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Abstract: In this article we consider the Schrddinger operator in R",n = 3, with
electric and magnetic potentials which decay exponentially as |x| — co. We show
that the scattering amplitude at fixed positive energy determines the electric potential
and the magnetic field.

1. Introduction

Consider the Schrodinger equation in R”, n = 3, with magnetic potential A(x) =
(A1(x),...,A4,(x)) and electric potential V' (x):

” 2
-3 i+iA,-(x) u+Vxu=k*u, (1)
=1\,
k > 0, or equivalently
—Au—2iZAj(x)—(?—li + g(x)u = ku, (1)
j=1 ox,
where
n 5 aA/
glx) =3 A,»(x)—lb— +V(x). (2)
J=1 Xj

We will assume that the potentials 4 and V' are real-valued and exponentially
decreasing, i.e.

>V (x) ] 4,
< X —
ox* | = Cre™ OxP

for 0 < |of £ P,0 < |f] £ P+ 1, where P =n+ 4. We consider the solutions of
(1) of the form

< Cpe oM j=1,...,n, (3)

w= e (0, k) @)
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where v is the outgoing solution of

212/1 (x) +(q(x)—k2)v—e’/“”'x<—2kzn:a)jAj(x)—q(x)> ®)
j=1

obtained by the limiting absorption method. By this argument v exists and is unique
whenever k? is not an embedded eigenvalue, and, combining Sect. 5 of Hormander
[4] with the proof of Theorem 3.3 of Agmon [1], one sees that (3) implies there
are no embedded eigenvalues. Representing v in terms of the outgoing fundamental
solution of 4 + k2, it follows that as |x| — oo,

o, w,k) = %((H )+0(|YI|>>’ (6)

where a(0, w, k) is defined to be the scattering amplitude. Our objective is to prove

Theorem 1. Fix k > 0. Then one can recover V(x) and the magnetic field B =
curl A from the scattering amplitude a(0,w,k),(0,w) € S"~! x §"~1.

Note that, if 4 and A’ satisfy (3) and curl A = curl A’, then A’ — A is the
gradient of function ¢ satisfying

72| < e, 05 ipl <P, M

To see that changing 4 to 4’ = 4 + 2 does not change the scattering amplitude
note that, if one replaces u(x) by w(x) = u(x)e™"*™), then w(x) will satisfy

2
(2 +id(x) + ia—‘/’ w+V(x)w = kEw
Ox Ox

However, this does not change the scattering amplitude, since

. 1k|x| 1
w= u(x)e-t<p(x) — e—w)(x) e:/«u Xy a( ) — + 19) -
R x| %
ik|x|
ke X et 1
= it X.}.a(m,w,k) %-{-0(' »z+l>’
x| 2

x|

In this article as in [2] we will use A(¢ kw,k), the Fourier transform of
—(4+k*), to study the scattering amplitude. Since v is obtained by limiting
absorption,

1 h(E, ko, k)e™ <
Ed )k = .
Mo = Gy e

and, taking the asymptotics of (8) when 6 = x/|x| is fixed and |x| — oo, one obtains

g, )

1
5 Im
a(0,,k) = Cp xh(k0, ke, k), Cp s = 4—175 ((EE) e"T) . )
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From (5) one sees that & satisfies

! f%(é Vln)h('l,Ck)
@y Inl> =k =0

h(&, (k) + —qo(¢ = §,0), (10)

where
go(&,0) = 2;2,,(é)cf +4(¢). (11)

Note that (3) implies that go(¢ — (,{) is analytic in (&,() for |[Im ¢&] < §/2,
[Im {| < 0/2. For fixed 4, the integral operator

w f‘Io M)W(n)
o (27r)”w I = 4 —i0

(12)

is compact in the space H,n,0 < a < l,n—1 <N <n+4. Here H, 5 is the
weighted Holder space used in [2]: let || f]l,.v = |(1 + |E*)V2f)|,, where || ||,. is
the standard Holder norm, and define H, y as the completion of C§°(R" ) is || ||.n-
Moreover, T, depends analytically on A for Im 4 > 0 and extends continuously to
the positive real axis, A > 0. In the same way that Theorem 5.2 of [4] showed that
the homogeneous equation corresponding to (5) had no nontrivial square-integrable
solutions, it can be used here to show the / + T2 has no nontrivial solutions in
H, n(R"). Hence we see that the Fredholm operator / + T is invertible on H, y
for £ > 0. This will be useful in what follows.

In the case that the magnetic field B is small uniqueness results at fixed energy
have been obtained previously by Henkin and Novikov [6] and by Sun [9]. Re-
cently Nakamura, Sun and Uhlmann [5] obtained the uniqueness result analogous to
Theorem 1 for the Dirichlet to Neumann map. This implies Theorem 1 for magnetic
and electric potentials of compact support. In fact, when the magnetic and electric
potentials have compact support, as in [9], uniqueness for inverse scattering at fixed
energy and uniqueness for the Dirichlet-to-Neumann map inverse problem at fixed
energy are equivalent.

For potentials without compact support the previous work which influenced us
considerably was by Novikov [8]. He proved Theorem 1 in the case of zero magnetic
potential, and the methods of [8] could be used to give a different proof of some
of the results in Sect. 2.

Finally, we are deeply indebted to Adrian Nachman for calling our attention to
a serious error in the first version of Sect. 2.

2. Faddeev-Type Scattering Amplitudes

Following Faddeev [3] and Novikov—Khenkin [6], we introduce a new scattering
amplitude which will contain a large parameter. The later will be helpful in solving
the inverse scattering problem.

Let v be an arbitrary unit vector, |v| = 1, and E, ,(x) be the following funda-
mental solution to the equation (—4 — k%*)u = f:

1 et idn
E\' = )
o) (2n)"mfn n-n—k%+i0(n — o)

(13)
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where n, =n - v and —k < ¢ < k. Comparing E, ,(x) with the fundamental solu-
tion
Fo() = —— [ g (14)
= Gy g -k =0

we have

inkn_z g X * ko
(2n)n Im)f\'[>(re de ’ (15)

where dw is the area element of the unit sphere in R”. Analogously to (10) consider
the following integral equation

Q()(é -, ")hv,o(ﬂ’ Cak) _ _
P A i g UL Al (R ORI

Ev,rr(-x) = EO(-X) -

hy,o(S, 0 k) +

Set )
1 I hyo(E, 0 k)e™ ™ <
Qry gn &+ &= k2 4+i0(¢, — o)

assuming that A, ;(&,(, k) is the solution of (16). Then v, ,(x,{,k) is a solution
of the differential equation (5) for { = kw with asymptotics at infinity that can be
obtained by applying the stationary phase method to (17).

Now we shall find the relation between 4, (¢, (k) and h(&,(, k). Analogously
to (15) we have

1 qo(& — n,mhy (1, {, k)d fqo(é 1, My, (1,4, k)

U\',(T(xo Ca k) =

dé, (17)

dn

@nY'gan - 1 — k% +i0(n, — 7) [ Ay s -
ink" 2
— (27)" f qo(& — ko, kw)h, (ko, k)dow . (18)
ko * v>o

It follows from (16) and (18) that

qo(& — n,n)hm(n,ék)
J n-n—k>—i0 an

hyo(&, 0k
AELR) + s

P n—2
:_IZIan)ﬂk I a0(& = koo, koY, o ko, L k)do> = go(¢ = L,0) . (19)

Set
_ qo(& — n,mw(n)
A(go)w = n ),,an Py dn, (20)
and
AW 1 I h(&,n,k)w(n) d @1

T @nYgen -k =10
That (10) has a unique solution is equivalent (cf. [2]) to the equality

(I +A4(go)d +A4(h) =1. (22)
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Since I + A(qo) has an inverse, it follows from (22) that
(I + AU + A(q0)) =1 (23)

or equivalently

dp=0. (23)

: 3 1 h(&,n,k)go(n — £, 0)
h(é,c,k)+qo(¢—C,C)+(Zn)ann P

Applying I + A(h) to (19) and using (23) and (23’), we obtain (cf. [3] and [6],
formula (1.7)):

n—2
b o (6,0 k) = h(E LK) — ’g‘ G S Gk, bk, Lodo . (24)
kw ¢ v>o

Since I + A(qo) is invertible, Eq. (24) has a unique solution for any (&, (k) if
and only if Eq.(16) has a unique solution. Indeed, if @(&) is a solution of the
homogeneous equation corresponding to (16), i.e.

. qo(< — n.m)e(n)
@(&) + (2m) ni[ n - n—k2+i0(n, — o)

=0, (25)

then from (25) and (18) with 4, replaced with ¢ we conclude that

fqo(é nn)e(ndn _ ink"? |

e(&) + (2n)™" qo(& — ko, ko) p(kw)dw .

R7 n— k2 i0 B (zn)n ko ¢ v>ao
Applying (I + A(h)) to both sides of this, we have
ink" 2
0=+ = [ h&ko,k)etko)do, (26)
(2 ) ko ¢ v>o

i.e. ¢ restricted to |¢] = k solves the homogeneous equation corresponding to (24).

Conversely, suppose ¢(&) is a nonzero solution of the preceding equation (26) on

the sphere of radius k. Then (26) extends ¢ to R”", since h(&, kw, k) is defined for

& € R". Applying I + A(qo) to both sides of (26), we see that ¢ satisfies (25).
Denote by E,(x,z) the following function:

1 x g
E(x,z) = f ¢ d

, I 0.
Qnyge i+ o) -tz —k2 T

Note that E,(x,z) is a fundamental solution for (—i% +zv) - (—i?% +zv) — k%, ie

[(—i% +zv> . <—i6—i + zv) — kz} E.(x,z) = 0(x).

Note that the distribution [(# +zv) - (7 +2zv) — k%]7" is not analytically dependent
on z for Im z > 0. This gives rise to the J-equation in inverse scattering (see, for
example [6]).
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Denote by 4,(&, ¢, k,z) the solution of the following integral equation:

fqo(é n+zv)h(v,(,k,z)
Qr)y'gn (+ ZV) (n+zv) —k?

=—qo(({ -0 +zv), z=it, ©1>0. 27)

h\'(éa C? k,Z) +

Let T\ denote the operator

(7 £1(8) = 2n)~ nf qo(& — n,m + iwv) f(n)dn

. 2
gje (N +0Tv) « ( + itv) — k2 (28)

Then (27) can be written

[+ T I(E) = —qo(& = §L+ i)
and
(& Lk it) = —[+ T) " go( + = L+ i)I(E),
provided (I + T“)) I exists. The analyticity of A, in t will be important for us.

Thus we need to study the analyticity of T,.(T” f in t when f(#) is analytic in a strip
Im #»| <& We will use coordinates n,=n-v, ' =n—nwv, r=|y4'| and
o' =1n'/ln’|. For n real and © = u + io,

Im((n + itv) « (n + itv) — k) = 2un, — 2p0 .

Hence, for |,] > ¢, Re 1 > 0 and |[Im1| < ¢;/2 the denominator in the integral

deﬁnmg T, ‘) does not vanish. Thus, choosing y € C§°(R) such that y(s) is sup-
ported in |s| < 2¢ and 1 — x(s) is supported in |s| > ¢, we have

) _ Zn ¢ X()qo(E = n,n +itv) f()dn
[T, f1(¢) = (2n) Rf" 1+ i) - (1 % fov) — k2

o (L= x())qo(E — n,m +iTv) f(n)dn
+(2m) ,Rf 1+ i) - (1 + iwv) — k2

= [V 11E) + VP £18),

where [V?)£1(¢) is analytic in (&,t) in the set [Imé| <, Re t> 0 and
Imzt| < &/2.
In our coordinates we have

7+ i) « (n + iwv) — k* = (r — VB)(r + VB),
where B = k% + (t — in,)?. Using © = u+ic again, we have Re B = k? + ji —
0?4+ 20m, — 1%, and Im B = 2uc — 2un,. Hence for k* > 8¢2, Re B > k*/8 for
In.| < 2¢; and |Im 1| < /2, and we fix /B as the square root in the right half

plane. We wish to define VT“), and hence T,(T ), by analytic continuation from t > 0.
When t > 0, i.e. when u > 0 and ¢ = 0, » — vVB=+0 for 7,40, and we have sgn

(Im B) = —sgn #,. Therefore, we will deform the integration in » in

<ofoX(’7“)q°(f — .0+ i) f(g)r" 2 dr)
0 (r — VB)(r + VB)

Ve = dw’fdm

sn—2
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into the upper half plane for n, > 0 and into the lower half plane for #, < 0. We

need to deform [0,00) far enough that » — /B will not vanish on the new contour
for 7 in a complex neighborhood of [0, 7(]. Note that for T = u + io,

VB = /12 + k2 + 2i(c — n)u — (6 — 1, )?

=V +k +i(o - m)———'u— +0((6 — 1)) .
VIR

Hence, for |o] < /2 and || < 2¢), we have |Re(vB — /g2 +k2)| < Ce? and
[Tm V/B| < 561/2 + Ce2. We now fix ¢ > 0 such that Ce? < k/3,5¢;/2 + Ce? <
¢/2 and 8¢ < k2. Then we may deform the r integration in V" f to the piecewise

linear curve I' from 0 to k/2 to k/2 + ie/2 sgn n, to \/k? + 13 + k/2 + ie/2 sgn n,

to \/k2 + 19 + k/2 to oco. With this choice of I',r — v/B will not vanish on I' for
|| < 2€1,]0] < €/2 and 0 < p < 79. Thus we have proven:

Lemma 1. If f(n) is analytic in |Im n| < e, satisfying |f(n)| £ C(1 + |p|)~"~!

Jfor [Im y| < e, then [Ti(rl) f1(&) has an analytic extension from t > 0 to the half
strip {(&,7):|]Im &] < d—¢ Re v > 0, [Im 1| < ¢/2}.

Let Ay, denote the space of functions f(#), analytic on S, ={ne C":
[Im | < r} and continuous on S,, which satisfy

[f()] < 1+ [y~

on S,. Ay,, 1s a Banach space in the norm
1/l = sup(1 + DN £ ()] -

Proposition 1. For ¢, sufficiently small T,.(t” is a family of compact operators on
Ans1,63, depending continuously on t in the closed half strip D = {1t = p+ic:

u =0, |o| <e/2} and analytically on t in [o), the interior of D.

Remark 1. The choice N = n + 1 is made simply to make the Banach spaces used
here compatible with those used in Sect. 3. The 0 here is from (3).

Proof. For t € D, TV = v ¢ 4+ v £ by definition. Since 2 + (3, + it)? — k>

does not vanish for r € I' and 7 € D, the operator Vf(” satisfies

1+ i0)|LS ()"~ 2|dr |
(I+ Inl)? ’

O] = €. ] do fan, ["")“"”’ (29)

sn—2

where the constant C; is uniformly bounded on compact subsets of D. By hypothesis
(3) for any &' < 0,

lgo(é = n,n+itv)] < Cp (1 +E—=n)™"*(1 + |n]) (30)
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for £ € Sy, and 5 € S;, where again C, s is uniformly bounded on compact subsets
of D. Since [f(n)| < (1 + [1)™" "' £l , on S., the integrand in (29) is bounded
by

2|

C, s .
L+ € = m)R(L + )y

Since for any p > 0,
A+1EDPA+[E=n)™PA+ )™ = L+ [E=nD)" P+ A +[nD)""),

we conclude

L+ EY VO LU £ Clf sy - (31)

Taking ¢ = 6/3 and &’ = 50/6, we have [Vr(l)f](é) analytic in S;. Thus for T € D,
t(l) maps Api1,53 into A,y 5 with norm uniformly bounded on compact subsets
of D. Hence VT(” is compact for 7 € D.

In proving Lemma 1 we showed that for f € 4,44, 53, [V,( b S1(€) was analytic
in ({,7) for t € D and & € S;0. Since the norm of V“) as an operator on A,1,s3
is uniformly bounded on compact subsets it follows by Cauchy’s formula that 28
is an analytic family of operators for t € D.

For 7 € lo) the preceding arguments apply equally well to v® and we may

o
conclude that T,(r” is an analytic family of compact operators in D. However, since

V;(j-)zaf](é) (27'[)—” f (1 7(’7\ ))CIO@ '7 ’1 — oV + l,uv)f(ﬂ) 7]
R |n—ov’ — k2 — 2 + 2ip(n, — o)

B

— @n)" f A = (v + 0))610(6 —n-oentimfto)
Il — k2 — 2 + 2ipn,

we need to show that I/;(t +)m extends continuously to g =0 from g > 0. Since
#v does not vanish on the support of (1 — y(n, + o)) for |o| < &/2, we can again
deform the integration in » into Im » > 0 for #, > 0 and into Im » < 0 for , < 0,
using the piecewise linear contour I’ connecting 0 to &/2 + ig/2 sgn n, to 3k/2 + ic/2
sgn 7, to 3k/2 to co. Then for r € I'" and 0 < p < g2,

0=k =+ 2|~ = = K =+ 20|

é Ck,&/2(|r|2 + |77v - (Sgn n\')kl)_] 5

because » = (1 + isgn u,)t on the first segment of I and r? = 2i(sgn #,)t>. Since
(|r|2 + |1 — (sgn n,)k|)~! is locally integrable with respect to ]ri"_zd[rldm, we
may argue as follows. Removing small disks about (r,7,) = (0,+k) in the integral

defining VIE +),0 f, we get an operator to which our previous arguments apply. Since

this operator differs in norm from Vﬁ)w

the radius of disks, uniformly for 0 < u < ¢;/2, we conclude that V‘(l +)m
continuously to a compact operator on p =0. [J

by an amount which goes to zero with
extends
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In Sect. 3 we will show that / + 7\ is invertible on Hy 4 for 7> 0. This
implies immediately that it is invertible on 4, 43, since the null space of I + T,-T”
on A,41,s/3 is a subspace of its nullspace on Hy, 1. Therefore, by Proposition 1 the

o
set Z where [ + T,-(,l) is not invertible is discrete in D and closed of measure zero in

DN {Re t = 0}. In particular, there is an open interval I = (61,02) C (—¢&/2,¢/2)
such that 7 + T,('T” is invertible for 1 = —io,o € 1. Hence

h(E G kit) = [+ TE) go( - — 6L+ itn))(€)

exists for 1 € D\Z and is analytic in (& {,7) on Ssp x Ssp2 X 10)\2

Our goal is to recover h,(&, ¢, k,it) from the scattering data. To make the con-
nection with scattering data we will need to use 7 = —ig and identify 4, with a
translate of 4, ,. Since denominator (1 + itv) « (1 + itv) — k* with © = u — i goes
to 0 - n+20n, +a> —k* as u | 0, we can remove the contour deformation in the
definition of V" f. However, since the integration in » is deformed into the upper
half-plane when #, > 0 and the lower half-plane when y, < 0, we have

) _ —n qo(& —n,n+ov)f(n)
[T, f1(&) = 2m) mfnﬂ R P U

and for ¢ € I,h,({,(,k, o) is the unique solution in 4,4 g3 to

—n qo(é —n,n + O'V)f(i’], C)
ACURNCL) Ian n - n+20n, + 062 —k%+i0n,

dn=—qo(¢ =+ ov). (32)

Since the changes of variables # — n — av, £ — £ —agv and { — { — ov, transform
Eq. (32) to (16), we conclude that 4,(¢ — av,{ — av,k, ) is the unique solution of
(16) in A, 53 and hence for o € /,

h(¢C —av, {—av,k,0) = hy (S k). (33)

Therefore, assuming the results of Sect.3, we have proven the following theo-
rem:

Theorem 2. The solution h,(&,(,k,it) of (27) exists for © € D\Z and is analytic in
(&,4,1) on Syp3 % Ss3 % (lo) \Z). The limiting values of h,(&,{,k,it) when 1 — —ic
satisfy (33), where h, (&, (k) is the solution of (16).

Since the unique solvability of (16) in A, 53 implies the unique solvability of
(24) in C(8""), we know that (24) has a unique solution for ¢ € /. Hence, know-
ing the scattering amplitude (&, (k) for |f|2 = ]C]2 = k%, we can find A, (& (k)
for |é|2 = |C|2 =k? and ¢ € I, which translates (by (33)) to knowing A,(&,{,k o)
for |€ 4 ov|2 =1{{+ 6v|2 = k?, for ¢ € 1. Since h,(&,{, k,it) is analytic for (,(,7) €

o
Ss;3 X Ss;3 x (D\Z) with a continuous extension to Ss/3 X Ss/3 x (—il), we can de-
termine it on the variety

(E+itv) - (E4iv) = +ityv) - ((+iv) =k?

for (&,{,1) € Ss;3 X Ss3 X (B \Z) by analytic continuation.
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Fix I € R",u € R",n = 3, such that
[-v=0, wev=0, l-u=0, wep=1, (34)
and put

E(s) = %l+slz,

—1
C(S) = 71+Sﬂ’

z(s)zir(s)zi\/sz-i—%l-l—kz, (35)

s = so, So large. We have that 4,(&(s),{(s), k,z(s)) is analytic in s for s > sy and
(E(s) + ix(s)v) + (&(s) + in(s)v) = (L) + i(s)v) - ({(s) + in(s)v) = k2.
Hence £,(&(s),{(s),k,z(s)) is known for s > sg.

Remark 1. In the case A(x) = 0 the operator Tirl) has a small norm in H; ,.; (see
Proposition 4) when t > 0 is large. Substituting ¢ = £(s),{ = {(s),z = z(s) = it(s)
in (27) and passing to the limit when s — 400, we obtain that the integral in (27)
tends to zero, and we can recover

V() = Jim h(&(s), Ls) b 2(5))

Thus we obtain an alternate proof of R. Novikov’s result [8].

3. Solution of an Integral Equation

In this section we set z = it and only consider t real and positive.
In order to solve the integral equation (27) when 7 is large and positive we will
pass to an equivalent differential equation. Let

- h(n, &k, z)e™
v ’ ’k’ = 2 " >
on G kz) = (2m) “if,z(n+zv)-(i1+zv)—k2 1

z=1it, 1> 0. (36)

Then v, satisfies the differential equation
[(—id/ox +zv)? — k* + 24(x) + (—i0/0x + zv) + q(x)]v,
= —2({+2v) - A(x)e™ " —g(x)e™ " ¢, (37)
Our strategy will be to construct solutions of the equation
[(—id/ox 4 zv)* — k* 4 2A(x) - (=i0/dx +zv) + q(x)]v = f (37)

for all f in the Banach space Hy ,+1(R"), where Hy n(R") is defined as the closure

of C§°(R") in the norm, || f |, y = sup:(1 + |E[YV|f(€)|, i.e. Hoy is the Fourier
transform of Ho y. Then )

W& = [(~idfox +2v) — K ux)e™ " “dx
R”
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will be a solution of (27) with the inhomogeneous term replaced by f’ (&), ie.

. —np o(&—mn+zvh(n) o
MO+ Em IRf"(U +zv) - (n+zv) — k2 =/, (38)
and we will show that # € Hy .. Thus we can conclude that / + T,(Tl) (see (28))
maps Hy, 41 onto Hy 41 for 7> 0. Since T,»r” is also compact on Hy .4 for 7 > 0,
it follows that [ + T,(T” is invertible on Hp 4+ for >0, and (27) is uniquely
solvable in Hy .41, when 1 is sufficiently large positive.

We will look for a solution of (37") in the form

e o m2)d(n, G z)e T
v(x,{,z) = (2n) an (m+zv) - (n+zv)—k? 1

(39)

where z = it,7 > 0. Here ¢(x,(,z) is the new unknown and §(u,{,z) is its Fourier
transform in the first variable. The factor c¢(x,#,z) will be chosen so that the ana-
logue of Eq. (27) for § will not have the unbounded terms in ¢o(¢ — 1,4 + zv). For
this reason we choose c(x,#,z) as a solution of the transport equation

0
i (- 2) +24() - (0 + 2)(n.2)e = 0 (40)
of the form ¢ = exp(—iy;¢). Thus ¢ must satisfy

0
(n+2v) - 52 =4(x) - (g+2v), (40')

and we choose

¢ = (211)‘"]‘4('5) c (4 zv)e gd

41
R” lé . (7’[ +ZV) ( )

The function y,(n,z) is (40) is a cutoff to a neighborhood of (7 +zv) - (1 +
zv) = k*. The cancellation of unbounded terms is not needed outside this neighbor-
hood, and it is convenient to have ¢ = 1 there. We choose y(¢) € Cj°(R) such that
y(t) = 0,x(t) =1 on |t] < ¢/2 and y(¢) =0 on |¢t| > &, and define

|(n+2zv) - (n+2v) — k?|
x(n,z) =1y )

nl? + 2 + k2
Since, setting n, =15 - v,

[+ 2v) = (n+2v) = K] = (]’ =7 = F) +47n)' 2, (42)
it follows that on the support of y;

el + 2+ k) = |’ — (2 + K2,

1 —c¢ 1+¢
(1+8>|11|2<12+k2<<l_s>|r]]2. (43)

and hence
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Setting ' =5 — (n - v)v, (42) also implies that on the support of ¥,
20| + 10+ 7 K 2 '+ — 7 = K+ 21l
and hence, using (43),
(L+26) ') = (1 = 2e)(2® + k%) — (1 + 2e)n2 + 21|,

1—¢

1/2
= (1 -2e)(c* + k%) + (2 (1 +8> e +Tk2)1/2 -1 +2a)) .

Thus, choosing ¢ sufficiently small and 7, sufficiently large, we have for t = 1o,

@+ +n < CIn'f (44)

on support ;.

We will need some detailed estimates on ¢. The behavior of ¢ in the x-variables
is strongly dependent on #. We introduce 1 = n'/|5’|, and use the orthogonal ex-
pansion x = x|v+ x4 +x, where x; is the projection of x on the orthogonal
complement of span {v,5}.

Proposition 2. Assume that B(x) is a vector-valued function satisfying (3) and
define

e B2y
lp(xan +ZV) - (27—5) an é . —(}7 +ZV) e

Then for (n,z) € supp x1,T = to and |a| + |f| £ P in (3') one has

dé.

alI+1pl e
a—anflfﬁl < Gy Mem3ul, (45)

Proof. By contour integration one computes

i +0d) 1 1

Q) dé dé =

&t

2n |l — (i + 2%

Thus

l//(x,7]‘|’2v):z_l_fB(x—ylV_yﬂ‘)'(77+ZV) y. (46)

e = +2)y2

and, using (3'), for |o| < P,

oy
Ox*

Ce M =yovtla—yutxLlly 4 2|

(x,n+zv)

=/

47
R2 ' |y1 = (nv +2)y2| @7

Since (43) and (44) imply that

[y = (i + 2)32] = (0|31 = nop2)* + 2 y3)'?
= Ct(y + ¥3)' = Crlyl, (48)
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it follows from (43) and (47) that
ol*lyy

Ox*

o
< Cae_7|”|

(x,n+2zv)

for |o| < P, where C, is independent of # and z.
To estimate # derivatives of i we first observe that (48) implies
oy’ | Oy
o (=t |- [ |
onj \|n'\y1 — (nv +2)y2 (n'lyr =+ 2)3)2 | = 2yl

Thus, differentiating (46),

0 C . |B(x—yv— d C .|0B
3 g—f'( Vi yz#)|y+_f 9B v — v — ya)| ay
anj TIRZ |y| TR2 0x

< Co-dintl

1

Repeating the same argument and noting that "!/dn’(|n'|y1 — (1, +2)y2)~" is
homogeneous of degree —1 in y for any 7y, one concludes
all+1Aly,

ox*onb
for |a| + || £ P and © = 7y on the support of x;. O

C N
= et “

To study ¢ in (41) we will use Proposition 2. We introduce

w=x; =+ 'x and w =y — (20 »

and observe that

1 1 N /\k I\N+1

= e (50)

w—w w(l—% i—o Wt wlHl(w —w')

Then we can write (46) with B replaced by A/i in the form
1 A(yiv+ yop+xi) - (n+2v)
(x,n+2zv) = 5—
¢ ) 27Tl]sz In'1(x1 = y1) = (v +2)(x2 = »2)
1 A .

[ v+ yapu+x1) (’1+ZV)dy' (s1)

- 2|y’ |i g w—w

Using (50) to expand (51), the remainder term in (50) contributes a term to ¢ of
the form
11 I By(x — y1v— yap1,2) - (1 +2v)
2mi wNHL Ry 'y = (ny +2)y2

dy,

where By (x,n,z) = (x1 — (1, + 2)|7’|”'x2)V T 4(x) satisfies (3) uniformly in (n,z)
on the support of y; for T = 7¢. The other terms in (50) contribute terms to ¢ of
the form

1 _
s T A o) - (28 dy
R2
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Thus we see that for any N = 0, when (7,z) is in the support of y; and t = 7o,
N—1
o= whbxi,nz)+w by, (52)
k=1

where = by satisfies (45) and by(xi,%,z) is exponentially decreasing in x
together with its derivatives up to order P uniformly in (n,z).
Substituting (39) into (37) and using (40), we obtain

Cx.D,z)g+Tig+ g+ Tsg=f, (53)

where

o (2204 &t ge)g(n)e
[Tiglo) = @)™ | e =

dn,

o (S Ae)i(me
[T2g](x) = (2m) uifn (n+zv) - (n+zv)— K2’

o 2L = gDA  (+ 2v)eg(n)e
[T39)(x) = (2m) nf (n+zv) - (n+2v) =k

dn,

and C(x,D,z) is a pseudo-differential operator with symbol c(x,7,z).

In Sects. 4 and 5 we will need uniform estimates on the norms of the operators
e {Te™ " j=1,2,3, and ™™ " {Ce™ . Since multiplication by e ¢ is not
bounded on Hyy (for N > 0) and { — oo, these estimates do not follow from
estimates on the norms of the Tj,j = 1,2,3 and C on Hy y. To prove what we will
use later efficiently we are going to equip Hoy with a family of norms, || ||cn
so that estimates in these norms uniform in { will imply the needed estimates for
Sects. 4 and 5. We will refer to Hy y with the norm || ||;n as “H;y.”

Proposition 3. Let H; y(R") be the closure of C§°(R") in the norm || f| .y =

supga(1 + | = LDV (). Then C(x,D,z) is invertible as an operator on Hp .y,
(R™) for t sufficiently large.

Proof. Our approach here will be to show that C(x, D) and the operator C(~")(x, D)
with the reciprocal symbol e#1¢ are bounded on H;,;;. Then the composition
formula for pseudo-differential operators and Proposition 2 will be used to show

cVec=1+T, (54)

where the norm of T on H; ,;, goes to zero as T — oo uniformly in {.

The proof that C and C'~!) are uniformly bounded on H;,i uses only (52).
Expanding c¢(x,7,z) = exp(—i@y;) in a Taylor series in ¢y, it is clear that ¢ — 1
also has an expansion of the form (52) for t = 7p. A linear transformation of R”
takes w in (52) to the standard complex variable z = s + it. Hence analytic functions
of w are annihilated by the pull-back of 0/0z under this transformation which is
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("w = (xz I +z)li1’l nx °). From (52) we have [|(91*/ox* )Yoc/0W|| 1 rny < C
for [oc] < P uniformly on support y, for T > 7. Thus setting vo = dc/oW,
lBo(&m,2)] < C(1 + [~ (55)

Thus, since P = n+2, the inverse Fourier transform of vo(é)(& + (ny +2)

[;1’|_lé| )~! is continuous, tending to zero as |x| — 0. Since ¢ is bounded, we con-
clude (by Liouville’s theorem)

) 20(&)e™
. ) — 1 + (2 n 9
cx,n,z ™) ,Rf WG+ ol e
= 1 myr 2 o

R” lé . (7[ +ZV)

Using (55) and (56), given C(x,D,z)g = h, we have, setting ¢; = ¢ — 1,
h(&) = §(E) + [ &&= mn,z2)d(n)dn,

R7

where ¢(&,71,() has support in the support of y; and satisfies

&2l £ Cl [+ 1€ E - (g +zv)] 7 (57)
Hence
sup(1+ & = LA = (L sup [ (14 (=) [éi(E = n.,2)]
é ¢ R

(L [ = {7 ) sup(1 + [€ = ("GOl

and the boundness of C(x,D,z) on H; ,1(R") uniformly in ({,z) for T = 7 fol-
lows from (57) and the estimate

A=A+ E=nh)™ A+ =™
SCA+E=n)™" "+ A+ p=hH . (58)

To see that C is invertible on H,;, when t is large, we recall that the
integral remainder formula for Taylor series implies that the symbol of
C-D(x,D,z)C(x,D,z) — I is given by

1 Va —1
remz)= ¥ Qn)" (fe” e (x,n+rc>cadz) .

2]=1 R" \0

The analogue of (57) for dc~'/on?, |a| = 1, is

']

a*~‘ -
C+ D™ e - ()™

——(&n2)| =

We can now apply the argument, used above to show that C(x,D,z) is bounded on
H; ,11, to R(x,D,z). The superpositions in { and 1 produce no new difficulties and
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the factor of 1/7 in the estimate for dc~!/dn* above makes ||R(x,D)|| go to zero as
7 — oo. Thus C is invertible for 7 sufficiently large. [J

Proposition 4. The norms of the operators T\(t), To(t) and T5(t) on Hy 1 (R")
tend to zero as v — oo uniformly in (.

Proof. Let fk(f —n,1,z) be the kernel of the Fourier transform of 7}, k = 1,2,3,
ie.

Tig(&) = Rka(f — n,n,2)(n)dn .

In order to show that the norm of 7y on H; ,.(R"), is arbitrarily small for 7 large
uniformly in {, it suffices to prove that

. c
sup JA+E= I NT(E=nn2)(A+ =)™ dy < —logz.  (59)
&C R

On the support of 1 — y; we have |[(n +2zv) - (n+2v) — k?| = §(|71|2 + 2 + k%),
Hence

2l Sy,

T3 —nmmz)| S CA+[E—p)h)y ' —H—1
IT5(& = nn.2)| = C(A+[E—nD) I’I|2+72+k2 T

and (59) for k£ = 3 follows from (58).
To estimate 7 we note that (42) implies that for all (,z),

1
In+2v) - (4 29) =K 2 Sl = (& + 6]+ 2elny)
= S0l = @+ Rl + (& + K] 4+ 21l
2 Z(nl = @ + k)2 + ). (60)

Since ¢ — 1 has an expansion of the form (52), gc and 4 - & satisfy (3) with

constants uniform in (#,z) for T > 1¢. Thus, from (58) and (603(,

sup [ (1+& = ()™ T4 = mm2)I(L+ | = C)™" "
&R

A+E=nD)™" '+ 1+ ="
S:xtpmf In] — (2 + k)12 + |n,]

AN

C
7 dn
(I+]E—np)—!

dn . 1
w =@ A (e1)

Il

2C
—s
T
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Setting R = (7> + k*)'2, n = R{ and I({) = ((|¢| = 1)> + {?)"? in the last line
of (61), this gives

sup [ (14 1¢ = L |71 (E = mn2)|(L+ g =)™ dy

[ [Rll

SO RN
< Sup [ (1= RN R g
<© [Sl{p [+ = RE™R g

+sup [ (1+lé—RCI)_"_'(l(é))_‘R”_'dé}.

¢ IO)<e

= < [l +R'sup [ (14 Ié—RCI*"*’(l(C))”]dC} :

TR & I <z

Here ¢y is any fixed constant, and we assume ¢y < 1. Since t ~ R for t > 19, it
suffices to show

" lsup [ (I+E=)TTNQ) AL < € (62)

< W<

for © > 19 to conclude that (59) holds for £ = 1.
1

To prove (62) we note first that when || < 3,

[ Q+e=h™aen™"dc £ [ (I +cor)™ @) 1de,

() <eg ()<

where ¢y = min)<,, [ — (| > 0, and (62) holds.

To establish (62) for |&'| > % we will use spherical coordinates in the hyper-

plane { - v =0 with » = |{’| and polar angle 0 = cos"(é—;l . ‘Z—:‘) Then we have
dl = " 2drdwd{,, where dw is the volume form on "2, and we also have

C= &l =07 =20 lreos 0+ [ + (6= &))"
2 (= €1cosOF + (G~ €02+ Esind). (63)
Likewise, there is ¢ > 0 such that
10) 2 e = 1+ 82 (64)

Now we consider v = (r — 1,{,) and vy = (|¢'| cos 0 — 1,¢&,) as vectors in R*> and
use || || to denote the norm on R*. From (63) and (64) we have

S Qe =pta) e

() <eg

<c | (1 + t(llv — vol| + | sin 0]))~"~"

drd{,dw .
R2 xSn—2 ”U”
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We split the integral over R? x "2 into an integral over {(: [|v|| = |jv — voll}
in which we replace ||v]| by ||[v — vo]| and an integral over {{: ||v]| < [[v — vo|l} in
which we replace ||v — vo|| by ||v||. Since the two integrands that are produced this
way differ only by a translation in the (r,(,)-plane, we have the estimate

[ Q+ae=h )" at
() <eg
(1 +((s* + )" + |sinf])) """

RS dsdtdw

IIA

C

R2xSn—2

< c}o [ (14 t(u+|sin0]))"'dudw
0 gn—2

ocoT/2

SCff(U+tu+0)""0" dudd
00
and, setting tu = r,70 = s, we have
[ (4E— ™ Oy N d £ oS [(U+r+s) " s Pdrds
() <eg 00
Thus, since the integral is finite, we have (62), and (59) holds for k =1, in the

stronger form

sup [ (14 &=L MNTWE—nmz)|(L+n—¢) " dn < = (64")

&L R7

Ala

From (56) one sees that

A& —nm)| = CA+[E =)™ HlIE —n) - -+~
and hence
CA+1E=n)~""n'|
I(€=n) - (n+z20)|(n+2zv) - (n+2v) =K’
and by the reasoning that leads to (61), we have (note P = n + 4 is needed):

sup [ (14 1€ = L™ 1Ta(& = mm )|+ g = D)7y

IT2(£ -1, 1’,,Z)| é

c (L+[E=n)"" y'|dn
— . 65
w G m s =@

Setting R = (1> + k2)'2, B = t(z® + k*)~'2, y = R{ and 1({) = ((|{| — 1)* + )2,
(65) becomes

sup [ (1+]E =LY Ta(E = mm )1+ |n =L)D" dy

& R ,
C i (1+ [& = R{Y™""|¢'|dL
= RS S TR Gl
Con (1+RIE — ¢)"|0'|dC
= —_R" 2 .
R D D PG = DRI
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Since f — 1 as 1 — oo and SR =1, to show ||72]| — 0 as 7 — oo, it suffices to
show for t > 1o that

g [ (L TE =)
¢ re (((C=0) - O+ (& = L))

T

< Clogr. (66)

When 1({) > &, the integrand in (66) is essentially the same as the one we

considered for Ty: note that (( — () - { = |{ — §/2|2 — |§/2|2. Thus we again assume
that 1({) < ¢ < 1. We have

(=0 PG =0 = 3E -0 - U+ 16— L)

= I = €27 = 1E/2F + Lt~ &) + 1~ L)

v

S = €27 = 1€ 271+ (1 = sl ~ ).
Again using the coordinates » = |¢'|,0 = cos™'({'/|¢'| - €'/|€]), we have
0= &2 =12 =1 = r|E|cos b
and
(=0 - O+ =Mz o(r = & cos O + (& = L)) = cllo — v,
in the notation used earlier. Thus, using (64), for |&'| < 1/2,

(1= de ¢ (1 + cor)™"'drdl,dw
1)<y (=D -0+ - Cv)z)l/zl(() ()< “U - ”0“ HUH ’

lIA

and, since |¢&'| < 1/2 implies |jvg|| 2 1, this is bounded by Ct~"~!. Hence we may
assume that |¢'| > 1/2, and in this case (63) implies

I (A +e=hMdL
1y ((E=0) = O + (& = L)P)V2UC)
(1+ t(|jo — vol| + | sin 6])) ™"~ 'drd{,dw

é C = I] .
e TR

Since (64) implies ||v]] < & when /({) < &, we see that contribution to /; from
integration over {0 : ||uo(0]| = 1} is bounded by Ct="~'. Thus we may replace the
domain of integration in /; by {/({) < &} N{|lvoll < 5}

At this point the argument used for T leads to divergent integrals, and we need
to use the fact that the factors in the denominator only vanish simultaneously when
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|| cos @ = 1. To bound I}, we set z = (]|vo(0)||~")v. Then

(14 t|sinf)="—!

LscC dzdo
12l <ol = gl <172 17 = 00/ lvoll 11 iz
<cC f (14 |sin 0)) """ log (Jjvo(0)] ") dw

s7=20(lug | <1/2}

n/2
< C [ (14 10)"" " max{log2, - log ||lvg()|| }0">d0
0

o()[}e

B

T

nt/2
C™" [ (14 B)y™"'p"~* max {log 2,—log
0

IIA

nt/2

I £ et [ (14 )" "3 max {logZ, —log
0

I\

1 —|&]cos

}dﬁ. (67)

If 1/2 < |&] £ 1, then |1 —|&'|cos f/t| = c3f*t~2 with ¢y independent of |&'|.
Hence, in this case /; < ct> "logt for 7 large. If |¢/| > 1, then 1 — |&’|cos0 =0
has a unique solution 0 in the interval [0,7/2] and we have

1= &) cos 0] = (0 — 0o)’

with 0 < ¢p < 1 and ¢ independent of |¢'|. Thus

2
|1~ 1&]cos Bl = 308~ Bo)’

where fo = t0y. Thus for v > 1.

max{log2, —log |1 — Ié’lcosél}
< log2+2logt —2logcy + 2(—log | — Po|)+ - (68)

Combining (68) with (67) we see that I; < Ct*"logt for t large in this case
also. Thus (66) holds and the proof of Proposition 4 is complete. [J

It follows from Propositions 3 and 4 that for T >> 0 there exists a unique solution
g in Hy . of the integral equation (53), given by

g=U+U+D)'CAN+ DL+ D) U+ 1)V, (69)

where T is the operator in (54). Thus v, given by (39) with this choice of g, is
a solution of (37'). Thus to complete the proof that (27) has a unique solution in

Hy 1 (R") when 7> 0, we need only show that h given by
h(x) = ((—id/ox +zv)? — k*)v
is in Hy ,41. From (39) we see that

h=Cqg+Toyg+Sqg,
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where 75 is the operator in (53) and

=2i% + (n+2v)d(n)e™ "

S ey oy ey
=24 - 0+ (el
B e py e 70

by (40). From (70) one sees that S is an operator of the same type as 7} in (53)
with an additional factor of # + zv in the numerator. However, since we showed that
the norm of T; on Hy ,;; was O(t~') uniformly in { for t — oo, and |5 -+-zv| <ect
on support y; (see (43)), it follows that S is bounded on H; ,4, uniformly in (C,r)
for © > 1. This completes the verification that A,(&,{, k,it) € Hy py1.

4. Recovering the Magnetic Field

Proposition 5. Let h,(&,( k,z) be the unique solution of (27) in Hy nyy for ©>> 0,
and let g,(x,(,k,z) be the unique solution in Hy,., of (53) with f = —(q(x) +
2(L +zv). A(x))exp(ix - {) for ©>> 0. Then

h(&, 8k z) = §.(E Lk 2) (71)

when (&+zv) - (E+2v) — k> =0.
Proof. We have

—_ h\’(n? C’ k,z)elx ’ ”d”
v b 7k7 = 2 "
v,(x,{k,z) = (27) n{fn('7+zv)'(’7+zv)“k2

o c(en,2)g,(n,C k z)e™ T dn
— 2 n 3
(27) ,ﬁc (n+zv) - (n+zv)—k?

(72)

As we observed earlier ¢; = ¢(x,#,z) — 1 has an expansion of the form (52) for
7 > 19. Thus, as in the proof of the bound on 75 in Proposition 4, we see that

— —n El(é - 1’],2)57‘,(7], Ca k,Z)df’]
FE L) = (ry [ S DI

belongs to Hp,+) as a function of &, and hence is continuous in £. Since the Fourier
transform of (72) gives (a.e. in ¢)

h\'(éa C,Z) — gv(éa C,k,Z)
(E+zv) - (E+zv) =k (CHazv) - (E+zv)— K

+ (& Lk z),

where A, and g, are also continuous in &, (71) follows immediately. O
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By Proposition 1 and the discussion following it we can recover h,(&(s), {(s),k,
z(s)) from the scattering amplitude (kO kw, k). Recall (see (34), (35)) that given
the orthogonal frame {v,u, [} with |u| = |v| =1,

) = 31+ st

1
{(s) = “51 +su,

z(s) = it(s) = ix/s2 + |{|2/4 — k? (73)

for s > sp. Since (&(s) + z(s)v) - (&(s) + z(s)v) — k? = 0, it follows from Proposi-
tion 5 that A(k0, kw, k) determines §,(&(s), {(s), k,z(s)) for s > s.

To recover the magnetic field we can begin with representation for g, given
by (69) with f = —(g(x)+2({+zv) - A(x))exp(ix « {), take the Fourier trans-
form in x, evaluate at & = &(s), {={(s), z=1z(s) as in (73), divide by z(s)
and take the limit as s — oo. Since the norms of I,7),7, and T3 on Hyyy i
go to zero and lz—(lsﬂ“ Slles),ne1 1s bounded as s — oo, it follows that A(k0, kw, k)
determines

- A(n — U(s))

tim @m)~ [ D L)

R” R” z (S )

X e " (CT(S)—I7)+11|(n,Z(s))(ﬂ(mﬂ(s)v)dndx' (74)

Replacing n — {(s) by #, (74) becomes

A(n)

lim @ ][ O L)

R" R? Z(S)

X e it (5(5)~C(S))+i21(VI+C(S),Z(S))(P(XJI+C(S)+Z(S)\')d,,’dx_ (75)

By (73) &(s) — {(s) =1 and limg_ oo (L(s) + z(s)v)/z(s) = v — iu. Also (see defini-
tion of y; before (42))

lim 701+ s)2() = 2(0) = 1.

Finally

d¢

i . Lo A - (4 Us) H 2(s)v)e " €
Slggo peE ) = Sl—l’rg" @m) lRf" i€ - (n+L(s)+z(s)v)

e A ) .
= (2n) n{f,,—i‘f-(u—r—iv)e dé= @(x,n+iv). (76)
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Hence the limit in (75) equals

] = ~2(27‘C)_”f f e~ Hipluptiv)tix . "y — iu) - /i(r])dqu
‘Rll ]R"

=2i [ e T O (4 vy - A(x)dx . (77)
) R7

Comparing (76) with (40"), we see that

0
(M+iv)-a—(£=(#+iV)°A(x),

and hence, using the coordinates (x;,x;,x*) introduced before Proposition 2, we

have
_ —if . xt 0 . 6 ip 4
I=2 [ e (f. (—sz +l—ax] ) e dx,dx2> dx

R” -2
We have

0 0 . 0 il )
G 9 e — 9 9 e
S/ <8x2 +16x >e dx,dx, Rhm J/ (axz +16x1 ) e"dx,dx,

o
R?2 1 - x% +x§ <R?

2n .
) Ly, .
— Rhm j‘ezq)(R COS 0,R SIN 0, x ”‘+")(51n9 +i cos H)Rde,
—00
0

by Green’s theorem with x; = cos 0 and x, = r sin (. Returning to the expansion
(52) for ¢, we have

11 _
0= — [ A(y1v+ yap+x) - (e ivydyidy, + O((x) — ix2)?).
T X, — l)Clez

Thus

2n .
. L vy, e .
Rhm fez(p(R COS O,R SIN 0,x ’“+”)(Sll’10+l cos 9)Rd6
—00
0

=i [ A v+ yau+xT) - (u+ v)dydy:
R2

and

. L
=2 [ e (f A(yiv+ yau+xty - (u+iv)dy|dy2) dxt
[Rn—2 IRZ

= 2id(1) - (u+iv).
Since p and v are a general orthonormal pair perpendicular to /, we conclude that

for all / € R",I determines fi(l) — (A(I) - 1)I/|1|*. In other words I determines A
modulo the gradient of

p(x) = 2rn)™" [ &' " A1) - IJ|1)*dl = —47(V - 4), (78)
]RM

and hence / determines curl A.
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5. Recovering the Electric Potential

To recover V(x) we need to compute the next term in the asymptotic expan-
sion of (69) which yielded (74) as the leading term. We have determined A4(x)
modulo the gradient of a function of the form (78). Hence, we may assume
that we know the scattering data for the problem with the A4(x) here and ¢ =
"=A4-A4—iV - A, since the scattering data only depends on the magnetic field
B =curl4. This scattering data determines the Fourier transform of the solution
go of (53) with f = fo = —(¢' +2({ +zv) + A(x))exp(ix - {) on the set ({,{,z) =
(&(s),8(s),z(s)) given by (73). Among the operators in (69) only 7) is changed
when we replaced g by ¢o, and we denote the new operator by 7;p. Thus, sub-
tracting the representation (69) for gy from the representation (69) for g, we
may assume that we know the Fourier transform on the curve (&(s),{(s),z(s))
of

T+ +T)'CENT + T+ ) U+ T)'CEV(f = fo)
I+ +T)'CENT + T+ T) '+ T) (T — Thyp))
A+ T+T)'CEN T+ T+ T3) U +T) 'V . (79)

Taking the limit in the Fourier transform of (79) at (&(s),{(s),z(s)) as s — oo,
we recover

lim (27.()“"]‘ f _ I}(;,I _ C(S))e—lx'(ﬁ(s)—'l)ﬂll(II,Z(S))w(x,'l+z(s)\‘)dndx
§—00 R" R"

—Sir&f(C(_')(Tl = T10)C D fo)(Es), L(s),2(s)) = i = a.

By the same computation that derived (77) from (75), we have

Jy=— [ e ety (eydx (80)
RII

To compute J, we argue as follows. T\ — T’ = VCL, where L multiplies the
Fourier transform by ((7 4+ zv) - (1 4+ zv) — k?)~!. Since [V,C] goes to zero and
C=DC goes to the identity as s — oo, we can conclude that

' ) V(Es)—n)
J, =1 2 2n
2 = lim (2m) anmfnmfn(n+z(s)v) - (n+z(s)v) — k?

X (=2(L(s) + z(s)v) - A3 — U(s)))

x e* (15——;])+i1|((5,z(s))(p(x,6+z(x)v)d5dxdr’ )



Inverse Scattering Problem for the Schrodinger Equation with Magnetic Potential 223

Replacing 0 by 0 + {(s) and 5 by n + {(s), and arguing as before (recall ({(s)+
z(s)v) - ({(s) + z(s)v) = k?), we have

") L
S =Q2n)™*" —-——( ~2(u+iv) - A(5))
A R PR N
N (5—i1)+i<p(x,u+iv)d5dxd'1
I}(/ _ ’7)(” + iv) . A(x)e—ix © n+ip(x,ptiv)
(u+iv) -y

=Qn)™" [ [ - dxdn .
RH IRII

Proceeding as before with x; =x - v and x; =x - g,

f e—ix~t7+iqa(x,;t+zv)(u+ iv) . A(x)dx
R"?

, . a
[ e dxt [ emitam b)) 9,2 (@(x, 1+ iv) — Ddxidxz
R7—2 R2 a-xZ 6X|

and by Green’s theorem

[ e im+am) () (% +1 0 ) (¢ — 1)dxdx;
R2

= lim [ eTtwmmrnm)(y, 4 in )@ — 1)dxdx;

R—o0
x% +x§ <R?

2n .
+ f elR(I]zCOS 0+n;SIN ())R(Sin 0 +icos 0)
0

X (¢(R cos®, R sinf,xt, u+iv)—1)do | . (81)
Since
_ 1 Seh) 1
C(R COSQRSIHGX ,H+IV)—1 27‘LR m+0 F .

the second integral in the limit in (81) goes to zero as R goes to infinity when
(11,12)%0. The first integral just goes to the Fourier transform of ¢ — 1 in (x),x;)
multiplied by (172 +in1) = (u + iv) - . Thus

Jy=—[e VTV (p) e — 1)dy.
R”

Thus J, —J, = — fIR,, e~ ! V(y)dy. Since [ is arbitrary, we have determined the
Fourier transform of ¥ and the proof is complete.
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