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Abstract: We study some arithmetic properties of the mirror maps and the quantum
Yukawa couplings for some 1-parameter deformations of Calabi—Yau manifolds.
First we use the Schwarzian differential equation, which we derived previously, to
characterize the mirror map in each case. For algebraic K3 surfaces, we solve the
equation in terms of the J-function. By deriving explicit modular relations we prove
that some K3 mirror maps are algebraic over the genus zero function field Q(J).
This leads to a uniform proof that those mirror maps have integral Fourier co-
efficients. Regarding the maps as Riemann mappings, we prove that they are genus
zero functions. By virtue of the Conway—Norton conjecture (proved by Borcherds
using Frenkel-Lepowsky—Meurman’s Moonshine module), we find that these maps
are actually the reciprocals of the Thompson series for certain conjugacy classes
in the Griess—Fischer group. This also gives, as an immediate consequence, a sec-
ond proof that those mirror maps are integral. We thus conjecture a surprising
connection between K3 mirror maps and the Thompson series. For threefolds, we
construct a formal nonlinear ODE for the quantum coupling reduced mod p. Under
the mirror hypothesis and an integrality assumption, we derive mod p congruences
for the Fourier coefficients. For the quintics, we deduce, (at least for 5/d) that
the degree d instanton numbers 74 are divisible by 5* — a fact first conjectured by
Clemens.

1. Introduction

For background on Mirror Symmetry, the readers are referred to reference [1,2]
(see especially the articles therein by Greene—Plesser, Candelas-de la Ossa—Green—
Parkes. Katz, Morrison, Vafa and Witten).

It is known that the so-called mirror map and the quantum coupling have many
interesting number theoretic properties based on numerical experiments — as pre-
viously observed by many [1,3,4,5]. For example the Fourier coefficients of the
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mirror map appear to be integral in all known cases. In some cases, the coefficients
even appear to be alternating. The instanton numbers n; in the quantum coupling
on the other hand, apparently have some striking divisibility property. Clemens
conjectured that for the quintics in CP*,53|ny for all d [6]." This was supported by
Katz’ proof that 5|n,, along with similar divisibility properties for other manifolds
[7]. Our main motivation here is to develop some techniques, along with mirror
symmetry, to understand some of these remarkable “arithmetic” properties.

The technique for studying the mirror map is based on the following simple
idea: fix a known integral series f(q). Study when is z(q) commensurable with f(g)
(i.e. when do z(q), f(q) satisfy a polynomial relation)? Hopefully when enough is
known about f(gq), then give a polynomial p(X,Y) we can understand some of the
arithmetic properties of the root z(q) to p(f(q),Y) = 0. Note that this is still a
difficult Diophantine type problem in general, involving infinitely many variables
consisting of the Fourier coefficients of z(q).

However, a lot is known about the j-function both number theoretically and
geometrically. Thus it is natural to try to find commensurability relations (also
known as modular relations) between j(q),z(q). We will see that this idea works
well in the case of elliptic curves and K3 surfaces.

The technique for studying the instanton numbers is based on the fact that there
is a canonical polynomial ODE for the quantum coupling, which is defined over Q.
This raises the possibility of deriving similar equations, but reduced mod p. The
mod p arithmetic properties of the quantum couplings should then be reflected in
these reduced equations. In [8,9], in collaboration with A. Klemm and S.S. Roan
we have constructed an ODE over Q. However, its mod p counterpart derived here
appears much simpler and more manageable. We now summarize our discussion.

First we discuss, along the lines of [4,5], the construction of deformation co-
ordinates based on which the mirror map is defined. Then we review the polynomial
differential equations for the mirror maps, studied in [8, 9]. First we classify the ana-
lytic solutions, on a disk, to the n' (n = 2, 3 or 4) Schwarzian equations associated
to certain n' order linear ODEs of Fuchsian type. As a consequence, the so-called
mirror map z can be given a simple characterization. Corresponding to n = 2,3 or
4, there is a universal family of polynomials whose evaluation at certain integral
points recovers the Fourier coefficients of a mirror map.

We consider some examples in which the linear ODEs are the Picard—Fuchs
equations of several distinguished families of smooth Calabi-Yau varieties in
weighted projective spaces. We revisit the case of elliptic curves (n = 2).

In the case of n =3, we consider some distinguished families of K3 surfaces
in weighted projective spaces. We prove that the mirror map z for each of those
families is algebraic over the function field Q(J) generated by the Dedekind—Klein
J-functions —a rather surprising connection between modular functions and K3 sur-
faces. Our result on the n =3 Schwarzian equation is an important tool in this
connection. We then use our explicit modular relations to give a uniform proof that
the Fourier coefficients of z are integral —a fact which has been previously observed
experimentally. This is also the first confirmation of the integrality property in the
case of K3 surfaces.

We then discuss a mysterious connection between our mirror maps and the
Thompson series. We offer some speculation as to why the two might be related.

1 We thank S. Katz for pointing out some references to us.
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We conjecture that any 1-parameter deformation of algebraic K3, determined by an
orbifold construction, gives rise to a Thompson series.

In the last section under an integrality assumption and the Mirror Hypothesis,
we study our differential equations reduced mod p. We derived some general mod p
congruences and then specialize to p =2,3,5,7. For the quintic hypersurface, we
deduce Clemens’ conjecture that the degree d instanton numbers n; are divisible
by 5° (at least for 5 /d).

2. Deformation Coordinates

The purpose here is to review the orbifold construction of the mirror map and to
give an explicit description of the deformation coordinates for complex structures.
The orbifold construction in weighted projective spaces has now been superceded
by toric geometry construction [10,4]. But in the former, the description of the
deformation coordinates can be made rather explicit. Here we will adopt the multi-
indexed convention for monomials ) = y’l1 ...y'm whenever the meaning of the
variables y is clear.

Let X be a [ := (n — k — 1)-dimensional Calabi—Yau variety defined as the zero
locus of & homogeneous polynomials py,..., pr whose degrees are dy, ..., dy, in
the weighted projective space P"![w]. Here w = (wy, ..., w,) are the weights con-
sisting of coprime positive integers. Suppose that X has a mirror X* given by an
orbifold construction [11,12,1]. (Thus X* is assumed to have the usual mirror

Hodge diamond.) The space X* is a resolution X/G of the singular quotient X/G,
where G is a finite abelian group acting on the homogeneous coordinates x; of
the ambient space P"~'[w] by characters y; : G — S'. They are assumed to satisfy
{1---Xn = 1, which ensures that the holomorphic top form on X is G-invariant, and
hence induces a form on X*. We now want to describe some complex structure de-
formations of X*. We do so by describing a family of G-invariant holomorphic top
forms Q(z) on X. Thus ultimately, our deformation space M will be parameterizing
a family of G-invariant deformations of the p;.

Fix m; G-invariants monomials which we denote by xh,ie Ny i={(m +---+
mi_)+1,...,(m+---+mj_)+m}. Let m:=m; +---+my. Let F be the fol-
lowing holomorphic family, fibered over (C*)", of varieties. Its fiber at a =

(aiy,...,an) is defined as the zero locus of
pla:x)y= > aix"i . 2.1)
iGNj

We assume that X is the fiber at some limiting value of a and that the generic
fibers are homeomorphic to X. Now two fibers can be biholomorphic simply by
coordinate transformation. Specifically for any o = (ay,...,00k) € (C*), the
transformation x; — x;/o;, a; — a;o)! ... o0, ; = a;0%i, where (iy,...,i,) = I, trans-
forms p, — o4 ;p;. Call this transformation group H, and consider the quotient
family F/H — (C*Y"/H = M. The base M will be our deformation space. The
isotropy group of the H-action on (C*)" is H' = {a|a’ = 1, all i}. The condi-
tions &/ = 1 mean that the dot products J; - (log a1,...,log &) = 0. Or if K is
the m x (n + k) matrix of exponents whose rows are the J;, then K - (log )’ = 0.
Thus vk K = dim H — dim H’, implying that dimM =m — vk K.
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We wish to construct some coordinates on M. Now H acts on the coordinate
ring Claf!,...,at"] of (C*)" by a;+— a0, A simple way to coordinatize
M = (C*)"/H would be to find enough suitable H-invariant functions f : (C*)" —
C*. An H-invariant Laurent monomial a* is one with uJ; 4 -+ + Uy = 0.
The set of such u is the lattice L = (ker K’) N Z” which has rank dim(ker K’) =
m — rk K' = dim M. The subalgebra of H-invariants in C[alil,...,a,f‘] is the group
algebra C[L] which is canonically generated by a*%, for a given basis {B} of L.
Thus for every basis {B}, we get a canonical set of functions z = (a®) globally
defined on M. The z will be our deformation coordinates.

Since any two bases {B}, {B'} are related by B = mppB’, where (mpp) is
an integral matrix, z = (a®) — 2’ = (a® ) is a birational change. Note that if the
z take the value of integral g-series, then so does the image z’ under the above
change. Thus when the z; takes the value of the mirror map which has a g-series
expansion, the question of integrality of the Fourier coefficients is independent of
the choice of basis of L. In case dim M = 1, which is all we are going to deal with
here, the coordinate z above is unique up to z — 1/z. But demanding that z = 0 is
the point with maximum unipotent monodromy [13] for the Picard-Fuchs equation,
fixes the choice completely.

2.1. Some examples. Let’s first consider the simplest example: cubics in P?. Let
G be a cyclic groups of order 3 and act on the homogeneous coordinates x; — &'x;,
where ¢ = ¢?™/3. Then the G-invariant cubic monomials are x3,x3,x3,x;x2x3. We
consider the invariant family ' which is the zero locus of the polynomial

pla:x)= ale + agxg + a3x§ + asx1xx%3 . (2.2)

The group H = (C*)3*! acts on F as described above. On the base space (C*)*, it
acts by « : a > (03ay, 03ar, 03as, o 0p03a4 )ag. We see that the H-invariant functions
are generated by z = a1a2a3a4"3. It’s easy to check that this function defines an
isomorphism (C*)*/H — C*.

Consider now the sextics in P? [1, 1,2, 2]. Let G be a finite abelian group of
type (6,3,3), which acts on the homogeneous coordinates by

-1 ~1 1.4
x> E188ax, x = & X, x3 = &5 x3, xa > Ex7, (2.3)

where &), &, & are respectively arbitrary 6th, 3rd, 3rd roots of 1. The G-invariants
monomials are x?,xg,xg,xi,x1x2x3x4,x?x%. As before we can write down a linear
sum of them with coefficients ay,...,as. The matrix of exponents K defined above
is the 6 x 5 matrix with rows: (6,0,0,0,1), (0,6,0,0,1), (0,0,3,0,1), (0,0,0,3,1),
(1,1,1,1,1), (3,3,0,0,1). The lattice L therefore has a base (1,1,0,0,0,—-2),
(0,0,1,1,—3,1). This gives us the deformation coordinates z = (z;,z;) with
zZ] = a1a2a6_2, Zy = a3a4a5_3a6.

As a third example, we consider the sextics in P [1, 1, 1, 3]. Let G be a finite
abelian group of type (6,6,2), which acts on the homogeneous coordinates by

_ 1 -1
x; + E16bsx, x> &, x3 = &5 xs, x4 &5 xq 24)

where &1, &, &3 are respectively arbitrary 6th, 6th, 2nd roots of 1. The G-invariants
monomials are x¢,x§,x$,x3,x1x2x3x4, x2x3x3. As before we can write down a general
linear sum of them to define our family of sextics. But note than any sum of the

form ax?, +bx1xpx3x4 + cx?x3x3 can be written as ax + b'x;xox3x4, by a suitable
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redefinition x; — X1, Xz = X3, X3 — X3, X4 — X4 + Ax1x2x3. Thus we consider the
family:
pla:x)= alx? + azxgj + a3x§’ + a4xf + asxixyx3x4 . (2.5)

The matrix of exponents K is the 5 x 5 matrix with rows: (6,0,0,0,1), (0,6,0,0, 1),
(0,0,3,0,1), (0,0,0,3,1), (1,1,1,1,1). The lattice L therefore has a base (1,1,1,3,
—6). This gives us the deformation coordinate z = ajayazajas ®.

2.2. Definition of the mirror map. Following [1,13,4], we now define the mirror
map in terms of the coordinates z by studying variation of the periods for X*.
By construction, the holomorphic top form £(z) on X induces a form on X*.
Integrating the form against the G-invariant cycles, we obtain periods for X*. By the
Dwork-Griffith-Katz reduction method, we get a system of Picard—Fuchs differential
equation(s) for those periods. If z = 0 is a maximal unipotent point, then the system
admits a unique solution wgy(z) which is holomorphic near z = 0 with wy(0) =
1, and s := dim M independent solutions of the form w;(z) = we(z)log z; + g:(z),
where the g; are holomorphic near z =0 with g;(0) = 0. We call the mapping
9;()

defined by g; := €*™/ = z;e™® the mirror map. For convenience, we also refer to
the inverse z;(g) as the mirror map. Thus by the construction above, the mirror map
for an s-parameter family of Calabi—Yau mirror pairs can be regarded as collection
of s g-series z;(g) which are determined by X, the holomorphic family of G-
invariant deformations, and the choice of basis of a lattice.

3. Construction of the Schwarzian Equations

We now discuss the construction of the differential equation which governs the
mirror map z(¢). We begin with an n® order ODE of Fuchsian type:

ar n—1 dt
L= (S+E aerg ) =0 (1)

(n will specialize to 2,3 and 4 later). In particular, the g;(z) are rational functions
of z. Let f1, f2 be two linearly independent solutions of this equation and consider
the ratio ¢ := f2(z)/f1(z). Inverting this relation (at least locally), we obtain z as
a function of ¢. Our goal is to derive a polynomial ODE, in a canonical way, for
z(1).

We first perform a change of coordinates z — ¢ on (3.1) and obtain:
n dt
> bi(t) =/ (2(1) = 0, (32)
i=0

where the b;(¢) are rational expressions of the derivatives z¥) (including z(¢)). For
example we have b,(t) = a,(z(¢))z'(t)™". It is convenient to put the equation in

reduced form. We do a change of variable f = Ag, where 4 = exp (— f b;,)‘nl(x)),

and multiply (3.2) by :417,, so that it becomes

o= (% 5 e ) =0 33
g.—<ﬁ+2cf()3;;>g(z())— , (33)

i=
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where ¢; is now a rational expression of z(¢),z'(¢),...,z" "1 for i = 0,...,n — 2.
Now g; := f1/4 and g, := f,/4 = tg; are both solutions to Eq. (3.3). In particular
we have

” i n—2
P:=Lg = (dt” + > c'(t)dt') g1=0,

i=0

n—1

0 = Lltg) - tior = (n s

+ Z i+ Deigi(t) ) g1=0. (34)

Note that since ¢; is a rational expression of z(¢), z/(¢),...,z"~*1D(¢), it follows
that P involves z(¢),...,z"*D(¢) while Q involves only z(¢),...,z"(¢). Equations
(3.4) may be viewed as a coupled system of differential equations for g;(¢),z(¢).
Our goal is to eliminate g;(¢) so that we obtain an equation for just z(¢). One way
to construct this is as follows. By (3.4), we have

d .
EP 0, i=0,1,....,.n—2,
WQZO’ j=01,..,n—1. (3.5)

We now view (3.5) as a homogeneous linear system of equations:

2n—2
3o Mu(z(t), ..., 2% ])(t)) T g1 =0, k=0,...,2n -2, (3.6)
1=0

where (Mj;) is the following (2n — 1) x (2rn — 1) matrix:

Cp Cy cee Cp—2 0 1 0
< co+cf . Chz e, 01 0 O
e I 3 N e N (|
i 2¢) (n—2)ch—2 n 0 0 - 0
f ¢ + 2} o (n=3)u3+(m—=2), , 0 n O -0
C(ln—l) (n_ 1)C(1"_2)+2C(2n—1) . . 0 n

(3.7)

More precisely, if we define the 1% and n™ (n fixed) row vectors to be (M;;) =
(co,cl,...,c,,_z,O, 1,0,...,0) and (M,,]) = (01,202,...,(n — 2)cn_2,0,n,0,...,0) Ire-
spectively, then the matrix (My;) is given by the recursion relation:

My =M+ My, 1=1,..2n—1; k=1,...,n—2n,..21—2. (38)

Thus the (Mj;) depends rationally on z(¢),...,z?"~U(¢). Since g; is nonzero, it
follows that
det(M(z(¢), ...,z D(@))) = 0. (3.9)

We call this the n™ Schwarzian equation associated with (3.1). Note that by suitably
clearing denominators, the equation becomes a (2n — 1) order polynomial ODE
for z(¢) with constant coefficients. It is clear that this equation depends only on the
data ¢;(z) we began with.
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4. The Analytic Solutions to the Schwarzian Equation

It was already known to H.A. Schwarz that all the solutions to his equation (n = 2)
can be constructed from the original 2" order ODE. In this section, we wish to
generalize his result to the other higher Schwarzian equations. We will focus on
those which arise only from cases in which the data ¢;(z) come from the Picard-
Fuchs equation of a smooth Calabi—Yau hypersurface (or complete intersections)
in a weighted projective space. We will show that there is exactly 1-parameter
family of single-valued analytic solutions, on a disk, to the Schwarzian equa-
tion. It is instructive to first go back to the n =2 case (elliptic curves). While
Schwarz’s treatment in this case focuses on the solution ratios (triangle functions),
it is less direct for studying their inverses. Instead we will study the inverses directly.
This will have the advantages of a) exhausting all the analytic solutions directly;
b) seeing manifestly that the solutions have polynomial dependence on the para-
meters; and c¢) generalizing immediately to higher Schwarzian equations.

4.1. n =2 Schwarzian equation. We begin with a Fuchsian equation of the general
form:

(0% = 62(0 +a)(O +b)f(z) =0, (4.1)

where the ,a, b are constants with 60 (later we will restrict to rational numbers
with 0 < a,b < 1), and O = z;—z. The Picard—Fuchs equations for elliptic curves
in a weighted projective space (for the general form of the Picard-Fuchs equation,
see [4,5]) is of this form where z is a suitable coordinate for the complex structure
moduli space of the curves. The periods of the curves are given by the solutions to

(4.1). This equation is projectively equivalent to a hypergeometric equation:

z2(1—z)y"+(1 ~(a+b+ 1))y —aby=0, (4.2)

i.e. there exists a function 4 and a Mobius transformation z — ;%g such thatf = Ay

transforms (4.1) into (4.2). (Take z — z/d.) The Schwarzian equation associated to
(4.1) is
20((1))2" + {z1} =0, (43)
m

where {z,1} =2 -3 ZZL,/)2 and
14+2(=1+a+b—2ab)oz + (—1+a—b)(—1—a+ b)§z*

Q@) = 422(1 — oz )?

4.4)

The Schwarzian equation associated with (4.2) is (4.3) with § = 1. For convenience,
we let 6 = 1 for now. To restore the generality, one simply replaces z by dz below.
It was known to H.A. Schwarz that the every solution z(¢) to (4.3) is the inverse
of a ratio (known as a Schwarz triangle function of type s(0,b —a,1 —a — b;z))
of two hypergeometric functions which solve (4.2). In this note, we will only be
interested in solutions z(q) to (4.3) which are analytic in some disk |q| < R, where
g = e*™ Tt turns out that every analytic solution z must have either z(g = 0) = 0
or 1. We will only consider those with z(0) = 0. They can be obtained as follows.
Equation (4.1) has a unique power series solution f1(z) with f;(0) = 1, namely

f1(2) = 32,50 2", Where ¢, = ﬁ%()lz%%‘ There is also a unique solution of
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the form f5(z) = log(z) fi(z) + Z@ , dnz". Note that both the c,,d, depends poly-

nomially on the parameters a,b. Let = 27{12f(lz()z) Then

g=zexp (> duz"/> caz") . (4.5)

This defines an invertible analytic map from a disk |z] < S to some |g| < R sending
0 to 0. The inverse map zy(q) therefore gives a particular analytic solution to (4.3),
which we will call the fundamental solution. Note also the Fourier coefficients of
z7(q) also depend polynomially on a,b. (Thus the above construction makes sense
with no restriction at all on the values of a,b.) It is convenient to transform (4.3)
by g = ™ so that the equation now has g as an independent variable and z(g)
dependent variable.

We will argue that {z(kq)};ccx exhausts all analytic solutions z(g) with
z(0) =0 and %—(;—) *0, i.e. every such solution can be obtained from the funda-
mental one by scaling g. First note that scaling ¢ by & corresponds to a translation
t — t+ B for some f. But we know that (4.3) is invariant under Mobius transfor-
mations on ¢. This shows that each z,(kq) is an analytic solution to (4.3). It remains
to show that if z(¢) = ) _,-, a,q" is an analytic solution to (4.3) with a; +0, then

. . . .o . P
the a, are determined by a,. Since (4.3) is 3™ order and is linear in 4z g, for
a’q3

n=3,4,... are determined by a; and a,. But a simple computation using (4.3)
gives

a = (2ab — a — b)a; . (4.6)

As argued, the Fourier coefficients of z(kq) are polynomials in a,b,k. The first
few terms of z,(q) are

zp(g) =g+ (—a—b+ 2ab)q?
—(a—5a*+b— 11ab + 19a°b — 5b* + 19ab® — 194°b*)q* |4
— (6a — 45a* + 93> + 6b — 94ab + 4084a*b — 515a°b — 45b*
4 408ab* — 1116a*b* 4 987a°b* + 93b* — 515ab°
+987a°b* — 658a°b>)g* /54 + - - - . (4.7)

This is obtained by either inverting (4.5) or by directly solving (4.3).

4.2. n =3 Schwarzian equation. Tt is now clear how to generalize the above. Con-
sider the following 3™ order ODE of Fuchsian type:

<@3 -z (i ri@’)) f(z)=0, (4.8)
i=0

where the r; are constants with »3+0. The Picard—Fuchs equations for (a 1-
parameter deformation of) smooth K3 hypersurfaces or complete intersections in
weighted projective space is of this form (see [4,5]) where the r; are integer
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valued and satisfy some restriction given as follows. There is a “uniformizing”

coordinate 7 in which (4.8) becomes ‘2% = 0. This implies the following three
possibilities:
aA)rp=r=rn=20;
b)3rg=r =r,=3r;;
27‘1 —r3 _ 3"3
2 5 V) = ) . (49)

Cases a) and b) turn out to be projectively equivalent, i.e. they both result in the
same reduced form for (4.8):

a? 1 d 1Y »
(@‘5‘@;1—2-— E) f(z)=0. (4.10)

This case will not arise in our discussion below. Thus from now on we impose
¢) and hence (4.8) becomes, after simplification:

(@3_r3z(@+1> (@2+@+’—‘—1>)f(z)=0- @1
2 ry 2

According to our general construction, the Schwarzian equation associated with
(4.11) is then (see Eq.(3.9))

det (My;) == 27c3 + 4c; — 18¢ic) — 3c? + 6¢1c”’y =0, (4.12)

C) Yo =

where
a(t) = qz)2* +2{z1},

321/3 421/2(3) 2(4)
co(t) = qo(2)2° + q1(2)7'2" + —5 = —5— + -,

4 — 4rz — 213z + dryrsz? + 13zt

Nn@) = 4z2(—1 + r3z)? ’
_ ldq(z)
q0(2) = 5 prt (4.13)
It is easy to check that co(¢) = 1¢{(¢). This simplifies (4.12) to
' 15¢,> + 16¢3 — 12¢1c = 0. (4.14)

Note that this simplification is a direct consequence of imposing c¢) above. This
n = 3 Schwarzian equation will be useful for understanding the mirror map for K3
surfaces (see below).

We now construct all analytic solutions z(gq) to (4.14) with z(0) =0 and

d—fi—(;)) #0. The situation here is completely analogous to the n = 2 case. Equation

(4.11) has a unique power series solution fi(z) = ano cnz” with f1(0) = 1. There
is also a unique solution of the form f»(z) = log(z)f1(z) + anl d,z". The ¢,,d,

are polynomials of the parameter r;,73. If we let t = ﬁ%%, then

g:=e™ =z exp (3 duz"/3S cuz") (4.15)

defines an invertible analytic map from a disk |z| < S to some |g| < R. The inverse
map z,(q) therefore gives a particular analytic solution to (4.14). By an argument
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similar to the n = 2 case, we conclude that {z;(kq)};ccx exhausts all such ana-
lytic solutions. The Fourier coefficients of the fundamental solution z,(g) can be
computed using (4.14):

27(q) = q + (2r1 — 3r3)¢*/4 + (76rF — 212r175 + 135r3)¢% /256
+ (26327 — 10468r2r3 4 12862r172 — 500773 )g* /13824
+ (18065447} — 9219424r7r; + 165264887312
— 12589560r, 73 + 3479157r%)q° /14155776 4 - - - . (4.16)

The above result has an interesting consequence: every analytic solution to
(4.14) is a solution to:

a=q@)* +2{zt} =0. (4.17)

To prove this, note that (4.17) is an n = 2 Schwarzian equation (4.3) with Q(z) =
%ql(z). Associated to it are (in general) four 2" order Fuchsian equations of the
type (4.1) with parameters 6 = r; and a,b satisfying

3
2ab—a—b=211 2
ab a 21‘3 4’
3

(a—b)zz—é+z. (4.18)

(Note that if (a,b) solve (4.18), so do (b,a) and (1 —a,1 —b).) By our pre-
vious result on the n = 2 Schwarzian equation, (4.17) has a family of solutions
{z7(kq)}rccx - Obviously they are solutions to (4.14) as well. Thus by our result
on the n = 3 Schwarzian equation, this family exhausts the solutions to (4.14). Thus
we have effectively reduced the n =3 Schwarzian equation to the n = 2 equation.

4.3. n =4 Schwarzian equation. For completeness, we briefly discuss the n = 4
case even though we will not be applying the result later. The situation here is
quite similar to the » = 3 case, except the last part above. Consider the following
4™ order ODE:

(0% — 2(r40* + 2r,0° + 1,0 + (12 — 14)O + 1)) f(z) =0, (4.19)

where the r; are constants with r4#0. The Picard—Fuchs equations for a certain
1-parameter family of Calabi-Yau threefolds in weighted projective space is of
this form where the »; are integers. According to our general construction, the
Schwarzian equation associated with (4.11) is then (see Eq. (3.9))

det(My;) := 16c5co — 128¢3¢h + 256¢; + 4czc2
+ 240cy¢ ) — 15c2 144¢3 chch — 448y ¢y
+256c2¢¢ — 8cicl + 128c3 ¢l — 48¢yc2c))
+48c)ch el + 12ckc,? — 48cycy® + 32c3c]]
2.7 (3)

— 128cycocll + 48c2cl + 32¢2ch S + 64cychel? — 96¢ac) e

+ 8czc§3) 802c§4) +32c2¢p 5 120;2054) =0. (4.20)
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where
2
() := q2(2)2"” + 5{z(1),t}2,

dq2(z) /2 " % (Z)Z//2 _ 1352”4

co(t) == qo(z)z"* +

2 dz 4% 162"
3 Ly 75772 15207 1520 300
+ 2 92(2)2 27 + 4z 4?22 + 27"

5 — 2zry — 4zry + 22%ryrg + 22%13
222(—1 +ZI"4)2 ’

q2(z) ==

qo(z) := (81 — 16zry — 12zr, — 280zr4 + 482%rgry + 44z% 11y + 34022r§
— 48z3r0r§ — 64z3r2rf — 128z3ri —+ 1624r0r2 + 32z4r2r2
+ 3224/ (1624 (=1 + zr4)*) . (4.21)

Once again, the set of analytic solutions to (4.20) with z(¢ = 0) =0 and
d—;ﬁlﬂ#o is of the form {z;(kq)},ccx, where z;(q) is the fundamental solution

whose Fourier coefficients are polynomials in the data (r4,7,70). The construction
is almost identical to that for n = 2,3. The first few coefficients z,(q) are given
by:

2p(q) = g+ ¢*(4ro — 12 + 1)
+q*(163r2 — 84rgry + 1173 4 90rgry — 24ryry + 1312)/8
+¢* (11279873 — 88840r2r, + 23610ror3 + 2115r;
+ 989697374 — 53280rryrs + T245r374 + 29958717
— 8253773 + 312313)/972
+ ¢°(702344153r3 — 747165436737, + 300965204r2r3 — 54365280rr3
4371332875 + 8538057967574 — 69458757613 rar4 + 189938400rr374
— 174481921374 + 4000907087377 — 2209598407073 + 307264327377
+ 85542240173 — 24023808773 + 7032240r¢)/995328
+¢5(2322744173252r5 — 3118439852795r3r, + 1688073976516r3r3
— 46030400489213r3 + 63195785760rpr5 — 349317720073
+3628517760463r3r4 — 395922570321673r274 + 163145693195673r374
—300755456640rr3r4 + 2091979800075 4 + 2319777533708r3r2
— 1926736953572r2ry77 + 536717533440r0r37r7 — 5012447760073 72
+757958047180r373 — 425557676160r0r273 + 600506280007373
+ 12644958000077f — 3596186520077
+ 860909400073 )/518400000 + - - - . (4.22)
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It is interesting to note that this series appears to be integral when evaluated at
certain integral points. For example, if the data (rs4,7y,79) = (3125,4375, 120) cor-
responding to the quintic threefold in P*, then (4.22) becomes:

2(q) = q — 7704 + 171525¢° — 81623000¢* — 354231712504°
— 54572818340154¢% — - - . (4.23)

This integrality phenomenon apparently continues to hold in other examples as has
been previously observed.

At this point, one might wonder if z; would satisfy an n = 2 Schwarzian equa-
tion (4.3) as in the previous case, i.e. is there a rational function Q(z) similar to
(4.4) such that (4.22) solves the equation (4.3)? The answer is no in general. In
fact, we have checked that in many cases of a 1-parameter family of Calabi-Yau
threefolds, such a Q(z) doesn’t exist (cf. [1], Sect.2). However the mirror map
zy of such a threefold does satisfy an equation similar to (4.3), but with some
“quantum” corrections, namely:

2

20" + {2t} = 25— <y (424)
5 10

where 0(z) = %qz(z) (Eq. (4.21)) and y = logK(¢), K being the quantum Yukawa

coupling (also written as 0°F). Thus the right-hand side of (4.24) should be thought

of as a “quantum” correction to the classical equation (4.3).

4.4. Remarks

1. In the last section, we have seen that the Schwarzian equations can essen-
tially be solved in terms of certain hypergeometric functions. Moreover the analytic
solution is essentially unique. In fact, it follows easily from the previous discussion

that in each case n = 2,3 or 4, the fundamental solution to the n" Schwarzian equa-

tion is the unique analytic solution (single-valued) z(g) with z7(0) = 0, dzf;;o) =1.

This is exactly the so-called mirror map. Thus the mirror map can be character-
ized by means of an ODE and analyticity. We also find that there is a similar
characterization for the quantum coupling K(¢) in a number of examples.

2. Even though we have obtained only the singled-valued analytic solutions
to the Schwarzian equations in the disk |g| < R, the results actually allow us to
classify certain multi-valued solutions as well. For simplicity, let’s focus on the
n =2 case. What we say here will hold true for n = 3,4 as well. For example,
given any positive constant o, one can easily classify the analytic solutions z(g) to
(4.3) such that z(g) ~ kq* as g — 0 for some constant k. First note that there is a 1-
parameter family of such solutions, namely z(kg*), where z7(g) is our fundamental
solution. This follows immediately from Mobius invariance of (4.3). This family
also exhausts all such solutions.

3. We studied the Schwarzian equations associated with Fuchsian equations of
special type which arises as the Picard-Fuchs equations for certain Calabi—Yau man-
ifolds. It is clear that one can study these Schwarzian equations without reference
to special geometry, in which case, some of our assumptions can be weakened.
For example, we have checked that the uniqueness of analytic solutions to these
equations continues to hold true under much weaker assumptions on the form of
the associated Fuchsian equations. (For instance, take any Fuchsian equation whose
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indicial equation is maximally degenerate, i.e. whenever the differential operator
takes the form @" — zp(z, ®), where p is a polynomial of degree at most # in ©.

4. We have shown that the mirror map in the case of K3 surfaces satisfies an
n = 2 Schwarzian equation, as in the case of elliptic curves. This is the first hint that
there might be some relationship between K3 surfaces and elliptic curves. It also
says that the mirror map is nothing but the inverse of a Schwarz triangle function.
As even more interesting hint comes from the following numerical experiment.
If we consider a 1-parameter family of sextic hypersurfaces in the weighted
projective space P*[1,1,1,3] and compute the Fourier series of the mirror map,
we get

2(g) = q — 7444° + 356652¢° — 1403611524" + 493366821904°
— 161146256690884° + - - - . (4.25)

The observant reader would have realized that the coefficient 744 is the constant
term in the J-function times 1728. In fact if we compute 1/z(g), we get exactly the
first 6 coefficients of the 1728J. We will prove that 17287 = 1/z(g). This will be
another confirmation that the mirror map for a Calabi-~Yau variety is integral.

5. Transcendence of the Mirror Map over Q(J)

In this section analytic functions are assumed to be defined on some disk |g| < R.
Let Q(f) be the field generated by the analytic functions f(g) over the ratio-
nals Q. Two analytic functions f(q), g(q) are called commensurable if there exists
a nontrivial polynomial relation (with coefficients in Q) P(f(q), g(kq*)) =0 for
some rational numbers k, «. The statement that f(q) and g(gq) are commensurable is
equivalent to the statement that g(kg*) is algebraic over the field Q(f'). Note also
that commensurability is an equivalence relation.

We will be mainly concerned with the question of commensurability of an ana-
lytic function f(q) with the J-function. Perhaps the simplest example of a function
commensurable to J is the so-called elliptic modular function (see below) A. It
bears the following well-known modular relation to J:

4 (12422
=% Ay (5.1)

The function 4 will show up again in the next section.

In this section, we will prove that the mirror map z(g) for K3 surfaces modelled
in various weighted projective spaces is commensurable with J. Before discussing
K3 surfaces, it is useful to recall some known examples of mirror maps which are
commensurable with J [14, 15] (see also [8] Sect. 3.1). For both the elliptic curves
and the K3 surfaces, we will use the commensurability relation to prove that the
mirror maps in those cases are integral.

5.1. Elliptic curves. In the following table, we have four realizations of a 1-
parameter family of elliptic curves as hypersurfaces (or complete intersections) in
weighted projective spaces P?(1,1,1), P?(1,1,2), P?(1,2,3) and P3(1,1,1,1).
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deformations diff. operator 1728J(z)
Lo R tr Pann =0 03004200+ SEEEL
2 AR s =0 Fos@ @) S
3. xf +x§ + x% + 27 Yo% xpx3 = 0 6% — 122(60 + 5)(60 + 1) o _14322)
4. X 4x2+z V=0 02 — 42(20 + 1) %

x4z =0

Thus in those four examples, the mirror maps z are algebraic over the field Q(J).
The relations between z and J in some of these examples are derived in [8] by
using the Weierstrass model for the elliptic curves. We will instead illustrate the
proof using a slightly different approach which will prove useful in the case of K3
surfaces. Namely, we will effectively use the results on the uniqueness of analytic
solutions to the associated n = 2 Schwarzian equations. We will consider Example 4
because it has some interesting connection with elliptic functions and it hasn’t been
treated in [8]. Our goal is to prove the relation between z and J in Example 4
above. (We also have similar proofs for all the other cases above.)

3
Recall that J(¢) := ZZT(:))’ where A(¢) is the discriminant of the Weierstrass elliptic
curve W with period ratio ¢:

Wyt =4ax® — ga(t)x — g3(1). (52)
The periods @ of W are solutions to the Picard—Fuchs equation:

d*Q 1dQ 31J -4

a7 "7 ar Trapaopeto -3)

Thus J is a solution to the associated Schwarzian equation (4.3) with:

32 — 41z + 3622

0@ = a2

(54)
The function J(gq) (q := e?™) can be characterized as the unique meromorphic
solution to the Schwarzian equation on a disk |¢| < R with the leading behavior

J(q) ~ ﬁ near 0. It is more convenient to work with zp(q) := which
satisfies (4.3) with:

1
17287(q)

1 — 1968z + 265420822
4z2(—1+ 1728z)?

0(z) = Ow(z) = (5.5)
which is in the standard form (4.4). Since zy has the leading behavior zy(gq) ~ ¢,
it follows that (Sect. 4.1) zy is the fundamental solution to (4.3) with (5.5).

Now consider the mirror map zyx for Example 4 above. This is the fundamental
solution to the Schwarzian equation (4.3) with:

1 — 16z + 25622

Q(Z) = QX(Z) = m .

(5.6)
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We want to prove that

. ZX(—1-|—16ZX)4
T (14 224zx + 25623 )

zw (5.7)

Note that the right-hand side, which we will call {, has the correct leading behavior.
By substituting { into (4.3) with (5.5) and use the fact that zy satisfies (4.3) with
(5.6), we find that indeed (4.3) holds. By uniqueness of analytic solution to the
Schwarzian equation we conclude that { = z. We remark that one can also prove

—1+162)*
m to the (reduced)

Fuchsian equation j: "(z) + QW(z)~f (z) = 0 and see that you get the new reduced
Fuchsian equation f”/(z) + Qx(z)f(z) = 0. It follows that their respective associated
Schwarzian equations must transform from one to another under the same variable
change.

(5.7), simply by applying the variable change z —

5.2. Integrality of zx and the elliptic modular function A. There is an amusing
connection which we should point out between zy and A. The latter is defined to
be the inverse function of the Schwarz triangle function [16]:

\/:—TF(%’ %7 1’ 1 _Z)
F(3,3,1;2)

t =3S(0,0,0;z) := , (5.8)

where the F are hypergeometric functions with (a,b,¢) = (3,3,1). As a result we
can also characterize A as the unique analytic solution, with the leading behavior

Mq) ~ 16q%, to the Schwarzian equation (4.3) (associated to (4.2)) with:

06) = 0ste) = ot (59)
The function A has a g-series expansion:
Mgq) = 16¢'% — 128q + 7044 — 30724 + 114884°/>
—384004° + 11763247 — - .. . (5.10)

From its expression in terms of theta functions, it is known that A has integral
Fourier coefficients divisible by 16. It is also well-known that A defines a modular
function of level 2 on the upper half-plane and it is related to J by:

2y3

= i Q__/l_'_—'“ (5.11)
27 21— A

(This relation can also be proved using the approach we used to prove (5.7)).

Since commensurability is an equivalence relation, it follows from (5.7) and (5.11)

that zx(q), A(¢*) are commensurable also. In fact, using the method above, one can

easily prove that

Mq*) =162x(q) . (5.12)

Since the Fourier coefficients on the left-hand side are integers divisible by 16,
it follows that zy also has integral Fourier coefficients. We should also point out



178 B.H. Lian, S.-T. Yau

that combining the relations (5.7), (5.11) and (5.12), we get a rather peculiar iden-
tity for A:

LA -1+ M2 M9’ - M)’
(I+ 142 + A@*PP (1= U+ Uy’

It also says that you can write J in terms of A in two different ways.

5.3.  Remarks

(5.13)

1. The above approach for studying the commensurability of mirror maps also
applies easily to Examples 1-3 in the previous section.

2. In the last example we studied, it is less clear how to deduce, from the relation
(5.7), the integrality of zy from the known integrality property of zy. But upon
relating zy to A via (5.12), this property becomes immediately clear. The upshot of
this is that using the arithmetic properties of any particular one mirror map, such as
zw, alone may only give partial information about mirror maps commensurable to it.
One should instead use other series, such as 4, in the same commensurability class
to help obtain further information about other members in the same class. The lesson
is that the larger the commensurability class, the more arithmetical information we
can get about its members because every pair of members are related by some
modular relations.

3. The key steps we used repeatedly above to prove commensurability of two
fundamental solutions are:

a) identify the appropriate modular relation;

b) relate their corresponding Schwarzian equations (or equivalently their reduced
Fuchsian equations) by a change of variables using the modular relation;

c) use analyticity (asymptotic behavior) and uniqueness of solutions to the
Schwarzian equation.

This idea will continue to work well, as we will see, in the case of fundamental
solutions arising from the Picard-Fuchs equations for K3 surfaces.

4. Finally, we note that in e.g. 3 of elliptic curves above, we have the relation,
for Im¢ > 0,

_J0)+ G0OU@) - 1728)?
= 5 ,
where w = 1/z, j = 1728J. We claim that w(¢) admits a double-valued analytic
continuation in the upper half plane Im¢ > 0. This implies in particular that the
Fourier series of the mirror map z = 1/w has radius of convergence strictly less than
1—a fact that is not obvious from the construction of z. If we denote by z(¢), Z(¢)
the two branches of z, we see that z(¢) + 2(¢) = ‘é. Thus the two branches differ
by an affine transformation x — —x + 4—_%5.

To prove our claim, let’s recall some properties of the modular function j(¢).
We know that j(¢) is a single-valued function in Im¢ > 0. Thus.(5.14) implies
that w(¢) admits an analytic continuation which is at most double-valued. Also for
p = % + # we have j(p) = 0. In a small punctured disk centered at p, (j(¢) —
1728)'72 is single-valued. If we move around a small loop enclosing p in that disk,
j(t) will move around a small loop (3 times) enclosing 0 in the j-plane. It follows
that (j(¢)(j(t) — 1728))"/2 is necessarily double-valued in that disk, implying that
w(t) is at least double-valued.

w(t)

(5.14)
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5.4. K3 surfaces: X; : x% + x5 +x§ + x2 + z7V8xyx0x3x4 = 0. We now apply what
we learned in Sect. 4.2 to this family of K3 surfaces. The Picard—Fuchs equa-
tion for the above 1-parameter family of K3 hypersurfaces in P?[1,1,1,3] is given
by:

(©° —82(60 + 1)(60 +3)(60 +5))f(z) =0, (5.15)

which is of the form (4.11) with (r3, r;) = (1728, 1104). By the results in Sect. 4.2,
the analytic solutions of the associated n =3 Schwarzian equation (4.14) can be
obtained from the n = 2 Schwarzian equation (4.3) with:

1 — 1968z + 26542082
422(—1 + 1728z)?

0(z) = 0x(z) == (5.16)

In particular the mirror map zy for our K3 surfaces X which is the fundamental
solution to (4.14), is now the fundamental solution to (4.3) with (5.16). But observe
that Qx(z) is identical to Qw(z) given in (5.5). It follows that our mirror map is
given by:

1
ZX——Zw.—m.

(5.17)
This also proves, in particular, that zy also has an integral Fourier coefficients, and
that the mirror map zy is commensurable to J.

5.5. Other deformations of K3 surfaces. We now consider three other families of
K3 surfaces: quartic hypersurfaces X(4y in P, the complete intersections of quadrics
and cubics X3y in P* and the complete intersections of 3 quadrics X272 in P°.
The following table lists the types of abelian group G for the orbifold constructions,
the 1-parameter deformations, the data (4.4) for the corresponding » = 2 Schwarzian
equation (4.3), (4.17). We also include the previous example in P? [1, 1, 1,3], which
we denote X(g).

X,G deformations O(z) in (4.3)
B 1 — 1968z + 26542082
X6, (6,6,2) x84+ 38 + x5+ x2 + 27 Voxxx, = 0 T ]728222
_ 1 — 304z + 61440z
Xy (4,4) X} 4 x5 + x5+ xf 27 Vixxxsng =0 —m—z
1-132 11340
X2,3),(2,2,3) XA+ 2 Pagxs =0 = r

4z2(—1 + 108z)?
xg +x§ + 2z Vsxxpx3 = 0
1 — 80z + 409622

2 2 —1/6 — -
&2,2,2),(2,2,2) X{+x;+z x3x4 =0 42(—1 1 642)

x§ +x§ + 27 Voxsxg =0

2 4x2+z7 Voxx =0
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The respective values of (r3,7) in Eq. (4.11) are (1728, 1104), (256, 176), (108, 78),
(64,48). The corresponding fundamental solutions in the 4 cases have Fourier series:

zx(q) = g — 744g% + 356652¢° — 140361152¢" + 493366821904°
(6)
— 16114625669088g° + - - -
zx4)(q) = q — 104" + 6444g° — 311744¢" + 13018830g° — 493025760¢° + - - ,
2x,.5(9) = g — 424" + 981¢° — 169884 + 2442304° — 3089394¢° + - - -,
ZXp22(9) = g — 24¢° +300g° — 26244" + 18126¢° — 105504¢° +--- . (5.18)

We claim that, as for ZX(6)> all the other mirror maps are commensurable with
the J-function (or equivalently with zy ). By numerical experiment, we identified

the following modular relations:
Py (2w 2x)) = — 2y + 2wy, — 4322525, — 2072wz}, — 62208252,
— 2y, + 3456z 2y, — 2985984z§Vz3((4) =0,
PX(Z,})(ZW,ZX(Z,S)) ::zfy — ZwZx,s + 5762%,,2)((2’3) + 126ZWZ)2((2’3)

+ 110592z 2, | — 2944z 2z},
+ 70778882525, ,) +Zx,, =0,

Pxg 0 (F 2K 0.29) "= 2 — ZWZK g 5.0 + 62425 7x5 5 ) F 96sz§,(2’2’2)
+ 1298402525, — 2352zpzy,, , , + 9018880z 2y
+ 104952y 2y, , , + 20774402525+ 2y, o)

5 2 5 2 6 —
_ 14882WZX(2,2‘2) + 159744szX(2,2’2) + 4096ZWZX(2’2’2) =0.
(5.19)

We now proceed to prove the first of the relations (5.19). The other cases are
similar. By solving Py, (w,zx,,(¢)) = 0 for w, we see that there is a branch of w

which admits a g-series expansion near ¢ = 0 and which has the leading behavior
w(q) ~ q. Now it is enough to show that every branch of w solves the Schwarzian
equation (4.3) with (5.5). For then w(gq) above must coincide with the fundamen-
tal solution, by uniqueness. Now applying the relation Py, (w(q),zx,,(¢)) =0, we
can compute w'(q), w"(q), w"(q) in terms of w(q),zx,,(q) and its derivatives. Sub-
stituting these expressions into (4.3) and using the fact that zx, (g) satisfies its
Schwarzian equation, we find that (4.3) with (5.5) holds identically.

6. Uniform Proof of Integrality

Applying the modular relations derived above between the mirror maps and the
j-function, we will now prove that the Fourier coefficients of the mirror maps
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are integral. We begin with the following lemma. Let zy(q) be an integral g-series
and

P(x,y) =Y a;x'y’ (6.1)
be a nonzero polynomial with integral coefficients a; ;. Let z(q) = anlcnq” with
c1 = 1. Let [ :=min{i + j|a; ;4 0}. Now suppose that

m:=Y ay;;i¥0. (6.2)

i=0

We claim that the relation P(z¢(g),2z(q)) = 0 determines z(g) uniquely and that the
coefficients ¢, are in Z[1].

Consider the coefficient Ky of gV, for N > [, in the series P(z0(q),2(q)).
Since zo(q)! = ¢/ + O(g’*") for j = 0, the contribution to Ky from the term
a p_i,iz()(q)l’_iz(q)i( p = 1) must be an integral linear combination of monomials
of the form ¢, ...c,, with ny +...4+n, < N — (p —i). From this inequality, we
find that ny S N—p+i—(m+---m—m)<N-—p+1 for k=1,...,i. Thus
the contribution to Ky from the term a,_;;zo(¢)? ~'z(g)" lives in Z[cy,...,cy— py1].
In particular, for p > [ this contribution is in Z[cy,...,cy—1].

Consider the cast p= /. It is easy to see that the order ¢V term in a;_;;
20(q)'~'z(q)' takes the form

ar—iiq g ey_rag” T 4+ ggV (6.3)

where g € Z[cy,...,cy—1]- Setting ¢; = 1, we see that
KN = MCN—[+1 +h (64)

for some & € Zcy,...,cxy—;]. By induction, the relations Ky =0 imply that
ev—111 € Z[L].

It follows immediately from the above lemma that if m = %1, then z(g) is an
integral g-series.

Now consider the polynomial relation between zy(g) and the mirror map z(q)
for each case of elliptic curves (see the table in Sect. 5.1). For each of the polyno-
mials, we have / =1, m = 1. It follows that z(g) is integral in each case. Now for
the four cases of K3 surfaces, we found the relations (5.19). For these polynomials,
we have [ =2, m = 1. It follows again that z(¢) is integral in each case.

We should remark that the above lemma gives us an effective way to construct
many integral g-series f(g) which are commensurable with 1/1728.J(g). For exam-
ple let r(x, y) be any integral polynomial with no constant or linear terms. Then
our lemma implies that the equation

1
72879 —z(q) +r (172&]( ) Z(Q)) (6.5)

determines a unique integral g-series z(q). This also implies that z(q) admits an
analytic continuation (with at most finitely many sheets) to the upper half plane
Im¢ > 0. Moreover, since J(q) satisfy the Schwarzian equation (4.3) with rational
0(z),z(q) also satisfies a similar equation with algebraic O(z).

6.1. Relations with genus zero functions and the Thompson series. In this section,
we point out some tantalizing evidence that the mirror maps for K3 surfaces are
possibly related to the theory of the Griess—Fischer group. We will in fact give
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an alternative proof of integrality for the mirror maps. This proof, though more
technical than the previous one, suggests some deeper connection with the theory
of modular functions and the Thompson series.

Let’s recall a few facts about genus zero functions and the Thompson series
(see [17]). Let H be the upper half plane, G be a discrete subgroup of PSL(2,R)
which acts on H by linear fractional transformations. We consider meromor-
phic functions f on H which has a Fourier expansion > _ a,q" for Imt>> 0
(q — e27tit)‘

If f is invariant under G, then f defines a function on the quotient H/G.
If H/G is a genus zero Riemann surface with finitely many punctures, we call
G a genus zero group and f a genus zero function. In this case, the field of genus
zero functions for G has a canonical generator # known as the normalized haupt-
modul for G. It has a Fourier expansion of the form A(¢) = é + O(q). For example
Io(1) :=PSL(2,Z) is a genus zero group and the Dedekind-Klein j-function
j(t) — 744 is the hauptmodul for this group. More generally, a list of 174 haupt-
moduls corresponding to certain congruent subgroups is known [18]. Let I'o(NV)
be the group consisting of integral transformations ¢ — (at + b)/(ct + d) with N|c.
Then the 174 genus zero groups are subgroups of PSL(2,R) generated by I'o(N)
together with a set of Atkin—Lehner involutions (see [19]).

It turns out that there is a deep connection between the theory of modular
functions and the Griess—Fischer group M also known as the Monster. It is the
largest sporadic simple finite group, whose order is:

n>m

246.320.59.76.112.13%.17.19.23.29.31:41.47-59-71 . (6.6)

For a long and glorious history of this group, see the paper of Conway—Norton [17].
Based on some remarkable observations of MacKay and Thompson, Conway—Norton
conjectured that there exists a natural Z-graded representation V' of M with the
following property: for every g € M, the g-series, called the Thompson series of g,

Ty(q) = Z tr(g]Vn)qn_l (6.7)

is a normalized hauptmodul in the list of 174 mentioned above. It turns out that
all but 3 of those 174 hauptmoduls correspond to Thompson series. At the time
the conjecture was made, neither M nor V had been known to exist, though the
evidence for them was overwhelming. On some hypotheses, the first few coef-
ficients of the Thompson series were computed in [17] and were seen to coin-
cide with the coefficients of the appropriate hauptmoduls (see Table 4 in [17]).
Later, Griess proved that M exists by constructing a 196883-dimensional alge-
bra B in which M acts by automorphisms. Subsequently, Frenkel-Lepowsky—
Meurman [20] constructed a Z-graded representation V* of M with the property
that ¥, is the direct sum of B with the 1-dimensional representation of M and
that Ztr(l|,,3 )q" ! = j(q) — 744. Borcherds [21] finally completed the proof of

the Conway—Norton conjecture by showing that ¥* does indeed have the property
that the corresponding Thompson series coincide with the hauptmoduls suggested
in [17].

Our brief account of the Monster by no means does justice to the many remark-
able developments surrounding the theory of the Monster. The above paragraph is
meant to provide just enough background to enter a discussion on the relation, which
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we are about to show, between the Thompson series and our mirror maps. Based
on numerical experiments, we have

Observation. The reciprocal of the four mirror maps (5.18) agree respectively, up
to an additive constant, with the Thompson series Tiy, Toy, T34, Tay (see Table 4

of [171).

Before we give a proof of this assertion, we argue that together with the
Conway—Norton conjecture, the above assertion implies the integrality of mirror
maps (5.18). The character values of a finite group are algebraic integers. But since
V* is defined over the rationals, the coefficients of the Thompson series which are
character values of M, must be rational integers. Note also that this property can
be deduced from the explicit representation of the hauptmoduls in terms of the
Dedekind eta function.

To prove our assertion above, we will use Schwarz’ theorem on the Riemann
mapping and the fact that the Thompson series above are hauptmoduls for the
following genus zero groups I'o(1), I'o(2M, I'o(3)+, I'o(4)+ (see [17] on nota-
tions). If G is a genus zero group and A(¢) its normalized hauptmodul, then it
is easy to check that the expression {A(¢),}/(2h'(¢)?) is a meromorphic function
which is invariant under G. Since A(¢) is a generator of the function field for G, it
follows that {h(t),1}/(2h'(¢)?) is a rational expression Q in A(¢). This shows that
a hauptmodul satisfies a Schwarzian equation of the type (4.3). Our problem is to
construct Q in each of the cases of interest. Once we determine the Schwarzian
equations governing the hauptmoduls T4, T24, T34, T44 in each case, it is enough
to see that they coincide with the corresponding Schwarzian equation wheih we
already know governing % + ¢, where z is one of the ZX(6)> 24y ZX 2,3y 2K 2.2,2)" For
if two g-series satisfy the same Schwarzian equation and has the same asymptotic
behavior 1/g, then they must coincide by uniqueness. The constant ¢ above will
turn out to be the coefficient of ¢* in each case (so that 1 + ¢ has no constant
term).

We now proceed to determine Q for each of the four hauptmoduls A(t) above.
Since A(t) is an isomorphism from H/G onto a punctured Riemann sphere, it de-
fines a univalent mapping from a simply connected region R (half a fundamental
region of G) onto the upper half A-plane. If R is a polygon with circular edges,
then Schwarz’ Theorem tells us that A(z) satisfies Eq.(4.3) with Q having the
form

2 A B;
Q(Z):Z<(z——al)2 + ) ; (6.8)

i=1 zZ—a

where ay,...,a, are images of the vertices of R and the A4;, B; are constants. To
determine Q completely it is enough to know the number »n of vertices (actually
a reasonable bound would suffice). For then we can use the first few Fourier co-
efficients of A(¢) to determine the 4,, B;. To find the number of vertices, we need
to determine a domain R and see that it is a circular polygon in each case. But
since we know G explicitly as a congruent subgroup in each case, constructing R
is easy. We find that the R corresponding to the hauptmodul Ty ,(k = 1,2,3,4) is

R={t€H|0 <Im: < },|t| > #} Each of these domains is a circular polygon

with 3 vertices. Using the first 6 Fourier coefficients (actually 3 is enough because
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the A;, B; satisfies 3 relations) of the 7,4, we find that the respective Q for their
Schwarzian equations are:

Ty, s O — 19896824 4 53527 43622
144(743 + 2)2(744 + 2)2
T2a: 02) = 4(—4105624 i;)gztzfoz iy ’
T Az) = 4(—7220;;28(24; i)Z ’
Tuy: Oy — 25232 422 69)

4(—40+2)2(24 +2)2

Now consider the four Fourier series ﬁ + ¢ mentioned above. We know that each
one satisfies a Schwarzian equation which can be easily obtained from that of z.
We find that the Q indeed agrees with (6.9) in each case. This completes the proof
of our assertion.

Our observation above raises various tantalizing questions. Why do the mirror
maps of our K3 surfaces correspond to the Thompson series of the Monster group?
What happens to the other realizations of K3 surfaces in weighted projective spaces?
Do they realize other Thompson series? On the last two questions our joint work
with A. Klemm in this direction is now underway. Early indications have shown that
the correspondence continues to hold. On the first question, we offer the following
speculative remarks. It is known that there are K3 surfaces on which a subgroup
of the Mathieu group M>4 acts by automorphisms [22]. It happens that M>4 is also
a subgroup of the Monster. Thus it makes sense to speak of the Thompson series
for those elements in Mp. It is possible that the appearance of Thompson series as
mirror maps is related to some appropriate action of a subgroup of Ma4. Precisely
how this happens is unclear at this point. However, enough evidence has convinced
us the following:

Conjecture. If z(q) is the mirror map for a 1-parameter deformation of an alge-
braic K3 surface from an orbifold construction, then for some c € Z, z(lj +c is

a Thompson series Ty(q) for some g € M.

It seems that the above connection between the mirror map and Thompson
series is peculiar to K3 surfaces. In the case of elliptic curves for instance, unlike
the K3 case, the correspondence there is only partial. Applying the same technique
as above, we find that all but the 3™ family of elliptic curves we studied in Sect. 5.1,
correspond to Thompson series. They are T»p, T35, and Tuc respectively. The mirror
map for the 3™ family is in fact a double-valued function on the upper half plane,
hence cannot be a modular function of any type.

7. Congruences of the Quantum Coupling

We now move on to Calabi—Yau threefolds. We consider a 1-parameter family
of hypersurfaces or complete intersections X, in P"[w], where z is the complex
structure deformation coordinate as defined in Sect.2 in terms of a finite orbifold
group G. In this case, the period vector w = (wy, w1, Wy, w3) of the holomorphic
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3-form for the mirror manifold X* satisfies a 4™ order Picard—Fuchs equation which
has the form (4.19). The prepotential is defined as

1
F = —2(603600 + wy3) (7.1)
@

which is a holomorphic section of a line bundle over the moduli space M. It is
also related to the period vector by [1, 23, 24] w = w(1, t,0,F,2F — t0,F), where
t is a special coordinate defined by ¢ = w;(z)/wo(z). Let

K =03F. (7.2)

The mirror hypothesis [1] identifies ¢ with the flat coordinate on the Kéhler cone of
X and asserts that K is the quantum coupling for X, which has the form [1, 25, 26]

d3 ng eZm’td

K:)»[J/\J/\J+Z_l—:_em1"

dz1

(73)

Here ny is the “number” of rational curves of degree d in a generic deformation of
X, and J is the Kéhler class on X.

In this section, we would like to study some arithmetic properties of K as a
g-series (g = e*™") under the assumption of the mirror hypothesis with the nq inte-
gers, and that the mirror map z(q) has integral Fourier coefficients. Specifically,
we will study congruences mod p of the instanton numbers under the above hy-
pothesis, using a formal nonlinear ODE. We should point out that the integrality of
z(q) has been checked numerically in many examples of threcholds up to at least
order ¢*°, and has been proved for K3 surfaces and elliptic curves in numerous
cases.

7.1. Differential equations modp. In [8, 9], we derived certain polynomial differ-
ential equations for z(q),K(q). An important feature of these equaitons is that they
are defined over the rationals. This is so because the Picard-Fuchs equation, from
which our ODE are constructed, are defined over the rationals. The main idea here
is to derive the mod p version of our nonlinear ODE from the Picard-Fuchs equa-
tion. We then use some data — basically an integer N,—which is extracted from
the Picard-Fuchs equation in each case to derive congruences modulo certain prime
powers. We will illustrate this in several well-known examples.
We begin with the following form of the Picard—Fuchs equation (4.19):

a d? d
(E + qz(Z)E + qé(Z);E + qo(z)) f(z)=0, (74)

where g2(z), go(z) are defined in (4.21). By a change of coordinate z +— ¢ (see [9]
for details) and using the list of solutions fo(z)(1,¢,0,F,2F — t0,F), we show that
z,K as functions of ¢, satisfy a pair of coupled nonlinear ODEs: The simpler of the
two is given by

iKY =pr (%), (7.5)
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where
px =5 - TK'* =23 . 5. TKK"K" + T’K*K"?
+2-5.7K*K'K® —2 . 5K°K® |

_e(z)
= A

e(z) 1= 10(—10r; + 3r; — 4r4)z + (=975 + 300rors — 467274 + 6413)2°
+ 2r4(9r§ — 150rgry + Trors — 22r§ )z3
+ 72(=972 + 100747y + 2ryrq + 1172)z* . (7.6)

Here A(z) = z(1 — r4z) is the discriminant of Eq. (4.19). (Actually, the following
discussion requires only that e(z), 4(z) € Z[z], with A(z) having leading coefhi-
cient 1. No specific forms need to be assumed). We define N, to be the g.c.d. of
the coefficients in e(z). Then it is clear that n|N, iff n divides all Fourier coeffi-
cients of e(z(q)). All the arithmetic properties we derive of K(q) will be entirely
controlled by this one integer N, and the classical intersection number K. =
Sy J NI AT .

Notice that (a) Eq.(x) is defined over Z; (b) Eq. (%) is invariant under an
overall constant scaling of K; (c) the primes 2,5,7 feature prominently. It turns
out that, though less obvious, the equation also simplifies considerably modulo 3.
The main purpose of having Eq. () is as follows. Suppose a 1-parameter family of
mirror Calabi-Yau varieties is given such that p|N, for some prime p. Then the
left-hand side of (x) becomes zero over the field of g-series Z/pZ((g)). We can
then study the g-series solution K (7.3) of this simplified equation modulo p or its
powers. We should point out that in [8,9], we derived a similar equation but over
Q. The result there was much more complicated.

Notations. In the following discussion, K will be the quantum coupling (7.3).
The ’ in the equation (x) means ql—i‘%. Thus (¢") =0 mod p whenever p|n. More
generally when p is prime and 4 = ) a,q" is any integral g-series, the p™ deriva-
tive 4P = 1’ because n? = n for all n. In what follows, we will use these few tricks
repeatedly, sometimes without mention, to simplify our computations. We write n|h
if nja, for all n. We also write p, to denote the right-hand side of (7.5) but with
K replaced with 4:

pn =5 T =23 . 5 TRHPH + TPRAR? £ 205 TR RS =2 - SEPRY . (1.7)
For each prime p, we introduce the notation:

hp:=Y a.q". (7.8)
plin

Thus we have A’ = h;,mod p- Finally, given K (7.3), we denote the largest integer
divisor of K by m(K).



Arithmetic Properties of Mirror Map and Quantum Coupling 187

7.2. modp

Claim 1. Let h = % For any integer », n|#’ implies that n|p, and n|p;, implies
that n|N,. Conversely, if n|N, then n|p.

Proof. If n|i’ then from (7.7), it follows that n|p,. Assuming n|pp, Eq. (*) becomes
e(z)z"*h* = 0 mod n. Since neither 4 nor z’ has any overall factor, we have e(z) = 0.
This implies that N, = 0. The converse follows immediately from Eq. (*).

This says that the integer N, tells us much above congruences of %

Claim 2. Fix a prime p and suppose p”|K,. Then p”|nq for all 4 # 0 mod p, and
pmin(3,r)l(K _ Kcl)-

Proof. From (7.3), the m™ (m > 0) Fourier coefficient of K is

km=3d’ng . (7.9)
dim
By supposition, p” |k, for all m # 0 mod p. Let d # 0 mod p be the smallest such
integer for which p” fny;. Now p’lk; means that p’l(d3nd+§:d,]d’d,<d dBny).
Since p fd, that d’|d implies that p fd’, hence p”|ny by the minimality of d. So
P @na + X g4 ar <qd"nar) implies that p”|ng, which is a contradiction.

In particular, we have p"|d®n; for pfd. Trivially p*|d®n; for p|d, and so
we have p™"37)|g3n,; for all d. Now it follows immediately from (7.3) that
pmin(S,r)I(K _ Kcl)‘

Now let & be an integral g-series. As pointed out above, A’ = hzln mod p. It
follows that p|h, implies p|ps. On the other hand, we have the following:

Claim 3. Assume prime p=2,5. Suppose for any integral g-series h with p fh, p|ps
implies p|h,. Then for all r > 0, p”|p, implies that p"[h, and p"|py_p,.

Proof. 1f plpy then pl|h,, and so we can write 4, = pf for some integral series
f. Write also g = h — hy,, which has only g-powers ¢” with p|n. Thus p|g’, hence
plpg. Thus our statement holds for » = 1.

Suppose it holds up to some » > 0. Assume p"*!|p,. By inductive hypothesis
we have at least p”|h,, and so we can write h, = p"f, g=h—h, as before.
Because & = p"f +g, and pfh by assumption, we have p fg. The equation p;, =
0 mod p"*! becomes, after some simplifications using p’|g®.

pg—10p"g> " =0 mod p"*' . (7.10)

But g only has g-powers ¢” with p|n, and hence so does py. On the other hand
f (hence f"") has only g" with pfn. Thus (7.10) implies that p"*!|p, and
p (10p7g3 f"). From the fact that p=2,5 and that p fg, it follows that p|f""
and hence p|f. Thus h, = p” f implies that p"*!|h,.

The cases p = 2,5 are dealt with separately. We will also discuss the cases
p = 3,7 in more detail.

7.3. mod?2

Claim 4. Let h be integral g-series with 2 fh. Then 2|p;, implies that 2|k, or 2|(h —
hy). If moreover 2|h,, then (a) 2"|p, implies that 2"|pj, — hy, and (b) 2"+1|p; implies
that 2"|h,. for all r > 0.
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Proof. Suppose r|p;. Then we get
W44+ R*H? =0 mod?2. (7.11)

This says that either 2|A" or 2|(h + #'). But A’ = k) = h, mod 2, implying that either
2|hy or 2|(h — hy). This proves the first half.

For part (a), the proof of Claim 3 applies to p = 2 without change.

For part (b), we modify the inductive argument there as follows. Suppose 23|p;
and write hy = 2f, g = h — hy as before. The equation p, = 0 mod2® becomes

pg +492%g7 f"* — 102 " = 0 mod 2° . (7.12)

Part (a) implies that 23|p,. Also g% only has q-powers g" with 2|n while g3 "
has only those with 2 fn. Thus (7.12) implies that all three terms vanish separately.
It follows that 2|f”" and hence 2|f. Thus h, = 2f implies that 22|k,. Suppose
(b) holds up to some » > 1. Assume 2"*?|p,. By inductive hypothesis we have
at least 2"|hy, and so we can write h, = 2" f, g = h — hy as before. The equation
pr = 0 mod 2"+? becomes

pg—1027¢° £ =0 mod 22 . (7.13)

Part (a) implies that 27*2|p,. By assumptions, 2 /h and 2|, hence 2 Jg. It follows
that 2| ", hence 2|f. Thus hy =2"f implies that 2"*!|A,. This completes our
proof of part (b).

Claim 5. 1f 2|(K + K') then 2|n,; for all odd, d and 2|K.

Proof. Let I be the smallest odd integer such that 2 fn;. Now 2|(K + K’) means that
2|k, for all even m, where k,, is the m® Fourier coefficients of K . In particular
2|k2[. But

k=Y dn= Y &P+ Y dPng. (7.14)
d|21 d|21,d odd d|21,d even

The even part obviously divides 2, while the odd part is

o &Bng=Pm+ Y, &Png. (7.15)
d|21,d odd d|l,d odd,1>d

By the minimality of /, the second sum divides 2, implying that 2|/*n;. But [ is
odd, hence 2|n; which is a contradiction. Thus 2|n; for odd d.

Now consider (7.3). If 2|n; for odd d, then obviously 2|dn, for all d. Also
2|(K + K') implies that 2|K,;. So we have 2|K.

Remarks. Let h:= %K) and suppose 2’|N,,7 > 0. By Claim 1, we have 27|p,.

By Claim 4, we have either 2|, or 2|(h — hy). Suppose first 2|hy. The 2"~ !k, by
Claim 4b, hence (m(K)2"~")|K;. Thus by Claim 2, we see that 257"~ |n, for all d
odd, where s is the largest integer such that 25|m(K). Moreover, 2™inG:s+r=D|(K —

K.;). To summarize: if 2"|N, and 2|m—1(<2K—), then (a) 25t~ ny for all d odd, where s

is the largest integer such that 2°|m(K), and (b)2™Gs+=D|(K — K ).
Suppose now 2|(h — h,) instead. This means in particular that 2|(K + K'), and
so by Claim 5 we have 2|n; for all odd d, and 2|K. Thus m(K) = 2. So if 2|N,

and 2| (%), then 2|ny for all odd d and 2|K.
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7.4. mod3. Suppose h is any integral series with 3|p, and 3 Jfh. We get by differ-
entiating p; = 0 mod 3 once,

R (2R + B? + hA") = 0 mod 3 . (7.16)

If 3% then 3|(2h% + W' + hh'"). Differentiating 2h% + 1’2 4+ hh" and simplifying it
by A" =k mod3, we get 3|(2hh") implying that 3|4’, hence 3|h;. Thus we have
shown that 3|p, implies 3|4’ and 3|A;.

Remark. Let h:= ;{—% and suppose 3”|N,,» > 0. Then by Claim 1, we have
3"|ps. We have just shown that 3|p, implies 3|h3. Then 3"|A; by Claim 3, hence
(m(K)3")|K3. Thus by Claim 2, we see that 3°*"|ny for all d # 0 mod 3, where s is
the largest integer such that 2°|m(K). Moreover, 3™nG:s+1)|(K — K ;). To summa-
rize: if 3”|N,, then (a) 3°t"|n, for all d # 0 mod 3, where s is the largest integer
such that 3%|m(K), and (b) 3™"Gs+|(K — K ).

7.5. mod5

Claim 6. Let h be an integral g-series with 5Jh. Then 5|p, implies that 5|hs.
Moreover we have (a) 57|p, implies that 5"|ps—s, and (b) 5"!|p, implies that
5"|hs, for all » > 0.

Proof. Suppose 5|p;. Then the equation p, = 0mod 5 reads 444" = 0 mod 5. Hence
5|#"" which implies 5|hs. This proves the first statement.

For part (a), the proof of Claim 3 applies to p = 5 without change.

For part (b), the proof of Claim 4b applies here with only minor changes.

Remarks. Let h:= % and suppose 5"|N,, r > 0. By Claim 1, we have 5"|pj.
Then 5"~ !|hs by Claim 6b, hence (m(K)S"!)|Ks. Thus by Claim 2, we see that
55t"=!n, for all d #0 mod 5, where s is the largest integer such that 5°|m(K).
Moreover, 5MinG:s+=D\(K — K ;). To summarize: if 5’|N,, then (a) 5+ ~!|n,
for all d #0 mod5, where s is the largest integer such that 5°|m(K), and (b)
5min(3,s+r——1 )I(K _ Kcl)-

7.6. mod7. We summarize the result here: if 7"|N,, then (a) 7°*"|ny for all d #
0 mod 7, where s is the largest integer such that 7°|m(K), and (b) 7™nGs+M|(K —
K.1). The argument here is quite similar to the case of mod 3.

7.7. Examples. Under the assumption of the integrality of the mirror map z(gq) and
the mirror hypothesis assertion that quantum coupling K(g) is given by (7.3) with
integers ny, we consider the following examples applying the above results:

1. Let X be the Fermat quintics in P*. The orbifold group here is an abelian
group of type (5,5,5) [12,1]. In this case, we have N, = —53 and K, =5. It
follows from our mod5 analysis that at least 5*|(K — K.;). But since K. = 5, we
have 5|K and m(K)=5. Thus 53|n; for all d # 0 mod 5. Because n; = 23.5%,53
is the upper bound on the prime power dividing all n,;. Experimentally however, it
seems that 53 divides all ng, as previously observed by others (see Table 4 of [1]).
Note that since N, has no prime divisor other than 5, there is no other prime p
dividing all #ny, by Claim 1.
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2. Consider X the complete intersection of a quartic x{ + x5 +x =0 and a
sextic x3 +x2 +x2 = 0 in P°[1,1,1,2,2,3]. The orbifold group is of type (4,4,3).
In this case, we have N, = —2%,3% and K; = 2. It follows from our mod 3 analysis
that 33|n; for all d # 0 mod3. Once again, this lower bound on the powers of
3 is sharp because already n; = 2°,3°. For mod2, our analysis shows that either
2|hy our 2|(h — hy), where h = %(—) Suppose 2|(h — hy). Then our analysis above
implies that 2|K and m(K) = 2. But K,; =2 = m(K), implying that m(K) = 2.

Thus (h — h,) has constant term nﬁ;é) = 1, contradicting 2|(h — hy). It follows that

we must have 2|A;. By the mod2 analysis above, we conclude that at least 26[nd
for all d odd. Again this lower bound on the power of 2 is also sharp because
already n; = 25,3°. Note that since N, has no prime divisor other than 2.3, there
is no other prime p dividing all ny, by t Claim 1.

3. Finally consider X the degree 10 hypersurface of Fermat type in
P4[1,1,1,2,5]. The orbifold group is of type (10,5,2). In this case, we have
N, = —2%5% and K,; = 1. Thus m(K) = 1. It follows from our mod2 and mod 5
analyses that at least 23|n; for d odd: and 5%|n, for d # 0 mod 5. These bounds on
the prime power are also sharp because already n; = 23,52.17. Note that since N,
has no prime divisor other than 2,5, there is no other prime p dividing all ny4, by
Claim 1.

Acknowledgements. B.H.L. thanks W. Feit, A. Klemm, T. Tamagawa, S. Theisen, A. Todorov and
G. Zuckerman for helpful discussions.
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