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Abstract: We study the analytic Bethe ansatz in solvable vertex models associated
with the Yangian Y(Xr) or its quantum affine analogue Uq(Xr ) for Xr — Br, Cr

and Dr. Eigenvalue formulas are proposed for the transfer matrices related to all
the fundamental representations of Y(Xr). Under the Bethe ansatz equation, we
explicitly prove that they are pole-free, a crucial property in the ansatz. Conjectures
are also given on higher representation cases by applying the Γ-system, the transfer
matrix functional relations proposed recently. The eigenvalues are neatly described
in terms of Yangian analogues of the semi-standard Young tableaux.

1. Introduction

1.1. General Remarks. Among many studies on solvable lattice models, the Bethe
ansatz is one of the most successful and widely applied machineries. It was invented
at the very dawn of the field [1] and is still providing rich insights. Meanwhile,
Bethe's original idea has evolved into several versions of the Bethe ansatze called by
the adjectives "thermodynamic" [2], "algebraic" [3], "analytic" [4,5], "functional"
[6] and so forth. These are all powerful techniques involving some profound aspects.
We have yet to understand their full contents, a challenge raised on Feynman's "last
blackboard" [7].

In this paper we step towards it by developing our recent works [8-11] further.
We shall propose eigenvalue formulas for several transfer matrices in the mod-
els with the Yangian symmetry [12] or its quantum affine analogue [13-15]. An
interesting interplay will thereby be exposed between the representation theory of
these algebras and the analytic Bethe ansatz. Let us explain our basic setting of the
problem.

1.2. Yang-Baxter Equation and Transfer Matrices. Consider the quantum affine

algebra Uq{Xr ) [13,14] associated with any classical simple Lie algebra Xr of
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rank r. Throughout the paper we assume that q is generic. Let WJn (1 ^ a ^

r,m e Z ^ i ) be the irreducible finite dimensional Uq(Xrl^-module as sketched

in Sect. 2.1. See also [16] and [8]. For W,W e {W^\\ ^ a S r,m G Z ^ } , let
RWWf(u) £ Enά(W 0 W') denote the quantum i?-matrix satisfying the Yang-Baxter
equation [17]

RWiW>(u)RWjyn(u + v)Rw/tWn(v) = /^/ wπ(υ)RW,Wn(u -f v)RW,Wι(u) . (1.1)

Here, u,υ e C denote the spectral parameters and Rww/(u) is supposed to act as
identity on fF", etc. As is well known, one has a solvable vertex model on the planar
square lattice by regarding the matrix elements of the i^-matrix as local Boltzmann
weights. For Rwwι(u), the vertices take dim ^-states (resp. dim W-states) on, say,
horizontal (resp. vertical) edges. The row-to-row transfer matrix under the periodic
boundary condition is defined by

Tm\U) = T r ( β )(Λ („) (p) (U - W i ) R (a) (p) (M - WN)) (1.2)
πm πm •>"s nm •>"s

up to an overall scalar multiple. Here Λf is the system size, w\,...9w^ are complex
parameters representing the inhomogeneity, 1 ^ a, p 5Ξ r and m,s e Z^i . Follow-
ing the QISM terminology [3], we say that (1.2) is the row-to-row transfer matrix
with the auxiliary space Wm that acts on the quantum space (Ws )®N. (More pre-
cisely, w!n\u) and <g>̂ =1 W^p)(wj), respectively. See Sect. 2.1.) Note that in (1.2)
we have suppressed the quantum space dependence on the lhs. Thanks to the Yang-
Baxter equation (1.1), the transfer matrices form a commuting family

[7iβ>(u),Γ^V)] = 0. (1.3)

They can be simultaneously diagonalized and we shall write their eigenvalues as
Am\u), which is also dependent on p and s. Our aim is to find an explicit formula
for them. So far, the full answer is known only for Xr — Ar [18,19] and Xr — Cι
[10]. In this paper we extend the results in [20,21] forXr = Bn Ct and Dr further by
combining the two basic ingredients, the analytic Bethe ansatz [5] and the transfer
matrix functional relations (Γ-system) [8,9]. Our approach renders a new insight
into the base structure of the module Wm"1 and leads to several conjectures on
Λm \u). Below we shall illustrate our idea along an exposition of the analytic Bethe
ansatz (Sect. 1.3) and the Γ-system (Sect. 1.4) for the simplest example Xr = sl(2).

1.3. Analytic Bethe Ansatz. We write Tm(u) for Tm (u), etc. since the rank of
sl(2) is 1. Then Wm denotes the {m + 1 )-dimensional irreducible representation of
Uq(sl(2)). For simplicity, we assume that s = 1 in (1.2). Then T\(u) is just the
6-vertex model transfer matrix acting on the vectors labeled by length N sequences
of -f or - states. We take the local vertex Boltzmann weights as i ? M ( ± , ± , ± , ± ) =
[2 + u]9 i?w(±,=F,ib,=F) = [u] and /?w(d=,=F,=f,±) = [2], where the local states + or
- are ordered anti-clockwise from the left edge of the vertex. The function [u] is
defined by

M = ^ .
q-q *
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The eigenvalue Λ\(u) is well known and given by

Q(u) = ft [K - i"j]> ΦiM) = Π [" ~ wj] • (l 4b)

Here, 0 ^ « ^ JV/2 is the number of the - states in the eigenvector, which is pre-
served under the action of T\(u).Uj e C are any solution of the Bethe ansatz equa-
tion (BAE)

φ(iuk + \) = Q(iuk+2)

φ(iuk-l) Q(iuk-2)' l ' }

On the result (1.4-5), one makes a few observations.

(i) The eigenvalue has the "dressed vacuum form (DVF)," which means the
following. The "vacuum vector" + , + , . . . , + is the obvious eigenvector with the
vacuum eigenvalue

ΠΛ (+,+,+,+)+ΠΛ (-,+,-,+) = 0(M +2) +φ(κ). (1.6)

Equation (1.4) tells that general eigenvalues have a modified form of this with the
"dress" factors Q/Q which are certainly 1 when n — 0. In particular, the number of
the terms in A\{u) is the dimension of the auxiliary space dim W\ — 2.

(ii) The BAE (1.5) ensures that the eigenvalues are free of poles for finite u.
The apparent pole at u = iuk — 1 in (1.4a) is spurious as the residues from the two
terms cancel due to (1.5). The eigenvalues must actually be pole-free because the
local Boltzmann weight, hence the matrix elements of T\{u) are so.

(iii) Properties inherited from the \u\ —> oo behavior and the first/second in-
version relations of the R-matrix (vertex Boltzmann weights). For example, one
has A\{u) — (—)NΛ\(—2 — u)\Wj-+-WjίUj-+-.Uj from the last property. See also the
remark after (2.12).

The analytic Bethe ansatz is the hypothesis that the postulates (i)-(iii) essen-
tially determine a function of u uniquely and that the so obtained is the actual trans-
fer matrix eigenvalue. As the input data, it only uses the BAE and the i?-matrix (or
the vacuum eigenvalue (1.6)) which should be normalized to be an entire function
of u. It was formulated in [5] by extracting the idea from Baxter's solution of the
8-vertex model [4]. See [10,11,20,21] for other applications. In Sect. 2.4, we will
introduce a few more conditions than (i)-(iii) above.

1.4. Transfer Matrix Functional Relations. The transfer matrix (1.2) obeys various
functional relations. For Xr = sl(2) and s = 1 in (1.2), it is known that [18,22]

Tm(u + \)Tm(u - 1) = Tm+](u)Tm^(u) + gm(u)lά ,

Qmiμ) = "Π Φ(u + 2k- m)φ(u + 4 + 2k - m), (1.7)
k=0
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where m ^ 0 and TQ{U) = Id. Since Γw(w)'s can be simultaneously diagonalized,
(1.7) may be regarded as an equation for the eigenvalues Λm(u). By using (1.4a)
and Λo(u) = 1 as the initial condition, it is easy to solve the recursion (1.7) to find

Λm(u) =
yto β(« + w - 2/)β(κ + m + 2 - 2/)

(1.8)
in agreement with [18]. To observe a representation theoretical content, we now set

m Qju-\)^ r-i g ( « + 3 ) ^ Λ

where we assume on the Ihs that the spectral parameter u is implicitly attached to

the single box as well. In this notation (1.4a) reads as Λ\(ύ) = [Tj-f [2j. Moreover,

the result (1.8) for general m can be expressed as follows.

Λm(u)=Σ 1 •'• ψ '" 21. (1.10)
7=0

Here we interpret the tableau as the product of the m functions (1.9) with the
spectral parameter u shifted to u — m-V l,w — m + 3,...,w + m— 1 from the left to
the right. Notice that the tableaux appearing in (1.10) are exactly the semi-standard
ones that label the weight vectors in the (m -f 1 )-dimensional irreducible represen-
tation Wm of Uq(sl(2)) (plainly, the spin f representation of si(2)). In this sense
the eigenvalues Λm(u) are analogues ("Yang-Baxterizations") of the characters of
the auxiliary space Wm, which may be natural from (1.2). The functional relation
(1.7) for Λm(u) thereby plays the role of a character identity.

7.5. General Xr Case. Having seen the sl(l) example, an immediate question then
would be, how the "tableau construction" of the eigenvalues as (1.10) can be gener-
alized to the other algebra cases. For Xr — Ar, the Uq{Aί 1 ̂ -module W^ (the aux-
iliary space) is a ^-analogue of the sl(r + l)-module corresponding to the a x m
rectangular Young diagram representation. The eigenvalue Λm\u) for the corre-
sponding RSOS model [23] has been constructed [19] as in (1.10) from the set of
the usual semi-standard tableaux labeling the weight vectors.

An interesting feature emerges for Xr^Ar, where Uq{Xr )-module Wm is a

^-analogue of a reducible Xr-module in general. Evaluation of Am\u) amounts to
finding the tableau-like objects that label the base of such Wm\ This can actually be
done by postulating the T-system, the transfer matrix functional relations, proposed
in [8]. It is a generalization of (1.7) into the arbitrary Xr case and can be solved
for /4α)(w) in terms of λ\a) (u + shift) (1 ^ a ^ r)(and Λ(

o

a)(u) - 1). Thus one can
play the following game.

Step 1. Find Λ\ι\u),...9Λ
i[)(u) by the analytic Bethe ansatz.

Step 2. Find such "tableaux" that the Step 1 result is expressed in an analogous
manner to (1.10).

Step 3. Solve the Γ-system for Λm \u) recursively by taking the Step 1,2 results
as the initial condition.

We shall completely execute Step 1 and 2 for Xr — Br, Cr and D, and achieve
Step 3 in several cases. The resulting tableau label for the base of Wm exhibits an
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interesting contrast with those for the crystal base [24,25] concerning the irreducible
Xr -modules.

1.6. Summary of Main Results. Let us briefly sketch our main results concerning
Step 1 and 2. We introduce the boxes containing a letter from the set

Γ {l,2,...,r,r,...,2,ί} for Cr and Dr,Γ {l,2,...,r,r,...,2,ί}

~\{l,2, . . . ,r ,0,r, . . . , f} for Br.

J is equipped with an order -< as specified in (3.5), (4.5) and (5.7) for Cr, Br and
Df., respectively. As in (1.9), the boxes represent the dressed vacuum in (3.4), (4.4)
and (5.6) and depend on the spectral parameter u. We find that A] (u) for non-spin
representations (1 ^ a ^ r for CΓ, 1 S a ^ r - 1 for J9r, 1 ^ a ^ r - 2 for £>r)
is expressed as

A\a\u) = (scalar)^;

la

where the tableau means the product of the boxes with the spectral parameter shifts
from the top to the bottom; u + ~-, u + ^ , . . . , u - - 1 for Cr and u + a - 1, u -f
α — 3,..., w — a + 1 for Br,Dr. The sum extends over the tableaux obeying the rules:

Cr : 1 dί i\ -< h < ''' ~< ia d 1? if 4 — c and // = c, then r + k — I ^ c,

5 r : 4 <̂ 4+i or 4 = 4+i = 0 for any 1 ^ k ^ a ~ I ,

Dr : 4 < 4+i or ( 4 , 4 + 0 = (r9r) or (4,4+i) = (^,^) for any 1 ^ A: S a - 1 .

For spin representations (a ~ r for Br and β = r — l,r for Dr), we find it convenient
to introduce another kind of boxes containing a ± sequence of length r:

Aa\u) =

They are defined by recursion relations with respect to r as in (4.25) and (5.13).
Under the BAE (2.7) the pole-freeness of these DVFs is explicitly proved in the
main text. Furthermore, several conjectures on Am\u) are given in Sects. 3.4, 4.4
and 5.3 in terms of the semi-standard-like tableaux as above.

These results extend earlier ones in [5,10,11,19-21]. The DVFs for Λ{m\u) are

Yang-Baxterizations of the characters of the auxiliary spaces W^ - Our tableaux

are natural objects that label the base of the irreducible finite dimensional modules

Wnf1 over the Yangians or the quantum affine algebras.

1.7. Plan of the Paper. In the next section, we begin by fixing our notations and
recall the family of the modules w!n\ the Γ-system [8] and the BAE [26,21] for
models with Uq(Xrl)) symmetry. The Yangian case Y(Xr) corresponds to a smooth
rational limit q ~> 1 of them. Then we discuss the analytic Bethe ansatz and pro-
pose a few more hypotheses, "dress universality," "top term" and "coupling rule."
They supplement (i)-(iii) in Sect. 1.3 and work efficiently for models with general
Uq(XrX)) symmetry. Sections 3,4 and 5 are devoted to the cases Xr = Cr,Br and
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Dr, respectively. A peculiarity for the latter two algebras is the presence of the spin

representations, whose Uq(Xr )-analogues are certainly in question. (W\ for Br

and W\r~x\w\r) for Dr.) For these algebras, we introduce two kinds of elemen-
tary boxes corresponding to the bases of the vector and the spin representations.
Appendices A and B describe their relation, which reflects the fact that the former
representation is contained in a tensor product of the latter. Section 6 is devoted to
discussions.

2. Γ-System, BAE and Analytic Bethe Ansatz

2.1. Modules Wm

a\ Let us fix our notations for the data from the simple Lie algebras
Xr. Let oca,ωa(l ^ a ^ r) and ( | ) denote the simple roots, the fundamental
weights and the invariant bilinear form on Xr. We identify the Cartan subalgebra
and its dual via ( | ) and normalize it as (α|α) = 2 for α = long root. Put

2
ta — 7— — r 1 S a ύ r, g = dual Coxeter number of Xr. (2.1)

( α | α )

By the definition ta = 1,2 or 3 and (ωα|α&) = δab/ta. Enumeration of the nodes
1 ^ β ^ r on the Dynkin diagram is the same as Table I in [8]. For Xr = Br(r ^
2),CY(r ^ 2) and Dr{r ^ 4), (2.1) reads explicitly as

g = 2r - 1, t\ = = tr-\ = \,tr = 2 for Br,

g = r + 1, tλ = = ίr_! = 2,tr = 1 for Cr,

g = 2r - 2, Vίβ = 1 for £>r, (2.2)

Now we recall the family of modules {^mβ)|l ^ < z ^ r , m e Z ^ i } first intro-
duced in [16] for the Yangian Y(Xr) extending the earlier examples [26]. Pre-
cisely speaking, Yangian modules carry a spectral parameter hence the auxiliary and
the quantum spaces in (1.2) are to be understood as Wm

a\u) and ®^=ι WSP\WJ),

respectively. See [27,28] and Sect. 3.2 in [8]. Then Wm

a\u) has a characterization
by the DrinfeΓd polynomials [27,28] {Pa(v)\l ^ a ^ r] as

( ) ( ) ( ) f°τb = a ( 2 3 )

1 otherwise

In [28], W[a\u){\ S a ^ r) is called the fundamental representation of Y(Xt\

Viewed as a module over Xr C Y(Xr\ Wm\u) is reducible in general but the con-

tained irreducible components are independent of u. Thus we let simply W^ denote

the Xr-module so obtained. Then it is known that [16]

Wm -\V(mωr) a = r ' ( 2 ' 4 a )

B r a n d D r ;

W ^ ~ ®V ( k a o ω a o + k a o + 2 ω a o + 2 + •••+ k a ω a ) l ^ a ^ r ' ,

(2.4b)
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( r for Br

r' = < α0 = « mod 2, α0 = 0 or 1, (2.4c)
{r-2 for Dr

W^ ~ V(mωa) a = r-\,r only for Dr. (2.4d)

Here coo = 0 and F(2) denotes the irreducible Xr-module with highest weight λ.
The sum in (2.4a) is taken over non-negative integers k\,...,ka that satisfy k\ -f

\- ka ^ m,kj = mδja mod 2 for all 1 ^ j ^ a. The sum in (2.4b) extends over
non-negative integers kaQ, kao+2,...,ka obeying the constraint ta(kao + kao+2 H h
ka-2) + ka — m. If one depicts the highest weights in the sum (2.4a) and (resp.
(2.4b)) by Young diagrams as usual, they correspond to those obtained from the
a x m rectangular one by successively removing 1 x 2 and (resp. 2 x 1 ) pieces.

As mentioned in Sect. 3.2 of [8], we assume in this paper that there exists

a natural g-analogue of these modules over the quantum affine algebra Uq(Xrl)),

which will also be denoted by Wm\ When referring it as an Xr-module, it means
that the corresponding 7(XΓ)-module in the q —> 1 limit has been regarded so.

2.2. T-system. Consider the transfer matrix (1.2) acting on the quantum space

®/Li Wg (wj). We shall reserve the letters p and s for this meaning throughout

the paper. (See also the end of Sect. 2.4.) In [8], a set of functional relations, the T-

system, was conjectured for Uq{XrX)) symmetry models for any Xr. For Xr —Br,Cr

and Dr they read as follows:

(u + 1) = Ί^lλ{u)Ί^\(ύ) + g%\u)Ί<a-ι\u)Ί<a+ι\u) 9

1 ^ a <> r - 2 ,

(2.5a)

Cr:

^ α ^ r - 2 ,
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T%\u - \)T%\u + 1) = Γ ^ , ( M ) Γ ^ , ( M ) + ^ ( M ) ^ - ' ^ ) . (2.5b)

^ α S r-3,

(2.5c)

Here the subscripts of the transfer matrices are non-negative and Tm\u) = TQ"\U) =

Id. g(m\u) is a scalar function that depends on WsP) and satisfies

~ Ϊ) ̂  (" + ϊ
See Eq. (3.18) in [8]. We have slightly changed the convention from [8] so that
Tm (w + y ) there corresponds to Tm (u + 2/) here, etc. A wealth of consistency for
the Γ-system have been observed in [8,9,10,11] for any Xr and we shall assume
(2.5) henceforth. Owing to the commutativity (1.3), one can regard (2.5) as the
functional relations on the eigenvalues Λm\u). (Λm\u) = Λ^\u) = 1.) Then it
can be recursively solved for Λm\u) in terms of λ\{\u + shift),...,Λ^\u + shift).
In fact, Am (w) will be obtainable within a polynomial in these functions as argued
in [8]. This process corresponds to Step 3 mentioned in Sect. 1.5.

2.3. Bethe Ansatz Equation. As in (1.4), the eigenvalues Am \u) will be expressed
by the solutions to the BAE [26,21]:

Φ(4 f/apϊ = Qb(iu[ + (aa\ab))

φ(iu[a) - ±δap) L\ Qb(iu[a) - (αβ|α,)) '

where s and p are the labels of the quantum space ®¥=\ Ws (w7), φ(u) is given
in (1.4b) and Qa(u) is defined by

Qa(u)=X\[u-iu{p] 1 ύa^r. (2.8)
7 = 1

Here Â fl is a non-negative integer analogous to n in (1.4b). The system size TV in

φ(u) and Na are to be taken so that ωs = Nsωp — X^^=1 A^αα € Σα=i ^^o<^α In
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Sect. 5, we will consider a slightly modified version of (2.7) that suits the diagram
automorphism symmetry in Xr — Dr.

2.4. Empirical Rules in Analytic Bethe Ansatz. As in (1.4a), the functions Qa(u)
and φ(u) are the constituents of the dress and the vacuum parts in the analytic
Bethe ansatz, respectively. In handling the formulas as (1.9), we find it convenient
to specify these parts as Jr(tableau) and ι αc(tableau). For example,

ΓT] = d r Γ T W Γ Π , dr[ϊ\= ^ M ~ ]\, vac[ϊ\ = φ(u + 2). (2.9a)
Q(u + 1 )

In general the DVF reads

Λl,00 = Σ n (ij4_vΛ n , „ , v ΛΦ(u + z x ) - . . φ ( u + z k ) , (2.9b)

in which ratios of g β ' s are the dress parts and products of φ's are the vacuum parts.
Using these notations we now introduce three hypotheses, "dress universality," "top
term" and "coupling rule" in the analytic Bethe ansatz. They are the properties
of mathematical interest rendering valuable insights into the auxiliary space W^
as the Uq{XrX)) or the Yangian modules. Roughly speaking, the latter two are the
information on the "highest weight vector" and the "action" of the Chevalley-like
generators. The hypotheses have been confirmed in several examples and we believe
they should rightly be added to the postulates (i)-(iii) explained in Sect. 1.3.

Dress universality. Let TJ£\u) and Tma\u) be the transfer matrices with the

same auxiliary space Wm\u) but acting on the different quantum spaces

®*Li Wsp\wk) and φ j ^ W{/\w'k\ respectively. Denote by Qa{u) and Q'a{u)
the functions (2.8) specified from the solutions to the BAE (2.7) for these quantum
space choices. Suppose one got their eigenvalues in the DVFs,

dim W{«] dim W\«]

Λ(:M= Σ taby, Λ'^(u)= Σ tab)-, (2.10)

where tab, and tabj denote the terms whose vacuum parts correspond to the same

(i.e., "j-th") vector from Win in the trace (1.2). Then the dress universality is
stated as

Jr(tab7) = rfr(tab;)|e/(l<)_fie(li) for all j . (2.11)

Namely, the dress part is independent of the quantum space choice if it is expressed
in terms of Qa(u). On the contrary, one has vac(tdibj)^vac(tabj)\N>_,Nwf_^Wk in

general if (p',s')*{p,s).

Top term. Among the dim Win terms in (2.10), let tabi denote the one corre-
sponding to the "highest weight vector" in Wm\ By this we mean more precisely
the unique vector of weight mωa when Wm is regarded as an Xr-module in the
sense of Sect. 2.1. Plainly, tabi is the analogue of the first term on the rhs of (1.4a).
Then the top term hypothesis reads

dKtab,)=—) f (2.12)
( )
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in (2.10), which is certainly consistent to the dress universality. It follows from
(2.12) that

where Φ(u) — vac(tab\) is a product of φ's. This is essentially Eq. (5) in [21],
which is a consequence of the first inversion relation of the relevant ^-matrix.

Coupling rule. Regard the auxiliary space Wm as an Xr-module in the sense of
Sect. 2.1 and let λ be a weight without multiplicity

mult, 0* f l ) = 1 . (2.13)

Then it makes sense to denote by \λj the term in (2.10) corresponding to the

/l-weight vector from Wm

a\ Thus Am\u) = h[T]H . Now the coupling rule

is stated as follows.
If λ and μ are multiplicity-free weights such that λ — μ = ccc, then

(a) [T] and [μj share common poles of the form l/Qc(u -f ξ) for a certain ξ

depending on λ and c. (2.14a)

(b) The BAE (2.7) guarantees Res _ „ (C> (UJ + [μJ] = 0 in such a way that

A g&(κ + g + (αclα6)) 1 4 b )

f ? ( " + £ ( α | α ) ) '

The hypothesis tells that for λ — μ = αc, spurious "poles of color c" in \λj and [μj

couple into a pair yielding zero residue in total. To determine ξ is a non-trivial task

in general. From (2.14b), (2.7) and [Xj = dr[T]t;αc[y] etc, one deduces

vacϊλl fp)
L 1 V P } (2.15)

for the vacuum parts. The last equation in (2.14b) excludes the possibility to ex-
change λ and μ in (2.14b) and (2.15) simultaneously, in which case the BAE could
also have ensured the pole-freeness. The coupling rule is certainly valid in (1.8)
and (1.9) for sl{2). We will visualize (2.14) and (2.15) as

where c signifies the color of the pole shared by the two boxes.
There are two more postulates that embody the asymptotics and the second

inversion properties mentioned in (iii) in Sect. 1.3. The first one is stated as

Character limit. As said in the end of Sect. 1.4, the eigenvalue Am \u) is a
Yang-Baxterization of the character of the auxiliary space Wm (u) viewed as an
Xr-module. Indeed, the latter can be recovered from the former as

lim σ qτ(σ^σ2)A^\u) = Σ ( m u l t / Wm

a))q2σ'σ2iω^P^λ) σuσ2 = ±1 ,

(2.16)
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where the sum extends over all the weights in Wm\ q^σ^σ2) is some convergence

factor and ωs has been specified after (2.8). One readily sees that (2.16) is con-

sistent with (2.14b) and (2.15) by computing the asymptotics of [λy[μj. Equa-

tion (2.16) is also asserting that DVFs always contain Qa via the combination
Qa(u H )IQa(u -f •) as in (2.9b) and that they are homogeneous polynomials

w.r.t φ(u + •••}. Thus k is common in all the terms in (2.9b). In [8,9,29], the rhs
of (2.16) was denoted by Qm\ωip)). It obeys the Q-system, the character identity
in [16], which was extensively used to formulate the conjectures on dilogarithm
identity [29,30,8,9], ^-series formula for an Xr

(1) string function [31] and to find
the Γ-system [8]. The limit (2.16) is essentially Eq. (12) in [21]. Now we state the
second postulate.

Crossing symmetry. Most ^-matrices enjoy the so-called crossing symmetry,
Eq. (4) in [21], from which the second inversion relation follows. The eigenvalue
Am (u) inherits the following property from it:

Λ{:\u) = (~fN Λ%\-g - u)\w^_w^b)^b) . (2.17)

Here g is defined in (2.1), k is the order of the DVF w.r.t. φ as in (2.9b) and N

is the number of lattice sites entering φ via (1.4b). This is essentially Eq. (6) in

[21], which we call the crossing symmetry as well. Note that the BAE (2.7) re-

mains unchanged under the simultaneous replacement wj —> —wj and uf^ —• —uf\

In particular, if ±.λ are multiplicity-free weights of Wm , the combination \λ\H- —λ

in A^iu) becomes the same on both sides of (2.17) as

{h). (2.18)
I'M—»— g—u,Wj—>—

From the definitions of φ(u) (1.4b) and Qa(u) (2.8), the rhs of (2.17) is then
obtained from (2.9b) by the simultaneous replacements

x t - > g - x l 9 y t - > g - y u z\ - > g - Zi. (2.19)

The dress universality, top term, coupling rule, character limit and crossing
symmetry severely limit the possible form of the DVF in the analytic Bethe ansatz.
In particular if all the weights in W^ are multiplicity-free, (2.12), (2.14) and
(2.15) determine the DVF for Am \u) completely up to an overall scalar multiple.
In such cases, one even does not need the vacuum parts a priori hence can avoid a
tedious computation of the i?-matrices. The DVFs given in the subsequent sections
have actually been derived in that manner for such cases. Except for a few cases,
it is yet to be verified if those DVFs with Vgα(w) = 1 yield the actual vacuum
eigenvalues obtainable from the relevant i?-matrix as in (1.6). In a sense we have
partially absorbed the postulate (i) of Sect. 1.3 into (2.11)—(2.15) here, which may
be viewed as a modification of the analytic Bethe ansatz itself.

Let us include a remark before closing this section. Suppose one has found the

DVF when the quantum space is ®y=ι w\p) (WJ). Then, the one for 0 ^ , WsP) (wj)

can be deduced from it by the replacement

φ(u) -* φs(u)άM flφ ίu+
s+\-2k) . (2.20)

k=\ \ h /
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To see this one just notes that the lhs of (2.7) is equal to — — b ) — a p P. See also

(2.15). Thus we shall exclusively consider the s = 1 case with no loss of generality.

3. Eigenvalues for Cr

-OK3.1. Eigenvalue A\\u). The family of L^(Oυ)-modules {W/{a)\ ύ a ^ rym e
\x)Z^i} is generated by decomposing tensor products of w\x) as suggested in [8].

Thus we first do the analytic Bethe ansatz for the fundamental eigenvalue λ\ι\u).

The relevant auxiliary space is w[l) ~ V(ω\) as an Cr-module from (2.4a), which
is the vector representation. Then all the weights are multiplicity-free and one can
apply the coupling rule (2.14). To be concrete, we introduce the orthogonal vectors
εa, 1 S a ^ r normalized as (εΛ|ε&) = δat/2 and realize the root system as follows:

*" = {% for 1 ^ a ^ r - 1
for a = r

ωa = ε\ (3.1)

Then the weights in V(ω\) are εa and —εα(l ^ a ^ r), which we will abbreviate
to a and «, respectively. In this notation the set of weights reads

J = {l,2,...,r,f,...,2, I } . (3.2)

Starting from the top term (2.12), one successively applies the coupling rule (2.14)
to find the DVF

Λ\l)(-U) = Σ @' (3-3)

with the elementary boxes defined by

\ = Uuy-

\ά\ = S α ί r - 1 , (3.4a)
Qa-χ (U + ^ f t l ) ρ f l (tt + ^ ± 2 )

where we have set QQ(U) = 1. The vacuum part ψα(w) = vac\a\ is given by

(3.4b)
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depending on the quantum space ^=x

total order in the set J specified as

1
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). The symbol -< here stands for a

(3.5)

When p — r, the second possibility in (3.4b) is absent. The case p = 1 was obtained

in [21]. Note that [lj is the top term (2.12). By the construction, p enters only

the vacuum parts (3.4b) hence the dress universality (2.11) is valid. The crossing

symmetry (2.18) holds between Iflj and [flj. Under the BAE (2.7), (3.3) is pole-free

due to the coupling rule (2.14) and (2.15) as follows:

Res /+1 (Γ) (171 + 1 7 ] ) = 0 ,

b+\

= 0 I S b S r - 1 ,

b\) = 0 1 ^ b S r - 1

(3.6a)

(3.6b)

(3.6c)

Following Sect. 2.4, this can be summarized in the diagram

r- l r ΓΓ1 r- 1
MM ^ -^m

This turns out to be identical with the crystal graph [24,25].

3.2. Eigenvalue Λ\ (u). Let us proceed to Λ] (u), which can be constructed from

the elementary boxes (3.4). For 1 ^ a ^ r, let
the form

be the set of the tableaux of

ϊl

with entries 4 £ J obeying the following conditions:

1 ^ h -< h -< -< ia ^ ϊ ,

If ik = c and // = c, then r + k — / ^ c .

(3.7a)

(3.7b)

(3.7c)

We remark that these constraints are very similar but different from the crystal base
[24,25], where (3.7c) is replaced b y α + l - f £ - / g c . We identify each element

(3.7a) of 3Γ with the product of (3.4) with the following spectral parameters,

(3.8)Π lΰjUH + 2±!-2ί

Then the analytic Bethe ansatz yields the following DVF:

\aΛ\a\u) = (3.9)
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which reduces to (3.3) when a = 1. Let us observe consistency of this result before
proving that it is pole-free in Sect. 3.3. Firstly, the dress part of

1

is Qa(u — γ)IQa(u+ j-), telling that the above tableau indeed gives the top term

(2.12). Secondly, the set ^\ is invariant under the interchange of the two tableaux

h

ia

ia

ΰ

and the crossing symmetry (2.18) is valid among them. Thirdly, the character limit
(2.16) can be proved. This is essentially done by showing

= dim V(ωa) =
2r

a-2
(3.10)

which corresponds to the q —» 1 limit of (2.16) since w\ ~ V(ωa) as a Cr-module
by (2.4a). We have verified (3.10) by building injections in both directions between
the sets of depth a tableaux (3.7a) breaking (3.7c) and the depth a — 2 ones only
obeying the constraint (3.7b). Once (3.10) is established, the weight counting in
(2.16) for q+l is shown consistent with Eq. (2.2.2) of [25] by noting that the

injections are weight preserving and limM_*oo> |9 |>i#*lα| =
ω ' for some *.

3.3. Pole-freeness of Λ\ (u). The DVF (3.9) passes the crucial condition in the
analytic Bethe ansatz, namely,

Theorem 3.3.1. Λ ^ w X l ^ a ^ r) (3.9) is free of poles provided that the BAE
(2.7) (for s = 1) is valid.

For the proof we prepare a few lemmas, which follow directly from (3.4).

Lemma 3.3.2. For 1 ^ b ^ r - 1, the products

b

b+l

b+l

b
(3.11)

with the spectral parameter v (v — I) for the upper (lower) box do not involve Qt,
function.

Lemma 3.3.3. For 1 ;£ b ^ r - 1, put

b+l
Qb{v+b2-l)

υ-r+b X\, (3.12a)
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b+l

Jv-r+b

v—r+b

Qb{v+\-l)Qb(υ+\+2)

Qt(v+bϊ+2)
^ 7 A\

 A 3 •>
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(3.12b)

(3.12c)

where the indices specify the spectral parameters attached to the boxes (3.4). Then

Xi's do not involve Qt, function.

The point is that (3.12a) and (3.12c) have only one Qb function in their denom-

inators after some cancellations owing to the spectral parameter choice v, v — r + b.

Lemma 3.3.4. For 1 ^ b ^ r — 1, let the tableaux

b

n
b+l

ζ or

ξ

b+l

n
b

ζ
(3.13)

be the elements in 3Γ^a) such that the columns [ξj, \ηj and KJ do not contain the

boxes with entries b,b + 1,6 + 1 and b. Then the length of\rn is less than r — b.

One can easily derive a contradiction supposing the length ^ r — b.

Proof of Theorem 3.3.1. We shall show that color b singularity is spurious, i.e.,

Res = (b) Λ\a\u) = 0 for each 2 ^ H r - l . The remaining cases b = 1 and r

can be verified similarly and more easily. Among the elementary boxes (3.4a), the

factor l/Qb(u -f •) enters only \b\, 6 + 1 , 6 + 1 and \b\. Thus one has to keep

track of only these four boxes appearing in (3.7a). Accordingly, let us write (3.9)

as Λ\ (u) = So + S\ + + S4, where S# denotes the partial sum over the tableaux

(3.7a) containing precisely k boxes among the above four. Obviously 5Ό is free

of l/Qb(u -h •)• So is £4 because the relevant tableaux involve both of the 2 x 1

patterns in (3.11) and therefore do not contain Qb by Lemma 3.3.2. Next consider

Si which is the sum over the tableaux of the form

ξ

b

Ά

ξ

b+\

η

ξ

b+\

η

ξ

b

Ά

Here ξ and η stand for columns with total length a — \ and they do not contain

bl b-\-I , b+l and \b\. From (3.6), color b residues in the first and second

(third and fourth) tableaux sum up to zero. By the same reason S3 is free of color

b singularities since the relevant tableaux must contain one of (3.11). Thus we are
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left with S2, whose summands are classified into the following four types:

b

1

b+l

ζ

ξ

b

n
b

ζ

ξ

b+l

n
b+l

i

ξ

b+l

n
b

ζ (3.14)

Here, \ξL \η\ and u are columns without \b\, b + 1 , b + 1 and b . Denoting their
lengths by k — 1, / - k — 1 and a - /, respectively, we consider the cases r + k -
l^b+\,r + k-l = b and r + k- I ^ b-1 separately. I f r + i t - Z j ^ A + l ,
all the four tableaux (3.14) actually belong to ^ and the pole-freeness of their
sum follows straightforwardly from (3.6). If r Λ-k—l — b, the third tableau in
(3.14) is absent since it breaks (3.7c). Up to an overall factor not containing Qb,
the remaining three terms are proportional to those in (3.12) for some v. From
Lemma 3.3.3 their sum has zero residue both at v — — \ + iuk by (3.6a) and at v =

— I - 1 -f iuf^ by (3.6c). Finally, we consider the case r + k — I tk b — 1, when the
second and third tableaux in (3.14) do not exist because they both break (3.7c). In
fact, the first and the fourth ones are also absent. This is because r + k - l ^ b - l
is equivalent to saying that the length of \ηj is not less than r — b against Lemma
3.3.4. Thus S2 is free of color b poles, which completes the proof of the theorem.

3.4 Eigenvalue Λm\u). The result (3.9) accomplishes Step 2 in Sect. 1.5. The
remaining task is Step 3, i.e., to find the eigenvalues Am \u) for higher m by
solving the Γ-system (2.5b) with

g^\u) = 1 for 1 ^ a S r - 1 ,

k=\

under the initial conditions Λ^\u) = 1 and (3.9). So far we have done this only

\partially to get a conjecture on Λm\u). To present it we introduce a set $~m\m e
Z ^ i ) of the tableaux having the form

In

h h r r r r jl j \

with the conditions

k,n,l ^ 0, k + In + I — m ,

I ύ h ύ h ύ - ύikύr, 1 S h ύ h S

(3.15a)

(3.15b)

(3.15c)
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Writing (3.15a) simply as | i\ | • \im | with 4 £ J (3.2), we identify it with the
product of (3.4) with the following spectral parameters,

P m+l-2k

,

(3.16)

Then we conjecture that the Γ-system (2.5b) with the initial condition (3.9) leads
to

4°M= Σ T meZzL (3.17)

This is just (3.3) when m = 1. Equation (3.17) consists of the correct number of
terms,

#^ι) = άimWJn

ιK (3.18)

To see this, note from (2.4a) that the rhs is equal to

, , ί di Jfl
(3.19)

On the other hand, the set ̂  > is the disjoint union of those tableaux (3.15a) with
n = 0,1,2,.... Thus it suffices to check

dim F(/nωi) = #{(3.15a) G ̂ x)\n = 0} . (3.20)

Obviously the rhs is y+2^~l), which agrees with the lhs calculated from WeyΓs

dimension formula.

5.5. Cι case. For C2 it is possible to provide the full solution Λm (u\ Λm (u) to

the Γ-system [10]. In terms of the tableaux, Λm\u) in [10] is certainly given by

(3.17) up to an inessential overall scalar reflecting a different convention on ΛQ (u).

To present the other eigenvalue Λm (u) there, we introduce a set JQ of 2 x m
tableaux

(3.21a)

(3.21b)

(3.21c)

(3.21d)

h im

jm

obeying the conditions

Every column belongs to ̂ "^(3.7) for C2 ,

h ^ dt im, and j { •< - ^ j m ,

r(2).

The column J is contained at most once.

We identify each element (3.21a) in ̂ ( 2 ) with the product of (3.4) with the spectral
parameters as follows:

k=\

(3.22)
k=\
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Namely, the shifts increase by 2 from the left to the right, decrease by 1 from the
top to the bottom and their average is 0. Then the result in [10] reads

4, 2 ) 00= Σ T. (3.23)

4. Eigenvalues for Bv

As in the Cr case we first introduce elementary boxes attached to the vector rep-

resentation. Using them as the building blocks, we will construct the DVF for

Λ\a\u)(l ^ a ^ r — 1) and prove its pole-freeness under the BAE. We also con-

jecture Λm\u)(l ^ a :g r — 1) in terms of tableaux made of these boxes.
Compared with the Cr case, a distinct feature in Br (and Dr) is the existence of

the spin representation. Any finite dimensional irreducible Br -module is generated by
decomposing a tensor product of the spin representations. Thus we introduce another
kind of elementary boxes attached to the spin representation. It enables a unified
description of the DVFs for all the fundamental eigenvalues Λ\ (u)(l ^ a ^ r). An
explicit relation between the two kinds of elementary boxes is given in Appendix A.

4.L Eigenvalue ή\l\u). Let εα, 1 rg a :§ r be the orthonormal vectors (ea\cb) = $ab
realizing the root system as follows:

_ f εa — εa+\ for 1 ^ a ^ r — 1
εr for α = r

e H 1- eβ for 1 ^ α ^

The auxiliary space relevant to Λ\ (w) is JΓ| ~ V(co\) as an ^-module. This is the
vector representation, whose weights are εfl, —εα(l ^ a ^ r) and 0. By abbreviating
them to α, a and 0, the set of weights is given by

/ = {l,2,...,r,0,r,..., ϊ} . (4.2)

All the weights are multiplicity-free, therefore one can determine the DVF from
(2.12) and (2.14). The result reads

Aι)(u)= Σ 0> ( 4 3 )

which is formally the same with (3.3). The elementary boxes here are defined by

— — — l ^ β ^ r , (4 .4a)

- a)Qa{u + 2r - a - 1)
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where we have set Qo(u) = 1. The vacuum parts \j/a{u) depend on the quantum

space ^=χW\p\wj) and are given by

'φ(u

φ(u

φ(u

p- -

p- -^

where

Φr

p(u) = U
J=\

- p- 1 +

- p- l + ^

- p- 1 - ^

p -2j - f) φ (u

u) for 1 < a < p

p+\ ^a< p+\ ,

u) for

(4.4b)

(4.4c)

The common factor Φr

p(u) here will play a role in Appendix A, where the boxes
here are related to those in Sect. 4.5. The order -< in the set J (4.2) is defined by

1 ^ 2 - ( ( r - C θ - C r ^ - - - - c 2 - c ϊ . (4.5)

Note the top term ΠJ (2.12), the dress universality (2.11) and the crossing symmetry

(2.18) for the pairs \a\ <-> \a\ and \θ\ <-* \θ\. Under the BAE (2.7), (4.3) is pole-free
because the coupling rule (2.14) and (2.15) have been embodied as

Res

Res _^.(r) ([01 +[K) =•
u=—r+\+ιu\) \L_J ILJJ

ReSu=-2r+b+\+ιu{h) (

Thus we have a diagram

b+l + b3 ) - 0 1 < b < r- 1 .

(4.6a)

(4.6b)

(4.6c)

(4.6d)

m-ura-^ r-\
[ O I ^ Γ F I ^ ^m-i-.m.

This is again identical with the crystal graph [24,25], For p = 1, (4.3) has been
known earlier in [21].

4.2. Eigenvalue λ\a\u)for 1 ^ α g r - l . F o r l ^ α g r - 1, let ^ a ) be the set
of the tableaux of the form (3.7a) with 4 £«/ (4.2) obeying the condition

-< or 4 — 4+i — 0 for any 1 ^ k ^ a — I . (4.7)

We identify each element (3.7a) of ^ ( f l ) with the product of (4.4a) with the fol-
lowing spectral parameters,

(4.8)
k=\
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Then the analytic Bethe ansatz yields the following DVF:

1
Λ\a\u) =

F(p,r)(Γ a V
T 1 S a ^ r- 1,

where the scalar F[p'r\u) is defined by

x φ[u + 2r- p-a+ \-2j + 2k

^\-u)\Wk^Wk.

(4.9a)

(4.9b)

Notice that F\p'r\u) = 1 hence (4.9a) reduces to (4.3) when a=\. From (4.4c)
and (4.27c) in Sect. 4.5, (4.9b) can also be written as

7=1

a-\

x Γί (4.10a)

(4.10b)

By using (4.10a), it can be checked that each summand T in (4.9a) contains the

factor Fa (u) and Λ\* (u) is homogeneous of order 2p w.r.t φ(u + - ). This

will be seen more manifestly in (A.4). One can observe the top term and the

crossing symmetry in (4.9a) as done after (3.9). The character limit (2.16) is also

valid. To see this, we introduce a map χ from 5 r

1

( α ) to the Laurent polynomials

C[z 1 ,zf 1 , . . . 5 z r ,z7 1 ]by

\i\

la

- 1
< a < r.

(4.11a)

(4.11b)

In view of l i m ^ o o ^ ^ i q*\a\ = q2ic°l ' % ) for some *, this corresponds to taking

the limit (2.16) of the element (3.7a). Since w[a) ~ V(ωa) θ F(ω f l_ 2) θ from
(2.4b), we are to show

X(T) = chV(ωa) + chV(ωa^2) + (4.11c)

for 1 ^ a S r - 1. Here chV denotes the classical character of the #r-module V
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on letters z\,...,zr. This can be easily proved from (4.7) and the known formula

chV(ωa)= Σ yh'-yia> (4.1 Id)

>]-< <'α

for 1 g a S r — 1. Equation (4.1 Id) originates in so(2r + 1) °-> g/(2r + 1).

4.3. Pole-Freeness of Λ\"\u) for 1 ^ α ^ r — 1. Here we show

Theorem 4.3.1. /4(,a)(H)(l <Ξ α ^ r — 1) (4.9) is free of poles provided that the
BAE (2.7) (for s = 1) w wzM

Lemma 4.3.2. For « e Z s o , put

-21,-1) X l ' (

r-2H-2)

a Π 0 . = — A3, (4.12c)

where the indices specify the spectral parameters attached to the boxes (4.4). Then

Xj's do not involve Qr function , (4.13a)

comes from the box [*J , (4.13b)

comes from the box [*J _ , (4.13c)

Qr(v + r)

r{υ + r-2n- 1 ±

where * = r, r or 0.

This can be verified by a direct calculation.

Lemma 4.3.3. If the BAE (2.7) (s = 1) w t^/zd,

i?β^ . (r)((4.12a) + (4.12b)) = Res o)((4.12c) + (4.12d)) = 0 ,

Res . . (,)((4.12a) + (4.12c)) = Res Ί . (o((4.12b) + (4.12d))

= 0. (4.14)

This follows from (4.13b, c) and (4.6b, c). Now we proceed to

Proof of Theorem 4.3.1. As remarked after (4.10), there is no pole originated from

the overall scalar l/Fip'r\u) in (4.9a). Thus one has only to show that the apparent
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color b poles l/Qb(u H ) in
1 eJ\

a) T are spurious for all 1 ^ b ^ r under the

BAE. For 1 ^ b ^ r — 1, this can be done similarly to the proof of Theorem 3.3.1.

In fact the present case is much easier since (4.7) is so compared with (3.7b, c).

Henceforth we focus on the b = r case which needs a separate consideration. From

(4.4a), we have only to keep track of the boxes [π?[θj and In containing Qr. Let

us classify the tableaux (3.7a) in ZΓ^ (4.7) into the sectors labeled by the number

n of loj's contained in them. In each sector, we further divide the tableaux into

four types according to the entries (u,d) in the boxes just above and below the

consecutive 0 rs.

type ln : wφr and J φ r ,

type 3« : « φ r and d — r,

type 2n : u = r and

type 4n : u = r and d ~r.

Thus we have

Σ ^=

Sa,2 ~ ^α,3 = *̂ α,4 = ^α-1,4 = 0

(4.15a)

(4.15b)

(4.15c)

Consider the following quartet of the tableaux of types lw + 1,2 r t,3n and 4Λ_i, re-
spectively:

0
0

0
0
η

ξ
r
0

0
0
η

ξ
0
0

0
r
η

ξ
r
0

0
r

Ά (4.16)

Here, l α and \η\ are the columns with total length a — n — 1 and they do

not contain IrJ,loj and hrj. In view of (4.8) and (4.13a), the tableaux (4.16) are

proportional to the four terms (4.12) with some v up to an overall factor not

containing Qr. Thus from Lemma 4.3.3, their sum is free of color r singular-

ity. That is true for any fixed \ξ\ and \η\ such that the tableaux (4.16) belong to

,9[ . Therefore Sn+\,\ -\-Sn^ + Snj -f Sn-\,4 is free of color r singularity for each
1 ^ n g a— 1. Due to (4.15c), the remaining terms in (4.15a) are S\t\9Sot\,So,2
and 5o,3. By the definition *SΌ,i is independent of Qr and it is straightforward to
check that SΊ,i +5o,2 +5o,3 is free of color r singularity by using (4.6b, c). This
establishes the theorem.
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4.4. Eigenvalue Λ{£\u) for 1 ^ a ^ r - 1. Starting from (4.9) and Λ{{\u) that
will be described in Sect. 4.5, we are to solve the Γ-system (2.5a) with

ί^\u) =1 for 2 S a ^ r,

7(/7' r)/1. ι ^ ι 1 (4.17)
A : = l

where F^' r ) (w) has been given in (4.9b) and (4.10). The solution will yield a DVF
for the general eigenvalue Λm\u). Here we shall present the so derived conjecture
for 1 <; α ^ r - 1.

Let ^ a \ l S a S r — 1) be the set of the a x m rectangular tableaux containing

Ijk Jjk € J at the (j\k) position.

Mi

ia\

km

lam

The entries are to obey the conditions

ijk -< ij+\k or iβ — ij+\k = 0 for any 1 ^ j ^ a — 1,1 ^ k ^ m, (4.18a)

*> -< Ϊ>+I or Ϊ ^ = i>+i G Λ{° } for any 1 ^ j g α, 1 ^ k ^ m - 1. (4.18b)

We identify each element of £Γm as above with the following product of (4.4a):

ππ
j=\k=\

Ijk >u+a—m—2j-\-2k (4.19)

Then we conjecture that the Γ-system (2.5a) with (4.17) and the initial condition
(4.9) leads to

1
T 1 ^ a ^ r~ \,m G

(4.20)

From (4.18a) and the remark after (4.10), the rhs is homogeneous of degree 2pm
w.r.t. φ. The conjecture (4.20) reduces to (4.9a) when m = 1. For B2, (4.20) is
certainly true because Λm (u) of Bι equals Λm (u) of Cι given in (3.23) under
the exchange Q\{u) -̂> Qiiμ). The cases m = 2,α = 1,2 have also been checked
directly for i?3 and B4. As a further support, we have verified #^n(β) = dim W^
by computer for several values of a and m. For example, both sides yields 247500
for B5,a = m = 3. We emphasize that the set tf^a) is specified by a remarkably
simple rule (4.18).
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4.5. Eigenvalue Λ\ (u). From (2.4b) the relevant auxiliary space is w\ — V{ωr)
as a Br-module. This is the spin representation, whose weights are all multiplicity-
free

( H V μrεr\ μu...,μr = ± . (4.21)

Thus we shall introduce another kind of elementary boxes | μ\,μ2,.. .T7v~| by which
the DVF can be written as

\u) = μι,μ2,...,μr

P

(All)

[r)
We let ^ r ) denote the set of dim w[r) = 2r boxes as above. The indices r and
p here signify the rank of Br and the quantum space ^j=χW\ (wj), respectively.
Each box is identified with a product of dress and vacuum parts that are defined
via certain recursion relations w.r.t. these indices. To describe them we introduce
the operators τ", τ® and τj; acting on the DVF (2.9b) as follows:

: u u + y, (4.23a)

(4.23b)

(4.23c)

(4.24a)

(4.24b)

In view of (2.8), τQ is equivalent to Na -> Na+X and u{p -> */j f l + I ). It is to be
understood as replacing Qa(u) with 1 ^ a ^ r - 1 for Br_\ by Qa+\(u) for Br.
The operator τ^ will be used to describe the transformation (2.19) concerning the
crossing symmetry. Now the recursion relations read,

τQ : Qa(u) -> Qa+\(u),

τ}

c : βfl(w + x) -^ Qa(u + γ-x),

φ(u + x) —> φ(u + y — x) for any x .

By the definition they obey the relations

τδ< = < τ β , τQτc, = τc,τQ ,

τy, - τ y + /

3 1

2 + 7n

r - l

p-\

r- l

δι (»

! _ J Λ βt(«-
2 /„

- , - ζ =
2 tt

r - l

p-\

(4.25a)

( 4 , 5 b )

, (4,5c,

(4.25d)
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where ξ denotes arbitrary sequence of ± symbols with length r — 2. The recursions
(4.25) are valid for 1 ^ p g r and r ^ 3. The initial condition is given by

p = 2

β i ( « + § ) β 2 («

(4.26a)

Note that one formally needs the dress and the vacuum parts for p = 0 when
applying (4.25) with p = 1. As for the vacuum parts we fix this by putting

vac\ μ\,...9μr \ = 1 for any r and {μ7} . (4.26b)

As for the dress parts we simply let dr\ μ\,...,μr\ be the same for any 0 ^ p ^ r.
p . .

This is consistent with (4.26a) and the dress universality (2.11). Under these setting
the recursions (4.25) and the initial condition (4.26) provide a complete charac-

terization of our I μ\,...,μr | for any 0 ^ / ? ^ r , r ^ 2 and {μy}. Thus we have
p

presented the DVF (4.22) for the eigenvalue Λ[\u). In the rational case (q —> 1)
with /? = 1, a similar recursive description is available in [5].

Let us observe various features of our DVF (4.22) before proving that it is
polefree in Sect. 4.6. Firstly, it is easy to calculate the vacuum parts explicitly.

υac\μx,...,μr\ = W\u), (4.27a)
P

n = Hj\μj = -,l^j^p}, (4.27b)

Yl[ ) (4.27c)
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This is order p w.r.t. φ. Secondly, the top term is given by

(4-28)

This is consistent with (2.12) since the above box is associated with the highest
weight (s\ -f h εr)/2 — &>r from (4.1) and (4.21). Thirdly, the crossing symme-
try Λ\r\u) = (-)pNΛ\r\-2r + 1 - u)\ _^_w.u{a)^_u{a) is valid, which is precisely

(2.17) with the order k — p as remarked above. At the level of the boxes, this is
due to

(4.29)

where the effect of (-)pN has been absorbed into τ£._j as explained in (2.19). In
the sequel, we will write such i sequences as above simply as μ and μ, etc.

4.6. Pole-freeness of Λp(u). In Sect. 4.5, we have formally allowed p = 0 in the
boxes that consist of the DVF (4.22). Correspondingly, we find it convenient to
consider the BAE with p = 0 as the one obtained from (2.7) by setting its lhs
always —1. We shall quote (2.7) as BAE^. Our aim here is to establish

Theorem 4.6.1. For r ^ 2 and 0 ^ p ^ r, Λ[ (u) (4.22) is free of poles provided
that the BAETp (2.7) (for s = 1) is valid.

We are to show that color a poles l/Qa are spurious for each 1 ^ a ^ r. The
poles are located by

Lemma 4.6.2. For 1 ^ a ^ r - 1 ί/ze factor \/Qa is contained in the box

μi,...,μr"~| if and only if (μα,μα +i) = (+,—) or ( - , + ) .

, +, —JΓ\ and \ η, —9+,ξ share a common color a pole \IQa(u -f y) for some y.
p P

r

The factor \/Qr is contained in all the boxes. For ε — ±, any two boxes \ ζ9 β, ε \
p

and I ζ,β,-ε | share a common color r pole l/Qr(u + z) /or some z.

The assertions are immediate consequences of (4.25) and (4.26). If one puts
λ = (η9+9—,ξ),μ = (η,—,+,ξ) and identifies them with the weights via (4.21),
one has λ — μ — εa — εa+\ = αα for 1 ^ a rg r — 1 by (4.21). A similar relation
holds for a — r as well. Thus the above lemma is another example of the coupling
rule (2.14a). In this view Theorem 4.6.1 is a corollary of

Theorem 4.6.3. For 1 ^ a ^ r — 1, let η,ξ and ζ be any ± sequences with lengths
a — l,r — a — 1 and r — 2, respectively. If the BAEίp (2.7) (for s — 1) is valid,
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= o, (4.30a)

(4.30b)

where y and z are those in Lemma 4.6.2.

The rest of the present subsection is devoted to a proof of this theorem. In fact
the proof is done essentially by establishing (2.14b) and (2.15). It follows that the
character limit (2.16) is also valid for Λ\r\u) (4.22). It is easy to show

Lemma 4.6.4. Let ξ be any sequence of± with length r — 1. Then

τ2r+\

l - « 3 n

(4.31)

for 0 S P S r.

Proof of Theorem 4.6.3. It is straightforward to check (4.30) for r = 2 by
(4.26a). We assume that the theorem is true for Br-\ and use induction on r.
We shall only verify a = 1 case of (4.30a), for a — 2 case is more easy and a ^ 3
case follows immediately from the induction assumption. When a — 1, the two

boxes in (4.30a) are | +, -,ξ \ and | —,-\-,ξ \. From (4.25b, c) they share a color
p p

a = 1 pole at u — —r + \ -f iu[ι\ Let us rewrite the latter as follows:

r - l

r-\

where we have used (4.29) and (4.25b). In the last line, τξr_ x | — Π | can be fur-

ther rewritten by applying Lemma 4.6.4 with r—>r—l,p—>p—l. Dividing the
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resulting expression by the rhs of (4.25b) we obtain

At the pole location u = —r + \ + iu[ι\ this is just - 1 owing to BAE^ (2.7) with
a = 1. Therefore (4.30a) is free of color 1 poles. Equation (4.30b) can be shown
similarly. This completes the proof of Theorem 4.6.3 hence Theorem 4.6.1.

The two kinds of boxes introduced here and Sect. 4.1 are related reflecting the
fact that the vector representation is contained in a tensor product of the spin ones.
The precise relation has been described in Appendix A.

5. Eigenvalues for Dr

Our results for Dr — so(2r) are quite parallel with those for Br — so(2r -f 1) in
many respects. In fact many formulas here become those in Sect. 4 through a
formal replacement r —>• r -f | . Thus we shall state them without a proof, which
can be done in a similar manner to the Br case. We will introduce two kinds
of boxes associated with the vector and the spin representations. Their relation
is clarified in Appendix B. A distinct feature in Dr is that there are two spin
representations, F(ω r _i) and K(ω r), each having the quantum affine analogue
W\r~~ and W(\ respectively. They are interchanged under the Dynkin diagram
automorphism. In order to respect the symmetry under it, we modify the quantum
spaces ®y=ιw[p\wj) for p = r - 1 and r into ®%λW^\wj\ where ^ ( ± ) ( w ) =

W\r\w =F 2) (g) W\r~λ\w ± 2). Pictorially, one may view this as arranging the verti-
cal lines on the square lattice endowed with the modules V(ωr), V(ωr-\) alternately
and with the inhomogeneity as w\ τ2,w\ ±2,w2 =F 2,w2 ± 2,.... This pattern has
been introduced to utilize the degeneracy of the spin-conjugate spin R-matήx [32]
lmRw(f) (r-i)(u — 4) ~ V(ωr + ωr-\\ where the image becomes manifestly sym-
metric under the automorphism. The BAE (2.7) (with s — 1) is thereby unchanged
as long as p = 1,2,..., r - 2. Instead of p = r - 1 and r, we now take p — ±, for
which the BAE reads

φ+(iu{

k

a) - δar)φp(ίu[a) - δar-i) b=\ Qbiiu^ - (oca\ocb))

Here the functions in the lhs are defined via φ(u) (1.4b) by

>) = φ(u-2). (5.2)
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5.7. Eigenvalue λ\ι\u). Let εα, 1 <; a ^ r be the orthonormal vectors (εα|ε&) = ^
realizing the root system as follows:

for 1 S a <L r - 1
for a — r

ci + • for 1 < a < r - 2

ίθfl = < 2^ ε i + h ε ^-i ~ ε^) for α = r - 1

5(εi H h fir-l + fir) for (2 = Γ

(5.3)

The auxiliary space relevant to Λ\ (u) is w\ — F(ωi) as an Dr-module by (2.4b).
This is the vector representation, whose weights are all multiplicity-free and given
by εa and — εα(l 5* a ^ r). By abbreviating them to a and a, the set of weights
and the DVF are given follows:

J = {l,2,...,r,r,..., ϊ } , (5.4)

(5.5)

This is formally the same with (3.2-3). The elementary boxes are defined
by

β =

F-T^ = ^r-i

?β-i(« + * - l ) β f l ( κ + α) = =

&-2(« + r ) β r - i ( ^ + r - 3)β r(« + r - 3)

r -

r = ; β r - i ( κ + > - l ) ρ r ( M + r - l ) '

xβ r-i(M + r - 3 ) β r ( M + r + l )

k - 1 h=
Or-2(u + r - 2)βr_i(κ + r + l)βΓ(M + r + 1)

β = Ψa\
-a- \)Qa(u + 2r - a - 2)

(5.6a)

where we have set Qo(u) = 1. The vacuum part \j/a{u) depends on the quantum
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space ®y=ιWι (WJ) and is given by

if 1 ^ p S r - 2

φ(u + p + 1 )</)(w -f 2r — /? — 1 )Φr

p(u) for \ ^a< p

(M) = ^ φ(u+ p- l)φ(u + 2r- p- l)Φr

p(u) for /? + 1 ^ α -< ̂ + T ,

φ(w + p — \)φ(u + 2r - p — 3)Φr

p(u) for ~p ̂  a ^Ί

if p = ±

+ r - + r -

for 1 ^ α ^ r - 1

for a — r

for a = f

for r - 1 ϊ

(5.6b)

rp(Ό = Π 0O< 27 -

The order ^ in the set J (5.4) is specified by

2 ^ < r - l - < - - < r - l - < . 2-< 1.
r

(5.6c)

(5.7)

We impose no order between r and r. The DVF (5.5) possesses all the features
explained in Sect. 2.4. In particular it is pole-free under the BAE (2.7) and (5.1)
thanks to the coupling rule (2.14). It can be summarized in the diagram

r-\

r - 2
\r-\\ \r-\

r r-\

r-2

in the same sense with those in Sect. 3.1 and 4.1. This is again identical with the
crystal graph [24,25]. For p = 1, the DVF (5.5-6) has been known earlier in [21].

5.2. Eigenvalue Λ\a\u) for 1 ^ a ^ r - 2. For 1 ^ a S r - 2, let ^(a) be the set
of the tableaux of the form (3.7a) with z# E J (5.4) obeying the condition

h or i) = (r9r) or ( 4 , 4 + 0 = (r,r) for any 1 ^ k ^ a - 1 . (5.8)

We identify each element (3.7a) of ^ a ) with the product of (5.6a) by the same
rule as (4.8). Then the analytic Bethe ansatz yields the following DVF:

Λ\a\u) = T, l ^ α ^ r - (5.9a)
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_ ί Π%ϊ Ψ(oP'r)(u + r - a - 1 + 2j)φ(

p

p'r)(u - r + α + 1 - 2/) for 1 g p ^ r - 2

- ^ ^ f o r p = ±

, , (5.9b)

where ψnP'r\u) and φi%r)(u) are specified in (5.15) in Sect. 5.4. Notice that

F\p'r\u)= 1, hence (5.9a) reduces to (5.5) when a—\. It can be shown that

each summand T in (5.9a) contains the factor Fip'r). This will be seen manifestly

in Theorem B.I. The DVF (5.9) for Λ\a\u) is homogeneous w.r.t. φ of order 2p

if 1 <£ p ^ r - 2 and order 2r + 2 if p = ±.
One can observe the top term and the crossing symmetry in the DVF (5.9) as

done after (3.9). To check the character limit (2.16) is also similar to (4.11). From
(2.4b) we must show (4.11c) again for 1 ^ a ^ r-2 under the absence of yo
in (4.11b). But this is straightforward from (5.8) and by noting that the character
formula (4.1 Id) is still valid for Dr if/ is taken as (5.4).

By a similar method to Theorem 4.3.1 one can prove

Theorem 5.2.1. Λ\a)(u)(l ^ a ^ r - 2) (5.9) is free of poles provided that the
BAE (2.7) {with s = 1) for 1 g p ^ r - 2 and (5.1) for p = ± are valid

5.3. Eigenvalue A^\u). Starting from (5.9) and the DVFs of ^ ( M ) , ^ " 1 ^ )
that will be given in Sect. 5.4, we are to solve the Γ-system (2.5c). The scalar
g(m\u) there is to be taken as (4.17) with F{

2

p'r\u) determined from (5.9b). This
program is yet to be executed completely. Here we shall only present a conjecture
on Λ(J;\u).

For m G Z > i, let 3Q denote the set of tableaux of the form

h im

with ik G J (5.4) obeying the condition

ik d h+\ for any 1 ^ k rg m — 1 ,

r and r do not appear simultaneously. (5.10)

We identify each element of £Q with the product ΠjLi [4j|κ->M-/w-i+2it of (5.6a).
Then we have the conjecture

« ) = Σ T, (5.11)

which reduces to (5.5) when m = 1. It is easy to prove # ^ ( 1 ) = dim Wml). We
have checked (5.11) up to m = 4 for D4 and m = 3 for D5.

5.4. Eigenvalues A\"~ \u) and A[ (u). Now the relevant auxiliary spaces are

w\r~ — V{ωr-\) and W\ ~ V(ωr) as Dr-modules. They are the two spin repre-
sentations, whose weights are all multiplicity-free and given by (4.21) for V(ωr-\)
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if μ\μ2 - - - μr = — and for V(ωr) if μxμ2 μr = -h As in the Br case we shall
build the boxes I μ\9μ2,. >,μr I by which the DVF can be written as

Σ μ\,μ2,. ,μr (5.12a)

μuμ2,...,μ~; (5.12b)

We let ^ ( r ~ 1 } and ^ ( r ) denote the sets of dim fff""1* = d i m ^ ( r ) = 2 r~1 boxes
in (5.12a) and (5.12b), respectively. The indices r and pE {1,2,...,r— 2,+,—}
signify the rank of Z)r and the quantum space ^=ιW\\ (WJ), respectively. The
boxes are again defined by the recursion relations w.r.t. these indices. By using the
operators (4.24), they read,

for 1 ^ p <> r - 2,

P

r
, * -

- h , -

P

r
, ^

P

r
, / s -

- , -

Λ

,ξ

,ξ

—N

r-l

p-\

r - l

r-\

r - l

(5.13a)

^f\, (5.13b)

(5.13d)

for p = ± ,
r-l

> / s s

P

r - l

(5.13e)

~ZΛ\, (5.13f)

r - l

(5.13h)
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Here ξ denotes arbitrary sequence of ± symbols with length r — 2. The recursions
(5.13) involve both boxes in ^ and &[ and hold for r ^ 5. As in Br case,
we formally consider boxes with p = 0 and fix them by (4.26b) and the convention
explained after it. We are yet to specify the initial condition, i.e., data for D4 case.
As for the dress parts, they are given by

,-,+,-] =

,-,-,+] =

|-,+,+,-] =

)-,-,+,+] =

QA{UΛ

Qi(ι

β2(«H

βi(«H

βi(«H

βi(«H

βi(«H

β i ( « -

β i ( « -

β i ( « -

β l ( « "

βa(«-

β2(«"

β 4 ( « -

- 1 ) '

0β4(« +
h2)ρ4(«

H)β 2 («
h3)β2(M

hl)β3(«

K3)ρ3(«

h 5)β3(«

h3)β 3 («

h5)β2(«

h3)ρ2(«

h β)QA(u

l-4)β4(«

1-7)

3)

+ 1 ) '

+ 4)β3(«M

+ 2 ) 2 3 ( M H

+ 5)

+ 3 ) '

+ 1)
+ 3 ) '

+ 4)Qi(u-

+ 3)

+ 5 ) '

h i )

(-3)

1-5)

(-3)

(5.14a)

The other 8 are deduced from the r = 4 case of

(5.14b)

This is consistent with the diagram symmetry and (5.13). As for the vacuum
parts, we shall give their general form that includes the initial condition (r = 4)
and fulfills the recursions (5.13),

r f ( \

I Ψn (u) for 1 < Ό < r — 2
•• { (pr) ~ , (5.15a)

I ψn,μr (w) for p = db

n = HJ\μj = -Λ Sj^p} forl ύ p ύ r - 2

\*{j\ = -Λ S j ί r - l } forp = ±
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P

7=0
/Φn

0(M + r

A + l

;=0
φn+1

0(w +

V

In

+ y -

r+1

/=0

/φ/?,Λ+2

2),
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(5.

(5.

Ij - 2 ) . (5.

15c)

15d)

15e)

By the definition, « ranges over 0 ^ n ^ p in (5.15c) and 0 :g w ^ r - 1 in
(5.15d,e). This completes the characterization of all the 2r boxes hence the DVF
(5.12) for any r ^ 4,pG {0, l , . . . ,r - 2 , + , - } . In the rational case (q-* 1) with
p = 1, a similar recursive description is available in [5].

Let us list a few features explained in Sect. 2.4. Firstly, the top term (2.12)
corresponds to

r ι +

dr\+9...9+9±\ = 2 , (5.16)
P β r _ 1 + i±i(w + l)

where the lhs' are indeed associated with the highest weights ω r_i and ωr in view
of (5.3) and (4.21). Secondly, the crossing symmetry (2.18,19) holds.

u" 7m = | -μ i , . . . , -/£] for 1 ^ p ^ r - 2 ,

for /? = ± . (5.17)

P - p

Thirdly, the coupling rule (2.14a) is valid due to

L e m m a 5 . 4 . 1 . For 1 ^ α g r - 1 the factor \/Qa is contained in the box \μ\,...,μr\
p

if and only if (μa,μa+ι) = (+>—) ^ r (—>+)• ^ ^ J ί M ; ί ) ^ w ^ /?6>x̂  |yy, +, —,ξ\ and

\η,—,+,ξ\ share a common color a pole \/Qa{u + y) for some y. The factor \/Qr

p
r

is contained in the box |μi, . . . ,μ r | if and only if μr-\ = μr> Any two such boxes

|ζ, +, + | and \ζ, —, —| share a common color r pole l/Qr(u + z) for some z.
p p

As introduced in the beginning of Sect. 4.6, let BAE^=0 be (2.7) with the lhs
being always — 1. Under the BAE, the pair of the coupled boxes yield zero residue
in total. We claim this in
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Theorem 5.4.2. For 1 ^ a ^ r — 1, let η,ξ and ζ be any ± sequences with lengths
a-l,r-a-l and r - 2, respectively. If the BAEp (2.7) (with s = 1) for 0 ^
p -^ r -2 and (5.1) /or p = ± are valid, then

s

u=-y+iu^ (h+,-,ξ\ + \η,-,+,ξ\) = 0 , (5.18a)
k P P

(5.18b)

where y and z are those in Lemma 5.4.1.

The proof is similar to that for Theorem 4.6.3. In particular (2.14b) and (2.15)
can be shown, therefore the character limit (2.16) is valid for the DVFs (5.12).
(When p — ±, one modifies the cojji in (2.16) suitably.) Notice that both of the

coupled boxes in (5.18) belong to the same set ^[r~X) or ^\r\ Thus Lemma 5.4.1
and Theorem 5.4.2 lead to

Theorem 5.4.3. For r ^ 4 and p G {0,1,...,r - 2, +, - } , Λ{[~l)(u) and Λ{[\u) in
(5.12) are free of poles provided that the BAEp (2.7) (with s = 1) for 0 ^ p ^
r — 2 and (5.1) for p = ± αr //i

6. Discussions

Let us indicate further applications of our approach. As can be observed through
Sects. 2 to 5, the hypotheses called the top term (2.12) and the coupling rule (2.14),
(2.15) severely restrict possible DVFs. This is especially significant when as many
weight spaces as possible are multiplicity-free (2.13) in the auxiliary space. An
interesting example of such a situation is the Yangian analogue of the adjoint
representation. Below we exclude the case Xr — Ar, where the DVF for general
eigenvalues is already available [19]. Then it is known [12,28] that the Yangian
Y(Xr) admits the irreducible representation Wadj isomorphic to V(θ) Θ V(0) as an
Xr-module. Here θ denotes the highest root hence V(θ) means the adjoint repre-
sentation of Xr. One can identify Wadj in the family {Wm"1} by θ and the data in
Appendix A of [33].

1 )
ω 2 , < } ) Br,Dr

{(ω69W{6)) E6

Thus the cases Xr —Br,Cr and Dr are already covered in this paper. For G2, the
DVF of Λ\ (u) has been obtained recently [11]. Let us turn to the remaining cases,
Λ\ι)(u) of £7,8,^4 and Λ\6\U) of E6. By the definition, dim Wadj = ά\mXr + 1. All
the weights in Wad} are multiplicity-free except the null one, multo Wadj = r + 1.
Thus one may try to apply the top term (2.12), the coupling rule (2.14,15) and the
crossing symmetry (2.18) to possibly determine the ά\mXr — r terms in the DVF
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corresponding to the root vectors. We have checked that this certainly works con-
sistently and fix those terms uniquely. Moreover, we have found that pole-freeness
under the BAE requires exactly r + 1 more terms that make the null weight contri-
bution (r -f \)q° in the character limit (2.16). These features are equally valid in the
trigonometric case as well. Thus the resulting DVFs are candidates of the transfer
matrix eigenvalues for the trigonometric vertex models associated with Uq(E^ ),
etc. The details will appear elsewhere. It still remains to understand the hypotheses
(2.12), (2.14) and (2.18) intrinsically and thus to unveil the full aspects of the
analytic Bethe ansatz.

Appendix A. Relations Between Two Kinds of Boxes in Br

Here we clarify the relation between the two kinds of the boxes [αj and |μi, . . . ,μ r | in-
troduced in Sect. 4.1 and 4.5, respectively. In terms of the relevant auxiliary spaces,
they are associated with the vector and the spin representations. To infer their re-
lation, recall the classical tensor product decomposition

K ( ω r ) 0 F ( ω r ) = V(2ωr) θ V{ωr-\) θ Θ V(ωx)θ V(0). (A.I)

Correspondingly, there exists an Uq(B)- ') quantum i?-matrix Rψ(r) w(> )(u) [32] acting

on the ^-analogue of the above. On each component V(ω) of the rhs, it acts as a
constant pω(u) that depends on the spectral parameter u. A little investigation of
the spectrum pCύ{u) in [32] tells that only p(Oa(u),p(Oa2(u),... are non-zero at u =
-2(r - a) + 1 for 1 ^ a ^ r - 1. From this and (2.4b) we see that the specialized
/^-matrix Rw(r) w(> )(—2(r — a) + 1) yields the embedding

W[a\u) ^W\r) [u + r-a-Λ® ψ\r) ( u - r + a + ^ ) (A.2)

in the notation of [8]. According to the arguments there, (A.2) imposes the following
functional relation among the transfer matrices having the relevant auxiliary spaces:

- T\a\u) + T\u) for 1 g a g r - 1 . (A.3)

Here Γ'(w) denotes some matrix commuting with all Tm (ι )'s. When a = r — 1,
(A.3) is just the last equation in (2.5a) with m = 0, hence Γ^w) = Γ^^w). Viewed
as a relation among the eigenvalues, (A.3) implies that each term in the DVF (4.9a)
can be expressed as a product of certain two boxes in Sect. 4.5 with the spectral
parameters u + r — a — ̂  and u — r + a + j . Actually we have

Theorem A.I. For 1 f ^ α r g r — 1, k,n, / E Z ^ O ^ C ^ ίAύtf A: 4- w + / = fl, take any
integers \ ^ i\ < - - < ik ύ r and I ^ j \ < - - < jι ^ r. Then the following
equality holds between the elements of ZΓ\a) and 3ί\r) defined in (4.7,8) and
(4.25,26), respectively,
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Jl

J\

_ ,

(A.4a)

where there are ftlOp /« /Ae /AΛ1 and Fa

p (U) is defined in (4.9b) and (4.10). The

± sequences in the rhs are specified by

ί + ifb e{i,,...,/*}
otherwise

{
+ otherwise

(A.4b)

Note that both sides of (A.4a) are of order 2p w.r.t. φ and carry the same
weight ε/j + -h ε^ — e7] — — ε7/. The theorem is proved by induction on the
rank r.

Appendix B. Relations Between Two Kinds of Boxes in Dr

The elementary boxes [αj and |μi, . . . ,μ r | introduced in Sects. 5.1 and 5.4 are related

by

Theorem B.I. For 1 ^ a rg r — 2,k,n, I G Z^o swcA ίAαί A: + 2« + / = a, take any
integers 1 ^ z} < < 4 ^ r a«J 1 ^ yΊ < < j \ ^ r. Then the following
equality holds between the elements of'3~\a) and 3~\r~x) U ̂ \r) defined in Sect. 5.2
and (5.13-15), respectively.

1

k

r

r

h

h (B.I)
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r\

where there are nlΠ's in the Ihs and Fa is defined in (5.9b). The ± sequences

μ and v in the rhs are determined by (A.4b).

Put a ~ r + σ mod 2 where σ = 0 or 1. Then the tableaux in the rhs of (B.I)
belong to the following sets:

/ even (=?=* _ Γ *}" I even ( β 2 )

One can rewrite the rhs of (B.I) so as to interchange the parity of / in (B.2). Given
any ± sequences μ = (μi,.. ., μ r) and v = (vi,...,v r), we set

ek(μ, v) = #{/ I 1 S j S kμj = -} - #{/ | 1 ^ 7 ^ *, vy = -} , (B.3a)

= y}) . (B.3b)

Then we have

Lemma B.2. For any 1 ^ α ^ r — 2 and any ± sequences μ = (μi,...,μ r),v =
(vi,...,vΓ), one has

[τ-r+a+\ \μu », μr\ ) ( τ r - a - \ \VU >M)

r r

= {τ-r+g+l |μϊ7> -->f4\) ( < - a - l [ V V ' - - > Vr \ ) » ( B 4 a )
P P

where μ!} and Vj are determined by

j j ) f J ( μ )

y j μ y ) otherwise '

The lemma enables the interchange of those μ7 and Vj with y > dr-a-\(μ, v)
in the products (B.4a). In case dr-a-\(μ,v) — oo, the assertion is trivial. One may
apply Lemma B.2 to rewrite the rhs of (B.I). A little inspection tells that 1 ^
dr-a-\(μ9v) ^ r — 1 for any of those μ and v appearing there. Moreover, for such
d = d r_α_i(μ, v) one can evaluate the difference

9{j\d <j^ r,μj = -}-%{] \d < y ^ r,v, = -} = 2/1+1 G 2 Z + 1 ,

in terms of the n in Theorem B.I. Thus Lemma B.2 expresses the rhs of (B.I) by
the tableaux such that

Y~X) /even

/odd
) , . . . (B.5)

which is opposite to (B.2). Based on these observations, we can give a similar
argument to Appendix A that backgrounds Theorem B.I. There is a degeneracy
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point u = -2(r — a — 1) of the Uq{D^) quantum i?-matrix [32] where it yields
embedding

W\a\u) <-+ W\r~λ\u + r - a - 1) <8> w\r~λ+σ\u - r + a + 1),

W[a\u) <-> FFj(r)(tt 4- r - a - 1) Θ w\r~σ\u - r + α + 1). (B.6)

According to [8], (B.6) implies the functional relations

T{r"ι\u Λ-r-a- \)T\r~ι+σ\u - r + a + 1) - 7 ^ 0 ) + T'(ύ), (B.7a)

jf^w + r - α - 1 )T\r~σ\u - r + α + 1) = η(fl)(w) + T"(u) , (B.7b)

where T'{u) and T"(u) are some matrices commuting with all Γ4 (t )'s. In par-

ticular if a = r — 2(σ = 0), (B.7) is the last equation in (2.5c) with m = 1, hence

Γ;(w)i = 7T

2

( Γ~1 )(M) and Γ;/(t/) = Γ2

(r)(w). One may regard (B.7a,b) as equations on

the eigenvalues and substitute (5.9a) and (5.12). Then Theorem B.I tells how one

can pick up the DVF for λ\a\u) from the lhs. For example in (B.7a), one depicts

the terms in Λ\ (u) as the lhs of (B.I). Then the / odd terms are indeed contained

in Λ{[~λ\u + r - a - l)Λ\r~ι+σ)(u - r + a + 1) due to (B.I) and (B.2). The / even
terms can also be found by expressing the above product in terms of the tableaux
in (B.5).
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Note added in proof. The conjecture (4.20) has now been proved.
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