)

Fact. For any given f <2, there exists a subset E of parameters satisfying (1)
and (2) in the Main Theorem. In addition, there exist n >0 and 6y > 0 such that
the following hold for f; with t € E:

(A) If x € C( f;,60), there exists a positive integer g=q(x,t) < —n~ " log |df,(x)|
such that
log |df(x)| =2 —2nlog |df,(x)| +ng + 0 + 1,

where iy is that in the condition (CE) on fy. Also we have
d(fi(x),C(f))>d(f"(x),C(fy)) for m<i<m+gq

and )
O Jafio)] 1
=1 df el ol

(B) If 0 < 6 < 0o, fi(x) §C(f;,0) fori=0,1,2,...,n— 1 and f"(x) € C(f;,9),
then

2.4)

log|df;'(x)| =nn —wxo— 1.

Remark 2.1. Let me explain briefly how we can get the Fact from [7]. Note that
E and 7 are not those in [7]. We put £ = |J; . ; Z1, where Z; is the set of parameters
defined in [7] and let Ly be sufficiently large. Then, from Proposition 6.1 and
6.2 in [7], the properties (1) and (2) in the Main Theorem hold for E (under
an appropriate choice of constants). The first, second and third claim of (A) for
small 7 follow from claims (c),(d) and (e) of [7, Proposition 7.2] and their proof
respectively. Actually, the proof of [7, Proposition 7.2] is given only for x which
belongs to the orbits of critical points but, clearly, it holds for every point sufficiently
close to the critical points. The property (B) in the case é = dy follows from [7,
Lemma 5.1 (2)] if dp and # are sufficiently small. But once we have the property (B)
for 6 = Jy, one can combine it with (A) and get (B) in the case 0 < & < dy.

In the proof of the Main Theorem, we shall assume M = S'. This does not
violate the generality because, in the case M =[0,1], we can extend the maps
f: as maps from a circle to itself in an appropriate way. (See [7, Sect.2].) By
changing the parameter if necessary, we assume, as in [7], that f; with ¢ € [0, 1]
has a constant number of non-degenerate critical points. Let x; be a large constant
such that

ldf,(x)| < and K <|df,(x)|/d(x,C(f;)) <Ky forxe M andte[0,1],
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where d(x, C( f;)) denotes the distance from a point x to the set C( f;) of critical
points.

3. Proof of the Main Theorem

Let #, d9 and E be those in the Fact in the previous section. For ¢t € E, 6 >0, >0
and a positive integer n, we define

n—1 . .
By(h,0,1) = {x eM ;) log |df (f{ ()] - xcimo(fi(x)) < —hn} ,

where xc(s,s5) is the indicator function of the set C( f;,6). Note that we have
By(h,8,t) C By(h,&',t) if 5 <&’ <x;'. We shall prove

1

Proposition 3.1. For any given hy > 0, there exist positive numbers é <k, ¢ and

M such that
Leb(B,(h,0,t)) < M exp(—¢ehn)

for any h=hy, n=1and t € E.

We indicate first how (2.3) follows from Proposition 3.1. Suppose that ¢ belongs
to E and that v is an ergodic acim for f;. Let X be the set of points for which the
distribution of the orbit exists and equals v. Then X has positive Lebesgue measure.
Let 1y be a measure defined by 19(Y) = (Leb(X))~'Leb(Y N X) for any measurable

set Y, and put 4, = (l/n)Z::O1 f(Jo). For any given kg >0, we can choose &,
0 and M as in Proposition 3.1 and obtain

n—1 ) .
J Z(:) log |df,( fiGN| + xcchoy (i) dhox) = [+

Bn(hg,0,t)° Bn(ho,0,t)

= —hon — (Leb(X))™! [ M exp(—es)ds .
hon

For sufficiently large n, we have

n—1 . .
J ;) log |di( f{ ()] - xeih,0)(Sf7 (x)) dAo(x) > —2hon .
Since 4, converges to v as n goes to infinity, we have
n—1 i .
Jim [ (@fn) 3 log |df (1)) + xeisan( i) dha(x)

= lim [ 1og|d/,(x)] * 7c(s,0(x) da(x)

< [log|df,(x)| + xcih.5)(x)dv(x) .
Therefore
0 > [logldf,(¥)| + xces,s)(x)dv(x) = —2hq .

Since every acim is a convex combination of ergodic acim’s and since we can take
hy arbitrarily small, this implies (2.3).
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Let us begin the proof of Proposition 3.1. For a C' map ¢ from an interval
[a,b] to R, put

. ldo(x)|
Dist(¢,[a,b]) = sup lo .
(@l x,ye[g,b] & ldo(»)l

Then we have

Lemma 3.2 (¢f Lemma 3.1 in [7]). There exists k > 0 such that if we put

_ [l dfi)l ]‘1
a=atmmt) = [’Lo afCfIG)]
for n 2 1,t €[0,1] and x € M —\J\=) £7(C(f,)), it holds
Dist(f/",[x — a,x + a]) < nil Dist(f, fi([x —a,x+a])) < 1.
i=0

Ifxe U;’z_ol £7HC(f)), we regard a(x,n,t) = 0. Put a(x,0,t) = ;cl“l forxe M
and ¢t € [0,1].

Remark 3.3. From this lemma and the definition of a( - ), we have a(y,n,t) >
e~ a(x,n,t) for y € [x — a(x,n, t),x + a(x,n,t)].

Remark 3.4. The length of the interval f*([x — a(x,n,t),x + a(x,n,t)]) is smaller
than 2e|df}"(x)|a(x,n,t) < 2ex3x~! from the lemma above. So, taking x large, we
assume that the interval f]"([x — a(x,n,t),x + a(x,n,t)]) is shorter than half of the
smallest distance between the critical points of f; for any x € [0,1],n = 0 and
t €[0,1]. (We will use this in the proof of Lemma 3.6.) Also we assume
a(x,n,t) < 1 by taking r larger if necessary.

From now on, we consider the maps f; with ¢ € E and choose ¢ and other con-
stants uniformly for ¢ € E. For simplicity of notation, we will write f,q(x),a(x,n),
By(h,0) instead of f4,q(x,t),a(x,n,t),B,(h,0d,t).

The following is the main step of the proof of Proposition 3.1.

Lemma 3.5. For any given K > 1, we can take 6 > 0 (uniformly for t € E) so
small that, for every point x € B,(h,0) with n = 1 and h > 0, there exist a se-
quence of positive integers

0Sm<m<---<n<n

and points z; € M with f"i(z;) € C(f) satisfying

ki = [1og clzf_';” >K+1 forl1<i<d

and

d
S(ki—1) > éhn,
i=1

where ¢ = {4(1+n~")(1 + " logr1)} 1.
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First we show that this lemma proves Proposition 3.1. Let us put

I = U [z — exp(—k)a(z,m),z + exp(—k)a(z,m)] for m,k = 0.
z€f~™C(S))

Then, from Remark 3.4, the right side is a disjoint union.

Lemma 3.6. If 0 < ny <m < --- <ngand k; > 1 for i = 1,2,...,d, it holds

Leb (ﬁ J,,,.,k,) < 3exp (—i(k,- — 1)) .
i=1 i=1

Proof. Let 1 <i<d-—1 and consider two points w; € f~"(C(f)) and
wy € fTHI(C(f)). Put @y = a(wy,n;) and a; = a(wy,n;41). From Lemma 3.2, w)
is not contained in [wy — ay,wy + az]. So, if [wy — e *ay, w, + e *2a,] has non-
empty intersection with [w; — e %1a;,w; + e ¥1a;], we can see that [wy, — ay, wy +
a,] is contained in [w; — e %1 1la;, w, + e f1t1g].

Let us denote, by I k> the union of connected components of .J;,, ;, that intersect
ﬂ;j:l./,,,,kl. Also we denote, by VA the union of connected components of J,
that intersect J* , . From the above argument, Jy o CJr, ;. Hence we have

Leb( ) = e fitlleb(Jy o) < e FHLeb(Jy 4 1) = e M Leb(Jy 1) -

i

’::+1»ki+l
Applying this for i =d — 1,d — 2,... in turn, we obtain the claim. [

Now, let 0 be that taken in Lemma 3.5 for some K > 0. Then, taking the
combinations of n; and k; into account, we get, from Lemma 3.5,

MBuho) < 3 Y Cnd)C(I+d—1,d—1)exp(—I).
I>e'hnd<l/K

We can get Proposition 3.1 by using the approximation log C(p, q) = q(1+1log(p/q))
+0(1), which follows from logn! = nlogn — n + O(1), and by taking K sufficiently
large.

Let us prove Lemma 3.5. Let x be a point in B,(h,d). From the definition of
B,(h,9), the set Ay :={0 < m < n; f™(x) € C(f,5)} is not empty. The point in
the proof is to choose the numbers n; with the required properties from A4p. We will
do this in two steps. First let us define a sequence 0 < nj <nmy <--- <nl <n
by

n} = minimum element of A% ,
n},; = minimum element of (A N {m € N;n; + q(f"(x)) < m < n})

and
Ny {m € N;nly 4+ q(f"¢(x)) <m < n}=0.

Let us put A = {n';,n's,...,0'p}, I =[n,+ Ll +q(f""(x)]IN[0,n — 11NN
and I = |J,/;. Let us denote Z(m) = —log |df (f™(x))|.

hn

. d’ / o —
Claim 1. 31200 > T gy’
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Proof. Since |dfi(f"(x))| > 1 for g =q(f™(x)) < —n~'log|df(f"(x))| from
(A) of the Fact, it holds

, n+q+1 .
0 <logldfi(f ()= 3 logldf(f/()l < - > Z(m)+gqlogk; .
j=n1{ meNy NI,

This implies

> Z(m) < (n”'logr)Z(n;) .
meANyNI;

Since A = ATUINAG), we obtain the claim from the definition of B,(4,6). O
For 0 < m < n, let us put
X(m) = —log|df (f"(x))| + log|df™(x)| — nm .
Let /2={0 <n <n <--- < ny} be the set of m € A" satisfying
X(m)—nZ(m) > ;gg;fX(j)-
j<m

Then we have
hn

(I+n71)(1 +n""ogry)

Proof. Let I} < I, be two adjacent elements in A3 U {n} and let ; < m; < --- <
m, < I, be the elements of 47 between them. Then since m; ¢.4%, we have

Claim 2. 3° - Z(m) >

X(my) < nZ(m,)+ max X(j) < 0 Zm) + X(1y)
JEM i=1

Jj<my
On the other hand we have
X(my) = X(I) = log |df™ " (f1 ()| + Z(m,) — Z(1y) — n(m, — 1)
r—1
221y Z(m) + Z(m,) — Z(1y)
i=1
because |
log |df™ =" (f1 )| = Y 2nZ(my) + n(m, — 1)
i=1

from (A) and (B) in the Fact. Therefore we obtain
r
Z(h) z ny_Z(m;) .
i=1
This and Claim 1 prove Claim 2. O

Claim 3. There exists a constant C (which does not depend on the choice of )
such that, for each m € N, it holds

|af (S ()

G, m)dfmx)] C exp(—nZ(m)) .
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Proof. The left side is written as

> exp(X (i) — X (m) — n(m —1)).

i<m
We estimate this sum. Consider the following cases for 0 < i < m:

() ieN
2)iel,
(3) otherwise.

Let us denote, by 2,25, 23, the sum of exp(X(i) — X(m) —n(m —i)) over 0 <
i < m satisfying (1),(2),(3) respectively.
In case (1), we have

X(@()—X(m) < —nZ(m).

Hence
2 < Cyexp(—nZ(m))

for some constant C; which depends only on #. From (2.4), we can see that X, < 2.
Consider case (3). Note that fi(x) ¢ C(f,d) and [df (fi(x))| > i 2|df (f"(x))| in
this case. If f%(x) € C(f,do), we have, from (A) and (B) of the Fact,

X(i) = X(m) < —log|df (f'(x))| + log|df (f™(x))| + 2nlog|df (f(x))|
< 2logx; + 2nlog|df (f™(x))| -
If fi(x) ¢ C(f,do), we have
X (i) — X(m) < —log(x; ' d0) + log |df (f"(x))| — ko — 1 < 2nlog |df (f™(x))| ,
provided § is much smaller than dy. So we have
2y < Cldf (f"(x))[" = Cyexp(—2nZ(m))

for some constant C, which does not depend on the choice of &, provided that &
is sufficiently small. From all these, we obtain Claim 4. [

Now we finish the proof of Lemma 3.5. From Claim 4, we have
a(f"(x), C(f))
a(x, n;)|df"(x)|

where C' is a constant which does not depend on the choice of 4. If the right side
is smaller than e~!, we can find a point z; € f~"(C(f)) such that

< C'exp(—nZ(m)) foreach 1 <i<d,

lx —z| < eC’exp(—nZ(n;))a(x,n;)

from Lemma 3.2.
We have [#Z(n;)/2] > K for given K if we take ¢ sufficiently small. From
Claim 5 and the inequality above, we have

nhn
41 +n=H)(1 +n~logxy)

d
Z:l (nZ(n:)/2] >
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and
|x — z;| < exp(—[nZ(n;)/2)a(zi,n;) (cf. Remark 3.3)

when ¢ is sufficiently small. These show Lemma 3.5.

Appendix: Proof of the Inequality (2.1)

Let {, be the partition of M by the critical points of f;,). Then on each element of
V:':)l v [’;)C s f,'("p). is monotone. Let {’ be any partition of M iqto intervals. Then the
partition V;”:BI Jip(EpVL') divides each element of V;":BI Si»Cp into at most Nm
parts, where N is the number of the elements of {’. So we obtain by, (fup)s Cp) 2
hu,(fup) {') and hy,(ficp)) = by, (ficp)»{p)- Similarly we get h,(fo) = hu(fo, o),
where (o is the partition of M by the critical points of fo. Since p, converges to
i, we have

m—1 . m—1 )
llm H -t = H —i
o up (ZYO ft(p)c.”> f (i\z/0 f Co>
for each m. Therefore we obtain (2.1) from the definition of the metric entropy:

hy(f>0) = infm ™" H, (/7' £70).
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