
Commun. Math. Phys. 173, 43 - 76 (1995) Communications ifl

Mathematical
Physics

© Springer-Verlag 1995

Determinants of Dirac Boundary Value Problems
over Odd-Dimensional Manifolds

S.G. Scott1

Departamento de Matematicas, Universidad de los Andes, Bogota A.A.4976, Colombia

Received: 25 October 1993/in revised form: 27 January 1995

Abstract: We present a canonical construction of the determinant of an elliptic self-
adjoint boundary value problem for the Dirac operator D over an odd-dimensional
manifold. For 1-dimensional manifolds we prove that this coincides with the
C-function determinant. This is based on a result that elliptic self-adjoint boundary
conditions for D are parameterized by a preferred class of unitary isomorphisms be-
tween the spaces of boundary chiral spinor fields. With respect to a decomposition
Sl — X° UX1, we explain how the determinant of a Dirac-type operator over Sl is
related to the determinants of the corresponding boundary value problems over X°
andX1.

1. Introduction

Let X be a compact odd-dimensional Riemmanian spin manifold with bound-
ary Y. We assume there is a collar neighbourhood U = [0,1] x Y of the bound-
ary in which the Riemannian metric is a product metric. Fix a choice of spin
structure, and let S be the complex spinor bundle over X. The Dirac operator
D : C°°(X',S) -> C°°(X;S) is the first-order elliptic differential operator defined at
x G X by Ds = Σt

 eί ' ^e t

s^ where V is the canonical metric connection on S and
{βj is an orthonormal frame for TXX. The β[ act on S by Clifford multiplication.
The restriction of S to Y may be identified with the spinor bundle over Y with
Z2 grading Sγ = S+ ® S~. That induces a decomposition of the boundary spinor
fields F = F+ Θ F~ into positive and negative chirality with respect to which the
Dirac operator Dy over the boundary splits into the chiral operator Dy : F+ —> F~,

whose index is calculated by evaluating the ^f-cohomology class over 7, and its
formal adjoint Dγ. We assume that DY is invertible.

By a boundary value problem Dw for D, we shall mean D with restricted domain
Cff(X\S) = {ψ G C°°(X',S) : Pwb\l/ = 0}, where Pw : C°°(Y;S) -» C°°(Y;S) is a
pseudodifferential projection operator (of order 0) with range W, and b : C°°(X;S)
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—>> C°°(Y'9Sγ) is the operator restricting sections to the boundary. We shall refer to
W as a boundary condition for D.

The purpose of this paper is to present a construction of determinants of elliptic
self-adjoint boundary value problems for D using the following theorem.

Theorem 1.1. There is a canonical one-to-one correspondence between elliptic self-
adjoint boundary conditions for the Dirac operator over an odd-dimensional spin
manifold and L2-unitary isomorphisms g : F+ —-> F~ between the positive and neg-
ative boundary spinor fields which differ from g+ = i(DγDγ)~^2Dγ : F+ —> F~
by a smoothing operator.

In [4] the basic unitary isomorphism g+ is considered in the context of the index
theorem for families for odd-dimensional manifolds with boundary.

A boundary condition W for D is referred to as elliptic if it lies in a certain
infinite-dimensional Grassmannian Gr associated to the space of boundary spinor
fields. Roughly this is the requirement that we only consider those boundary condi-
tions which are commensurable with the Atiyah-Patodi-Singer boundary condition
which, for even-dimensional X9 was studied in detail in [3] and the index "defect"
identified as essentially the ^-invariant of the boundary Dirac operator. To justify
the use of the term elliptic we give in Appendix A of the paper a construction
of a specific parametrix for Dw, from which it follows that Dw has the principal
analytic properties of an elliptic operator over a closed manifold. We refer to [8] for
detailed background on elliptic boundary value problems for Dirac operators. The
elliptic boundary conditions considered here form a dense subset of those studied
in [7,8,10].

We refer to the determinant of Dw constructed using Theorem (1.1) as the
canonical determinant and we denote it by det^ZV. Specifically, if K is the re-
striction to the boundary of the space of harmonic spinors KerD, then K is a
self-adjoint boundary condition for D and one has

Theorem 1.2. Let W be a self-adjoint boundary condition for D. IfDψ is invertίble,
there is a canonical identification

det^ZV=det-( 1-00/0, (1)

where W and K are respectively the graphs of the unitary isomorphisms g : F+ —*
F~ and h : F+ -> F~ from Theorem (1.1), and g0 = -g~l.

Here the right-hand side denotes the usual determinant as a number in C of an
operator of the form 1 + t, where t : F+ —> F+ is a trace-class for the L2 norm
[27], defined by det(l + t) = Σ£oTr(Λ*0

A more enlightening way to view Theorem (1.1) and Theorem (1.2) is as
follows. In the seminal paper of Quillen [18] it was explained that the determi-
nant associated to a smooth family ,s/ of Dirac operators arises not as a function
j/ —» C but rather as a section of a complex line bundle L over j/; the so-called
determinant line bundle. Consequently the obstruction to writing the determinant as
a globally defined function on jtf is precisely the obstruction to finding a global
trivialization of L. If that obstruction vanishes one then looks for a canonical choice
of trivialization that naturally extends the theory of finite-dimensional determinants.
In [18] that is achieved for a family of δ-operators on a Hermitian vector bundle
over a closed Riemann surface by defining a flat connection on the determinant line
bundle using a construction of (-function determinants of Laplacians. This procedure
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defines a natural trivialization of L and hence an identification of the determinant
section as a function up to a phase ambiguity, and this has come to be accepted
as essentially the canonical method for calculating such determinants. (In [5] the
C-function metric was constructed for the determinant line bundle associated to a
general family of Dirac operators over a closed manifold and the curvature, repre-
senting the first Chern class of the bundle, identified as the 2-form component of
the local family's index theorem.)

In this general context, one may view the Grassmannian Gr as the parameter
space s0 of a smooth family of Dirac boundary value problems. Over Gr one
still has the Quillen determinant line bundle L with canonical section det : Gr — > L
which takes W to detZV. In fact, the holomorphic line bundle L is isomorphic to
the determinant line bundle of [17] which has non-zero first Chern class and hence
is topologically non-trivial, and so no global trivialization of L exists. However, over
the component Grlso (the isotropic Grassmannian) of the restricted Grassmannian
parameterizing self- adjoint boundary conditions for D the determinant bundle L is
canonically trivial. Indeed, that is the content of Theorem (1.1) which defines a
trivialization σ : Grlso — » L, and from Theorem (1.2),

det/V = det -(1 - g0h) σ(W) .

The determinant line bundle is discussed in Sect. 4 of this paper.
The proof of Theorem (1.2) is straightforward. The harder step comes in the

identification of the canonical determinant with the (-function determinant detζ/V.
That determinant is defined via the (-function norm || ||ζ defined on the determi-
nant line of DW and formally |detζZV| — ||detZV(|ζ. In general though, it is not
clear that detζDw is defined for the same analytic reasons that compel one in the
case of closed manifolds to consider the (-function determinant of the Laplacian
rather than the operator itself; that is the origin of the phase ambiguity. When X
is one dimensional, however, and D is a Dirac-type operator of the form z'V ' d/dx
acting on the sections of a (trivial) t/(«)-bundle $ with unitary connection V, the
(-function determinant can be defined directly. We take X = [0, 1] and denote the
boundary fibres of $ by $^$\.

Theorem 1.3. Let Dw be invertible. Then ζDlv(s) = Ύΐ D^s is well-defined for
Re s > 1 and has an analytic continuation to all of C. The ζ-function determinant
exists and

det£/V = det(l - g$h) , (2)

where W and K are respectively the graphs of the unitary isomorphisms g : $Q —>
$\ and h : $Q —> $Ί from Theorem (1.1) and go = —g~]> The isomorphism h is
the parallel transport of the connection V.

Relative to a trivialization of <ί the isomorphisms g, h are identified as elements of
the unitary group U(n), changing the trivialization only changes g^h by conjugation
by an element of U(n) and hence the right-hand side of (2) is unambiguously
defined as a complex number. Theorem (1.3) is complementary to the work of [9]
and [11] on determinants in 1 dimension.

The existence of the canonical trivialization σ of L\Gr. , in addition to the usual
(-function trivialization, is because of the extra degree of freedom introduced by
the choice of boundary condition, and we exploit this fact repeatedly in our con-
structions. One effect of this extra degree of freedom is that there is something of a
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menagerie of different but isomorphic determinant line bundles over.Gr. In partic-
ular, in Sect. 5c we use this to give a third distinct construction of the determinant
for dimJΓ = 1 which coincides with the ^-function and canonical determinants up
to a factor of i".

Having established these identifications it is natural to ask if there is a rela-
tion with determinants over closed manifolds. To answer that, consider the closed
double M — X(JγX~, where X~ is a copy of A!' with reverse orientation, which
by reflection has a Riemannian metric equal to a product in a tubular neighbour-
hood V = [-1,1] x Y of 7 = {0} x 7. Over M is the double spinor bundle SM

formed by gluing together two copies of the spinor bundle S via the automor-
phism σ : Sγ —»8γ. A section \I/M £ C°°(M\SM) then consists of a pair of sections
(ι/>,ι/O G CΌO(X\S)®C°°(X-\S) such that at {0} x Y the sections σψ and \l/~
have the same values and normal derivatives of all orders. One then has the first-
order elliptic "Dirac" operator DM = D U (-D) : C°°(M; SM) -* C°°(M; SM),
defined by DM(Φ,Ψ~) = (Dψ9—D\l/~). More generally, given Riemannian spin
manifolds X^,Xλ with the same boundary 7, up to orientation, and with spinor
bundles SQ

9S
l such that the restricted spinor bundles Sγ9Sγ coincide and all topo-

logical and geometric data agree at 7, one may form the corresponding elliptic
operator DM = DQ U -D{ over M = XQ \Jγ X1. The canonical determinant of DM

is defined and we denote it by det^£>M. We denote by K° and Kl the respective
restrictions to the boundary of the space of harmonic spinors of D° and Dl.

Theorem 1.4. Let M be odd-dimensional If DM is invertible, there is a canonical
identification

det«Dtf=det-( l-Mo), (3)

where K° and Kl are respectively the graphs of the unitary isomorphisms ho :
F+ —» F~ and h\ : F~ —> F+ from Theorem (1.1).

In dimension 1, with S1 = X°\JX1

9 the isomorphisms ΛQ and h\ represent the
parallel transport along X® and X1 with respect to a unitary connection Vd/dx '-

C°°(SlιS>

sι)-^ C°°(Sl'9£sι) on a Hermitian ^-bundle δs\ over Sl. Hence, since
A I / Z O is the holonomy of V around Sl (and since the factor of 1/2 on the right-hand
side of (3) can be removed when άimX = 1), then det#Z>5ι, where Dsι = iVd/dx^
coincides with the well-known value of the ζ-function determinant [1,9].

For άimX — 1 Theorem 1.3 and Theorem 1.4 are related as follows. Let Sl —
$s\\χι and let D* be the restriction of Ds\ to C°°(Xί\δί).

Theorem 1.5.

det«Dsι= / fa«Ef>wά&«Dl

w±dW. (4)
U(n)

The integral in (4) is carried out over the unitary group under the isomor-
phism U(n) = GΓJSO defined by Theorem (1.1). Thus Theorem (1.5) states that the
determinant over the closed manifold is obtained by integrating away the choice of
self-adjoint boundary condition in the determinants over the two halves. We could
of course have written (4) in terms of ζ-function determinants, the difference is
purely notational. An open question is whether (4) may indicate a relation between
the C-ftmction metric on the determinant line bundle for a general family of Dirac
boundary value problems and the ζ-function metric for the corresponding family of
Dirac operators over the closed double manifold.
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Since the topic of determinants of boundary value problems has taken on a
specific interest in mathematical physics with the development of topological quan-
tum field theories [2,26], we conclude this paper with some brief comments on
the relation between Theorems (!.!)-(1.5) and 0 + 1-dimensional TQFT. For a
specific account of the relation of conformal field theory to Grassmannians and el-

liptic boundary value problems for ^-operators over a Riemann surface we refer to
[25,28].

2. A Grassmannian of Dirac Boundary Value Problems

In this section we describe the analytic constructions in more detail. Let X be a
compact spin manifold with boundary Y. Then the Dirac operator D over X is
formally self- adjoint with respect to the L2-Hermitian inner-product

ψ2)sdx, (5)

where dx denotes the Riemannian measure on X. This means that for all
C°°(X\S) with supports disjoint from the boundary of X one has

ψ\,Vψ2)S

In the collar neighbourhood U = [0,1] x 7 of the boundary 7 = {0} x 7 we
choose a Riemannian metric g on X which splits isometrically as gυ = du2 4- gy,
where M is the normal coordinate to the boundary and gy the induced metric on 7.
Over U the Dirac operator has the form

f+Ό <«dw /

where the symbol map σ = σ(D)(du) : Sγ -^ Sy is the bundle isomorphism given
by Clifford multiplication by the inward unit normal du in T*U. We note that
σ2 = — 1 and that σ is an isometry with respect to the induced inner-product {,) on
Coc(Y'9Sγ). The boundary operator A = Dγσ : C°°(Y',Sγ) -» C°°(Y;SY) is a self-
adjoint first-order elliptic differential operator independent of the normal coordinate
u. Because 7 is a closed manifold, A has a real and discrete spectrum λ with smooth
eigenvectors φ^. Because D is formally self-adjoint the following equalities hold,

σ* = -σ σA+Aσ = 0 , (7)

so that A is of degree 1 with respect to the mod 2 grading defined by σ.
The Grassmannian of elliptic boundary conditions is defined with respect to the

energy polarization F — H+ Θ H~ of the space of boundary spinor fields, where the
subspaces H+ and H~ are spanned, respectively, by those eigenvectors of A with
non-negative and negative eigenvalues. The polarization is given by an involution
J : F —»F equal to 4-1 on H+ and —1 on H~9 which defines canonical pseudo-
differential projections

P± = \I±J):F-*H±.
2

One thus obtains the preferred boundary value problem DH+ : C™+(X'9S) —> C°°
( X ' 9 S ) studied in [3].
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Definition. The restricted Grassmannian Gr is the set of all closed subspaces W
of F such that W = Ker (Jw — 1), where Jw : F —* F is a formally self-adjoint
involution (J^ = 1) such that Jw — J is a smoothing operator.

For each W in Gr the involution Jw defines (with respect to L2(Y'9Sγ)) formally

self-adjoint orthogonal projections PW F —* W and Pw±. : F —> W^ — W ΠF.
Hence, as a corollary to Lemma (2.1), the restricted Grassmannian is a parameter
space of boundary value problems for D. We refer to Dw for W G Gr as a Dirac
boundary value problem.

Lemma 2.1. For W G Gr the projection PW (resp. Pw±) is a pseudodifferen-
tial operator of order 0 with leading symbol σ(Pw)(y/ζ) : Sy -» Sy9 y G Y9 (resp.
σ(Pw±)(y,ζ)), given by the projection onto the eigenspaces of —σ(A)(y,ζ) with
eigenvalues having positive (resp. negative) imaginary part.

Proof. Because the leading symbol of P+ has symbol as stated, the generalisation
to all W G Gr is the observation that PW — P+ = \(J — Jw\ which is a smoothing
operator, and consequently that σ(Pw — P+)(y,ζ) = 0. D

We denote by Gr~ the opposite restricted Grassmannian defined by replacing Jw
by —Jw, thus reversing the roles of H+ and H~. It is immediate from the definition
of Gr that if W G Gr then WL G Gr'. We also note that if W^ W\ G Gr then PW{ o
*V0 : WQ —> W\ is a Fredholm operator, and that Pψ± o iWQ = S\WQ, where S : F —> F

is a smoothing operator. (We recall that an operator on a Frechet space is Fredholm
if and only if it is invertible modulo compact operators, and that is equivalent to
the assertion that the operator has closed range and finite-dimensional kernel and
cokernel.) For a detailed account of the properties of restricted Grassmannians we
refer to [8,17 and 25].

'00Two boundary value problems Dw : Cff(X',S) -> C°°(X',S) and Dw* : Cw

(X S) -> COG(X\S) are formally adjoint if the domain Cff*(X\S) of Dw* con-
sists of those η G C°°(X;S) such that (Dwψ,η)s = (Ψ,Dη)s for all φ G Cff(X;S).
In the case that W = W* we refer to DW as a self-adjoint boundary value problem
and to W as a self-adjoint boundary condition. The following characterization of
self-adjoint boundary conditions is well known [7].

Lemma 2.2. W G Gr is a self-adjoint boundary condition for D if and only if W
is in the isotropic Grassmannian Griso, defined to be the real submanifold of the
restricted Grassmannian Gr parameterizing subspaces W of F maximal isotropic
for the bilinear form

β(φo,φι) = f(σφQ9φ\)dy .
Y

Equίυalently, W is self-adjoint if and only if

σPw+Pwσ = σ. (8)

Proof. The first statement follows immediately from Green's formula

(DfaMs - (faDil/us = f(σbψQ, bψrfdy , (9)
Y

for ψQ,ψ\ G C°°(X'9S). The maximality requirement ensures that the unbounded
operator Dw is self-adjoint and not just symmetric. Further, if ψQ G C^(X'9S) then
β(b\l/Q9b\l/\) — fγ(σb\l/Q9—σ(I — Pw)σbψ\)9 which implies the second statement. D
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In Appendix A we construct a parametrix for an elliptic Dirac boundary value
problem Dw, W G Gr, from which it follows that Dw is Fredholm and that if W
is a self adjoint boundary condition then DW is essentially self-adjoint, that is, Dψ
has a unique L2 self-adjoint extension. That implies the spectral theorem.

Proposition 2.1. Let W e Gr be a self-adjoint boundary condition for D : C°°
(X S) — > C°°(X.ιS). Then there is a direct sum decomposition of L2(X\S) into
finite dimensional sub spaces each of which consists of smooth sections and is an
eigenspace for DW The eigenvalues λ of DW are real and discrete.

This theorem and its analogue for the Laplacian (which are proved more generally
in [8]) combined with the existence of the parametrix are needed to define the
(-function for a Dirac boundary value problem.

The crucial property of the restricted Grassmannian is the following.

Proposition 2.2. The space K — £(kerD) of harmonic spinors of D is in Gr.

We refer to K as the space of harmonic spinors of D in the sense of

Lemma 2.3. The restriction map b^QrD : kerZ) — > K is bijective.

Proof. First let us recall the theorem that D satisfies the unique continuation prop-
erty, which means that any solution ψ of the equation Dψ = 0 that vanishes on an
open subset of X vanishes on the whole manifold [8]. Now let Cξ°(X;S) = {ψ e
C°°(X;S) : bψ = 0} and let DQ denote the restriction of D to C§°(X'9S). Then the
statement of the lemma is equivalent to the statement that DO is injective. To see that
DO is injective, expand ψ e C£°(X;S) in the collar U as ψ(u,y) = Σλψλ(u)Φλ(y)
and notice that Doψ — 0 implies ψχ(u) = e~'Mψλ(Q). Because ι/^(0) — 0 an appeal
to the unique continuation property proves the lemma. D

Proof of Proposition (2.2). From [16] (chapter XVII) the pseudodifferential pro-
jection Pκ : F — » K has leading symbol equal to the leading symbol of P+ (Pκ

is called the Calderon projector). Thus σ(P+) = σ(Pκ) and by symbolic calculus
σ(P+ — PK ) = 0, which implies that PR — P+ -f s for some pseudodifferential op-
erator s : F — » F of order — 1 . In particular, s is a compact operator and so the pro-
jection pr+ : K — » H+ is Fredholm and the projection pr_ : K — > H~ is compact.
Hence, since K has virtual dimension zero, by the argument of [17](p.l03) K is the
graph of a compact operator H+ — >• H~ . The assertion that K has virtual dimension
zero is the assertion that ind pr+ = 0, where ind pr+ — dimKer pr+ — dimCoker pr+

is the index of pr+. To prove that we define

(D9H
+) : C°°(XιS) -> C°°(XιS) Θ//+, ψ •-» (Dψ,P+bψ)

and note that the diagram of maps

0 — > C™+(X;S) — > C°°(X S} ^ //+ — > 0

I °H+ I (D,H+) I ,d

0 — > C°°(X S) ^ C°°(X;S)®H+ ^ H+ — > 0

is commutative with exact rows. Hence, since Ker(id) = Coker(id) = 0, there are
isomorphisms KerD^ = Ker(D,#+) and CokerD//+ = Coker(D,//+) [6](p.7).
Since DH+ is Fredholm so is (D,//+), and inάDH+ =ind(D,//+). From the
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commutative diagram with exact rows

0 — > Ker£> — > C°°(X;S) -̂  C°°(X 9 S ) — > 0

l^+°VerD i ( A / / + ) I id

0 — > //+ ?®4 C°°(^;S)Θ//+ ^ C°°(X;S) — > 0

we have similarly, ind(Z),#+) = ind pr+ o Z?|kerD = ind /?r+ -{- indZ?μer/) = ind pr+,
the last equality coming from Lemma (2.3). But because Dy is invertible then
DH+ is self-adjoint, and hence ind DH+ = 0, which proves the assertion. (That
DH+ is self-adjoint is well-known, see [3, 8] and for odd-dimensional X see also
Theorem (1.1).)

To show that K £ Gr it is enough to show K is actually the graph of a smoothing
operator T : H+ -+ H~. To see that, we use the product structure U = [0, 1] x 7.
Let D' denote the operator defined on the manifold X\U with boundary 7 so that

D is D' extended by σ(^ + A) over U. Then by the above argument the space
of harmonic spinors Kf of D1 occurs as the graph of some compact operator C :
H+ — > H~ . For ψ G K there is a unique ΨQ € AT7 that interpolates across the collar
through the monodromy of the elliptic differential operator (—d/du+A\ where we
reparameterize U by replacing u by 1 - u. With respect to the energy polarisation
F = H+ ®H- we may write ^ = (^+(0),^_(0)), ψ = (ψ+(l),ιA_(l)), and A =
A+ ΘΛ~, so that

Hence K arises as the graph of the operator S = eA Ce~A : H+ — » //~. However,

and e^~ - P~

and since e~'^l has a smooth kernel and C is a compact operator then S is a
smoothing operator, and that is what we needed to prove. D

3. Proof of Theorem 1.1

Let X be an odd-dimensional spin manifold. Then in the collar neighbourhood U
of the boundary the Dirac operator has the form

where Dy : F+ — > F~ is the chiral Dirac operator over 7. Notice that one has

S± = {v e Sγ : σ(t ) = ±iv} . (11)

Notice also that we have two distinct canonical polarizations of the space of
boundary spinor fields; namely, the splitting of F into positive and negative energy
H^, and the splitting of F into spinor fields of positive and negative chirality F^.
These splittings are, however, naturally isomorphic in the following precise sense.
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Since Dy is invertible then H+ is the graph of the canonical unitary isomorphism

and we write H+ — Γ(g+). The significance of this for the (APS) Dirac boundary
value problem DH+ : C™+(X;S) -> C°°(X;S) is that it is then self-adjoint. This
observation portrays the more general principle expressed in Theorem (1.1), and
that is an immediate consequence of

Proposition 3.1. There is a canonical one-to-one correspondence between sub-
spaces W in Grjso and L2 -unitary isomorphisms g : F+ — > F~ between the bound-
ary chiral spinor fields which differ from g+ by a smoothing operator. The
isotropic Grassmannian Griso is precisely the space of graphs of all such unitary
isomorphisms g.

Proof. Let us show that Γ ( g ) G Gr,so. With respect to the decomposition F = F+ 0
F~ the Hermitian L2 inner-product splits as {,} = (,)+ -f (,)~, where (,}± are the
L2 inner-products on F^ . For any unitary isomorphism g : F+ — > F~ one then has

||~ = ||iA+ | |+ for all positive spinor fields ψ+ G F+.
The isotropic condition is satisfied because if \j/j G Γ(g\ for j = 1,2, then ψj —
gψ) for some ^+ G F+, and hence, since σ = / 0 (— /),

and so Γ(g) is an isotropic subspace of F with respect to β. In fact (from (8)), to
see that it is maximal isotropic it is enough to show that σ/Y(ίy) + Pr(y)G = &> To
see that, let / denote the identity operator and let T : F+ —> F~ be the smoothing
operator such that g = g+ + T. Then the orthogonal projection Pr(g) ' F — > Γ(g) is
given relative to the chiral spinor polarization by

_ 1 / / g* + Γ*

and the identity follows. Further, the operator JΓ^ = 2Pp(g) -1 : F —> F is a for-
mally self-adjoint involution on F with Γ ( g ) = Ker C/r(</) ~~ I) If-^ is the involution
on F corresponding to H+, then

/ O Γ *7" Γ f*)Γ> T\ /"") ZD i 7Λ I
J Γ ( q ) ~ J — \*"tr(q) ~ * ) ~~ \* * ~~ * ) = I T7 Π

V 7 U

and so since Γ, and therefore Γ*, is smoothing then so is Jr(^ —J. Hence Γ(0) is
in the restricted Grassmannian Gr.

Conversely, we assert that each W G Gr ιso arises as the graph of a unitary
isomorphism g : F+ —> F~ which differs from gf+ by a smoothing operator. To see
this we use a slightly generalized version of the proof of the cobordism invariance
of the analytical index [16]. First, note from (11) that the fibre projections Sy —» S^

for y G Y are given by B±(y) — ^(/ ± iσ(y,du)), where we write σ(D)(j,Jw) =
σ(y,du)9 so that

and £+(j;)H-£~(.y) = / : Sy -+Sy . (12)
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We now define B± : F -» F± by (B±φ)(y) = B±(y)φ(y). Hence

(13)
r

Let W G Griso(F). We define a linear 0 G Hom(F+,F~) as follows. If 0 € W9 then

Q(B+φ) = B~φ. (14)

We claim that 0 : F+ — » F~ is a unitary isomorphism.
First we must show that the projection B+ : W — > F+ is surjective. Define

C : F -> F, C = B+PW+ B~PW±

and suppose that C is bijective. Let ξ G F+ and write 77 = C - 1/+^ = C-1ξ, where
i+ : F+ — > F denotes the inclusion. Then

So applying #+ one has ξ = B+PW η = #+τ, where τ = Pwη e W. Hence the task
at hand is to prove

Lemma 3.1. C is bijective.

Proof. We show that Ker(C) = 0 and ind(C) = 0. So suppose first that 0 = Cψ =
ψ + B~Pψ±ψ. Since B+ and B~ are orthogonal projections it follows that
ψ = 0 and B~PW± ψ = 0. Then because β = 0, and because Pψ + ̂ ^^ = ̂

and Pψψ £ W ,

o = $(B-pwψ,pw ψ) dy =
r r

and so B~Pψ ψ — 0, and hence /V ψ = 0. Similarly, one has P^±φ = 0, and so
ψ = 0 and that proves Ker(C) = 0.

To see that ind(C) = 0 let ζ G T*Y with norm one and write the leading symbol
σ(Dγ)(y,ζ) of DY as σ γ ( y , ζ ) . Then from Lemma (2.1) and since

we have
σ(P±)(y9ζ) = 1/2(1 τpi

Because W G Gr and ^F-1 G Gr~~9 then

(^,C) and

However, σ(B±)(y,ζ) = ^(.y) = 1/2(7 =p /σy(^,C)), and so one calculates

Therefore σ(C2)(y,ζ)=^σ(y,ζ) is skew-adjoint and so ind(C2) = 0. But ind(C2) =
2ind(C) and so ind(C) = 0. That proves the lemma and hence that B+ : W -> F+

is surjective.
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By assumption, β(φ,φ\D) — 0 for all φ G W and so

= f\\B+φ\\2 - \\B~φ\\2dy,
Y

which proves that g is well-defined, unitary and injective.
To show that g is surjective we must prove that if η G L2(Y\S) is orthogonal

to the range of g then η — 0. In fact, since it is clear from the definition of g
that it has invertible symbol on the unit sphere bundle and hence that it is elliptic,
then we know η G COC(Y',S). Because B+η — 0 and B+ is self-adjoint, and because
B~PW η = g(B+Pw η} G Im(gf), then (12) implies

where we use the equality ||P^^||2 = (Pwη,η) = (B~Pwη,η) = 0. Hence, because
if W is maximal isotropic for the form β then so is W^, we have

It remains only to show that g differs from g+ by a smoothing operator. How-
ever, that is clear, for

gw - g+ = B-(PW - P+)C-li+ = l-B~(Jw - J)C'li+ ,

and, because W G Gr, then Jw - J is smoothing and the operators B~ and C"1 are
pseudodifferential operators of order 0. D

4. Determinant Lines

In this section we define the various determinant line bundles associated to
the family of Dirac boundary value problems parameterized by the restricted
Grassmannian. Using Theorem (1.1) we hence see the underlying topological rea-
sons for the existence of the identifications in Theorems (1.2)-(1.5).

We begin by first recalling the construction of the determinant line bundle from
[18]. This depends on the fact that an exact sequence of finite-dimensional vector
spaces

0—> FO—* Kι^F2 —-> K3 —->0,

(with dim V\ — dim VΊ ) defines a canonical isomorphism of complex lines

Det V* Θ Det V2 9* Det K0* 0 Det F 3. (15)

Here Det V denotes the top exterior power of V. The determinant detα G Det V* 0
Det V2 of a can therefore naturally be identified as an element of Det K0* 0 Det V^.
Consequently, if we consider an operator a acting between infinite-dimensional vec-
tor spaces V\, V2 and if a is Fredholm, then formally we may still make sense of
det a as an element of the complex line

L(ά) = Det (Ker β)* (g) Det Coker a . (16)
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Thus, in particular, the determinant map W »—> det/)^ for the family of Dirac
boundary value problems {Dψ '• W G Gr} parameterized by the restricted Grass-
mannian arises as a canonical section det : Gr —»L of the holomorphic line bun-
dle L over Gr with fibre LW = L(Dψ). More precisely, det is the section that
picks out the element of LW which is mapped to 1 by the canonical isomorphism
LW = C when Dw has index zero and is invertible, and which otherwise is equal
to zero.

L is called the Quillen determinant line bundle of this family. (Gr defines a
holomorphic family of elliptic boundary value problems in the sense explained in
Appendix A.) The bundle structure on L is defined relative to the covering of Gr
by open subsets Uy, with y G R+, parameterising those boundary value problems
DW for which y is not in the spectrum of the Laplacian DψDψ, or DψD^. Over
each Uy are smooth finite-rank vector bundles H^,H~ constructed as the sum of
eigenspaces of the Laplacians for eigenvalues less than y, and from (15), (16) one
obtains a canonical isomorphism

L\Uy -> Det (//+)* ® Det#7 , (17)

which defines the determinant line bundle as a holomorphic vector bundle.

A metric || ||^ is defined on L by multiplying the induced metric from the L2

metrics on H^ by the regularised ζ-function determinant detζDψDw One defines
detζD^Dw = expζ'(0) when Dw is invertible and 0 otherwise, where the zeta-
function ζ(s) is defined for Re(5-) > > 0 by ζ(s) — Ύγ(D^D^)~s, and is defined

around 0 by analytic continuation. In particular, ||detD^||^ = detζDψDw As with
closed manifolds, the analytic continuation of the ζ-function for the elliptic boundary
conditions we are using follows from the existence of the asymptotic expansion of
the heat kernel of the Laplacian. For an analysis of the heat kernel asymptotics for
Atiyah-Patodi-Singer boundary conditions we refer to [3,10,13,14]. Heat kernel
asymptotics for the whole Grassmannian of self-adjoint boundary conditions have
been studied in [30].

There is, however, an alternative construction of the determinant line bundle due
to Segal [25] which is more sensitive to the boundary condition. We recall his defi-
nitions. Let V\ and VΊ be Frechet vector spaces and let a : V\ —> VΊ be a Fredholm
operator of index zero. Then the (Segal) determinant line of a is the complex line
whose points are equivalence classes [A, λ] of pairs (A, A), where λ G C and A — a is
trace-class. For q — 1 + traceclass : V\ —> V2 with detgΦO the equivalence relation
is (Aq,λ) ~ (A,λdetq). The line has a distinguished element detfl = [a, 1] defined
to be the determinant of a. If a has index n one defines Det a — Det a Θ 0, where
a Θ 0 : V\ -> V2 Θ Cn if n > 0, and a Θ 0 : V\ Θ C~n -* V2 if n < 0. Notice that
Dettf is invariant under perturbation by a trace-class operator t\V\-*V^ that is,
Det (0 + 0 = Detα.

The following properties [25] of the determinant line Det a are fundamental.

Proposition 4.1 [25]

\. If a\V\ —* VΊ is a Fredholm operator there is a canonical isomorphism of
determinant lines

Όeta^L(a). (18)
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2. Let
0 — > ί/i — > Ki — > W} — > 0

I* l« ic

0 - > ί/2 - > ^2 - > ^2 - > 0

be a commutative diagram of topological vector spaces with exact rows and
Fredholm columns. Then there is a canonical isomorphism

Detfl = Det6(g)Detc, (19)

depending holomorphically on a, b, c. If a, b, c are invertible it preserves the
determinant elements'.

detα <-» det b ® det c . (20)

Proof. It is enough to prove (18) for the case inάa = 0. Let e\,...,er be a basis
for Ker(α) regarded as being in FO, and let /!,...,/,- be a basis for Coker(α). The
isomorphism (18) is defined by

< Λ . . . Λ < 0 / ! Λ . . . Λ / Γ . (21)

If α, b, c are invertible operators the isomorphism (19) is defined by (20). If not,
then the operators are modified to invertible operators by adding to each a suitable
finite rank operator, chosen so as to preserve the commutativity of the diagram, and
then mapping between determinant elements. D

The Segal determinant line bundle of the family of Dirac boundary value prob-
lems parameterized by Gr is the holomorphic line bundle 5f over Gr whose fibres
are

The bundle structure of $£ follows from the general constructions given in [25].
More precisely, over Gr x X one has a Hermitian bundle of spinors ^ which
restricts over each fibre to the spinor bundle S over X. It is enough to work with
open sets of Gr, where the bundle π*(£f) over Gr, whose fibre at W G Gr is the
space of sections Cg?(Jf;S), is trivial and ind/V = 0. Specifically we use the cov-
ering of Gr by open sets Ub, where b : C°°(X\S) -> C°°(X'S) is a finite rank
operator, consisting of points W of Gr for which D\γ + b is invertible. A specific
trivialίzation over Ub is defined by the gauge

Ub —* <£\υb, W h— > det/V + * -

Patching together the locally defined complex line bundles over each intersection
Ub Π Uc by the transition function

W ^ det (Dw + c)(Dw + 6Γ1 = det (1 + (c - b)(Dw + b)^ ) ,

which depends holomorphically on W9 defines the determinant line bundle globally.
J^, like the Quillen determinant line bundle L, has a canonical determinant section,
which we also denote by det, over the index zero component of Gr defined by

V — [Dw, 1] if DW is invertible, and zero otherwise.

Proposition 4.2. There is a canonical isomorphism of determinant line bundles

<e^ι
which preserves the determinant sections.
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Proof. This is an immediate consequence of Proposition (4.1)(1). That the deter-
minant elements are preserved follows from the definition of the isomoφhism (21).

D

There are, however, many more determinant line bundles over Gr arising from
the fact that for any two points WQ, W\ G Gr there is a canonical Fredholm operator

pWo(Wι) = PWl oι>0 :W0^W}

defined by inclusion followed by orthogonal projection. Following [25] one can
define the determinant line Det(PFo '• W\ ) to be ΌetpwQ(J¥\ ), and there is an obvious
canonical isomorphism

Det(^0 : Wι)®Όet(Wι : W2) = Όet(W() : W2) . (22)

For each WQ G Gr the operators pw0(W) depend holomorphically on W and hence
one has a holomorphic line bundle based at WQ,

where the bundle structure is defined precisely as for Dψ (with DW replaced by
pwQ(W))9 From (22) we obtain for any W^W\ G Gr a canonical isomoφhism

Det^, = Det^0 0 Det (W0 : Wλ ) . (23)

In particular, Det//+ is the determinant line bundle of [17].
We identify the determinant line bundle of the family of Dirac boundary value

problems {Dψ ' W G Gr} as follows.

Proposition 4.3. There is a canonical isomorphism of holomorphic line bundles

When DW is invertible detZV maps to

Proof. We must exhibit a canonical isomoφhism of determinant lines

DetD^ ^ Det (A: : W) = Όetpκ(W)

that depends holomoφhically on W G Gr. To do that, note the operator

(D; W) : C°°(X',S) -> C°°(X;S) 0 W, ψ -* (D\l/,Pwb\l/) ,

fits into the following commutative diagram with exact rows:

0 — > Ker£> — > C°°(X\S) -̂  C°°(X\S) — > 0
[pκ(W}*b I(A^) I id ,

0 — > W ^ C°°(X;S}®W ^ C°°(X;S) — > 0

and, since W G Gr, the vertical maps are all Fredholm. Hence Proposition 4.1 iden-
tifies a canonical isomoφhism

Det (D; W) ̂  Det(p^(^) o b) 0 Det id - Όet(pκ(W) o b) = OetpK(W) .
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The final equality follows from Lemma (2.3). There is also the commutative diagram
with exact rows

0

0

— > C^(X\S)
[DW

— > C°°(X\S)

— > C°°(X;S)
l(D,W)

^ C°°(X',S}®W

— > W
i id

— U W

— > 0

— ̂  0

and hence a canonical isomorphism

Detφ; W} ~ Det/V 0Detid = Det/V .

By Proposition 4.1 the isomorphisms vary holomorphically with W and preserve
the determinant elements when Dψ is invertible. That completes the proof. D

That the same statement also holds for the Quillen determinant line bundle is
an immediate consequence of Proposition (4.2), however one may also deduce it
directly from the following commutative diagram with exact columns and rows:

0
I

Ker/V
1

KerZ)

fF

0

1
— > Ci?(Jί;5) -

1
— > C°°(^;5) -

1
-^ w -

1

0
1

^ C°°(X;S) -
1

^ C°°(^;5) -
1

-» o -
1

-> CokerD^
I

-> 0
I

-> 0
I

0 0 0

The exactness of the second row is a consequence of the following lemma.

Lemma 4.1. D : C°°(XιS) -+ CQG(X;S) is surjectiυe.

Proof. Let M = X Uy X~ be the closed double manifold. Since the restriction map
r : C°°(M;SM) — >• C°°(X;S) is surjective, it is enough to show that

range (DM ) + Ker (r ) = C°°(M; SM ) ,

for then given ψ G C00^;^) there is a ξ E range ΦΛ/) with

for some τ G C^ίM;^). The required identity holds because if ί is a linear form
on C°°(M;SM) which vanishes on the left-hand side of the identity, then t is a
distributional solution of D^t — 0 with support in X~ . By elliptic theory on closed
manifolds t is smooth and hence by the unique continuation property t — 0 over all
of M. D

Now using the Snake Lemma of [ 15](p. 202) and Lemma (2.3) we obtain from
the outside columns of the diagram an exact sequence

0 — > Ker/V — > K W — > CokerZV — > 0 , (24)
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and hence canonical isomorphisms Ker pκ(W) = Ker/V and Cokerp/-(Jf) =
Coker£V, which define fibrewise the asserted isomorphism of determinant line
bundles.

Notice that it is the exact sequence in the top row of the diagram that identifies
det£V as an element of the complex line Lψ in precisely the same way as for
elliptic operators over closed manifolds. The diagram extends this exact sequence
because of the additional dependence on the boundary condition. We also deduce
the important fact that the determinant line bundle and hence detZV are completely
determined by the boundary data.

If we specialize to the case where X is 1 -dimensional and connected, and
D = /V, where V is a Hermitian connection on a complex ^-bundle $ over
X, then the restricted Grassmannian is just the usual finite-dimensional complex
Grassmannian Gr^n- In particular, W and K are finite-dimensional and K is the
graph of the parallel transport of the connection V. We recall that Gr2n is a com-
pact Kahler manifold consisting of connected components Grk^n parameterizing
^-dimensional subspaces of £ o θ $ \ = C2n, where $§,$\ are the boundary fibres,
and the isomorphism depends on a choice of frame. We have the following specific
identification of the determinant line bundle.

Proposition 4.4. Let dimJf = 1. There is a canonical isomorphism of holomorphic
line bundles over Grk^n,

L = Det ξ ® Det Jf * ,

where ξ is the tautological bundle of rank k with fibre at a point of Grk^n equal
to the corresponding subspace of C2n, and JΓ denotes the trivial bundle with fibre
K. Any other holomorphic line bundle over Grk^n is isomorphic to ^®p for some
integer p.

Proof. The only extra piece of data we need to prove this is that the first Chern
class defines an isomorphism of sheaf cohomology groups c\ : Hl(Gr^2n,^) — >
H2(Gr^2n',Z). Here ϋ (resp. $*) denotes the sheaf of holomorphic (resp. non-
zero holomorphic) functions on Grk^n> We recall for the convenience of the reader
why that is true. Isomorphism classes of holomorphic line bundles over Grk^n

 are

parameterised by the sheaf cohomology group Hl(Gr^2n',ΰ*) which fits into the
exact sequence

0 -> H\Grk,2n^} -> H\Grk^,ϋ*) -> H\Grk^Z) -> H\Grk^ϋ) , (25)

induced from the short exact sequence 0 — > Z — » $ — > $* — » 0. The cohomology ring
H*(Grkt2n) is a polynomial ring generated by the Chern classes c\(ξ\...,Ck(ξ)
subject to the condition on the total Chern class c(ξ)c(ξ±) — 1. Hence over a
ground ring R one has

^) = 0 and H2(Grk^R)=R. (26)

There is a Hodge decomposition Hλ(Gr^2n} = Hl^(Grk^n) ® f f ° t l (Gr^2n) because
Gr^2n is Kahler which combined with (25) and the Dolbealt isomorphism gives
Hλ(Gr^2n\ΰ) — 0. Also, from (26) and Hodge decomposition, one has

C = H2(Grk,2n) ^ H

and since Hλ^(Gr^2n) — C[ω]9 where ω is the Kahler form on Gr^2/?? it follows
that H2(Grk,2n,ΰ) ^ H^2(Grk^n) = 0. The exact sequence (25) thus reduces to the
asserted isomorphism of Abelian groups.
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In particular, the determinant line bundle is a holomorphic line bundle over
Gr^2n and hence is classified by its first Chern class. Since W and K are finite-
dimensional one has from the exact sequence (24) a canonical isomorphism

which defines fibrewise the required line bundle isomoφhism. That implies
cι(Det ξ) and because from (26) H2(Grkt2n;Z) = Z and cι(Detξ) = C } ( ξ ) = -I we
see every holomoφhic line bundle over Gr^n is isomoφhic to <£®p for some
integer p. D

In fact, because all the boundary conditions are finite-dimensional when dim X =
1 one has more generally

Det^0 = Det ξ 0 Det if% ,

where ^0 is the trivial bundle with fibre WQ, and the isomoφhism (23) is just the
identification Det(PF0 : W\) = Det W£ 0 Det W\.

Returning to the general case we have

Proposition 4.5. Let X be an odd-dimensional spin manifold. Then the determinant
line bundle is canonically trivial over Griso.

Proof. From Proposition (4.3) the line bundle & has fibre &w = Det (A: : W) at
W G Griso. Given that K G Gηso, a canonical trivialization is given by identifying
W and K with F+ by the projection maps W C F — > F+ and K C F -^ F+ defined
by Theorem (1.1).

It remains to prove

Lemma 4.2. K G Grlso.

Proof. We know from Proposition (2.2) that K G Gr, and so by Theorem (1.1) it
is enough to show that K — Γ(h) for some unitary h : F+ — » F~ differing from g+
by a smoothing operator. Green's formula states that for ι/>o,ι/Ί G C°°(X\S\

where 5± are as in Sect. 3. Thus if D is endowed with the boundary condition
W = K^~, the left-hand side vanishes (by Lemma (2.3)). Repeating the arguments
in the proof of Theorem (1.1) identifies an L2 unitary isomoφhism u : F~ — » F+
of the form

u^ιD-(D+D~Γl/2 +s,

where s : F~ — » F+ is smoothing. Because K^ is in the opposite Grassmannian Gr~
the roles of F+ and F~ are reversed. Because K^- = Γ(w) implies K = Γ(— «*),
taking h = —u* completes the proof. D

We note that the triviality (though not a preferred trivialization) of the deter-
minant line bundle over Grjso also follows from the computation of the homotopy
groups of the Grassmannian made in [7 and 10] (Appendix B). That K defines a
self-adjoint boundary condition for D is known [7].

It is clear that the given trivialization of ^\GrisQ

 can be extended to an open
neighbourhood of the real submanifold Grjso of the Grassmannian by including
all boundary conditions W which are the graphs of invertible maps g : F+ — » F~
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such that g — g+ is smoothing. For example, in the simplest case when X = [0,2π]
with D — i-jfc and n = 1, the isotropίc Grassmannian Grlso?2 — U(\), and hence

self-adjoint boundary conditions for £), correspond to the equatorial circle on CP1

(identified with S2). The map / : [/( ! )-> CP1 extends to a map / : C* -> CP1 from
the non-zero complex numbers C* = G/(1;C), and the pull-back bundle i*(&) is
trivial. That is, the holomorphic line bundle obtained from $£ —> CP1 by deleting
points at 0 and oo can be trivialized and hence a holomorphic determinant function
identified once a trivialization is chosen. Note that the operators DQ and DOO have
no spectrum.

Proposition (4.5) is the underlying topological reason for the existence of the
identifications in Theorem (1.2) and Theorem (1.3). Combined with the next the-
orem this also yields the topology behind Theorem (1.4) and Theorem (1.5). To
state this theorem, let X°,X] be Riemannian spin manifolds each with boundary
(with reverse orientations) Y and with Dirac operators D°,Dl. Over the closed
double manifold M = X®(JγX} one has the bundle SM and first-order elliptic op-
erator DM : C°°(M'9SM) -> C°°(M;SM), exactly as defined in Sect. 1. Let ̂ 0,^
be the respective determinant line bundles of the families of Dirac boundary value
problems D^9D

l

w±9 parameterized by the restricted Grassmannian Gr of elliptic

boundary conditions for D°. Let &M — DetD^ x Gr be the trivial line bundle
over Gr with fibre the determinant line

Theorem 4.1. There is a canonical isomorphism of determinant line bundles

^M = ̂ °®^ (27)

When DM is invertible and with the harmonic spinor boundary condition W — K°
the determinant elements are preserved, that is,

det£>M <-> det D 0̂ <8> Dl

κl - (28)

So as not to detour too long from our aim of calculating determinants we have
placed the proof of Theorem (4.1) in Appendix B. (The proof of this theorem with
minor modifications holds for general smooth families of Dirac boundary value prob-
lems, in which case the left-hand side of (27) will not in general be a trivial bundle.
This extends the corresponding result of Segal [25] for families of 3-operators over
a Riemann surface with the Atiyah-Patodi-Singer boundary condition.)

We may restate Theorem (4.1) as follows.

Corollary 4.1. There is a canonical isomorphism of complex line bundles

Here Det^i refers to the line bundle with fibre Det^1 : W^) (rather than
W). We may in fact deduce a little more. Not only is Det^o Θ Det^i trivial over all
of Gr but, by Proposition (4.5), its restriction to Grjso has a preferred tirvialization,
which we use in Sect. 5 to calculate the determinants. In dimension 1 we may
see that explicitly as follows. Let Sλ =XQUXl and let Ds\,D**,Dl be as in the
statement of Theorem (1.5) (Sect. 1).

Corollary 4.2. There is a canonical isomorphism of trivial holomorphic line bundles
over Grk,2n,

gs\ ^ Det (ξ Θ ξ-1 ) <8> Det 3f° (g) Det Jf1 ,



Determinants of Boundary Value Problems 61

where J^Ί is the trivial bundle of rank k with fibre Kl. Over the isotropic
Grassmannian <£s\ is canonically isomorphic to the trivial line bundle Grl&^2n x C.

Proof. With W replaced by W^~ one has a canonical isomorphism ̂  = Det(^-L) ®
DetJf1 exactly as in Proposition (4.4). Hence, since Detξ® Det^ 1) = Det(ξ Θ
ξ^) and ξ Θ ξ1- is trivial, then Theorem (4.1) implies the first statement. Over the
isotropic Grassmannian each fibre of ξ (resp. ξ1-) is the graph of some unitary
isomorphism of the boundary fibres of $° (resp. $λ), and hence one has canoni-
cally ξ Θ ξ^ = Griso?2n x C2n by projection in each fibre. With the corresponding
idendifications for JΓ° and JΓ1, Theorem (4.1) proves the second statement. D

5. Proof of Theorems (1.2) and (1.3), and the Gauge Determinant

5a. Proof of Theorem (7.2) and (1.3). Let W G Gr and define

<ew:K®W^^F, Vw(φ,φ) = -^(iκ(Φ) + iw±(φ» ,
v2

where iκ \ K -+ F and iw±_ : W^ —> F are the inclusion maps.

Proposition 5.1. ^w is Fredholm and there is a canonical isomorphism of deter-
minant lines

which takes det/V to det^V when Dw is invertίble.

Proof. We have the following commutative diagram with exact columns and rows:

0 0 0

1 I r . I
Ker^ —> K&W*- ^ F —> Coker^

I I » — 1 t I i II i b φid I id I

COO / V. OX /^"ΎOO/'V' C* \ A (\(X o) —> C ( A Λ) —» u —> U

I 1 1
o o o

In the second row / denotes the inclusion and the central map is (^,φ)—>
-Ύ=(bψ + iw±φ). That KerD^/ = Ker^^ is clear since 6|κer£> is bijective. The ex-

actness of the second column is because D : C°°(X',S) —>• C°°(X',S) is surjective
(Lemma (4.1)).

The Snake Lemma [15] (p. 202) picks out from the diagram an exact sequence

0 —> Ker^r —> C^(X;S) ^ C°°(X;S) —> Coker^r —> 0 , (29)

and hence canonically identifies the determinant of Dψ as an element det^ZV of the
complex line Det(Ker^^)* ® De^Coker^^) = L^w). The asserted isomorphism
of determinant lines is thus defined by mapping between the generators

detZ)^ <->• άsty Dψ ,
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which identifies det^Z)^ as the unique element of L(^V) which maps to 1 under
the canonical isomorphism with C when ^w is invertible. Hence, by definition of
the determinant sections, det^ZV coincides with det^. D

For W G Gτjso we now define the canonical determinant of the Dirac boundary
value problem Dw to be ά^Dw — det^^ when KerZV = 0, and 0 otherwise.

To see why that is equal to the asserted complex number let g : F+ — » F~ and
h : F+ — > F~ be the unitary isomorphisms defining W and K (by Lemma (4.2)).

From the top row of the diagram one now has an exact sequence

0 — > KerZV — > K θ WL — >F — » Coker/V — > 0 , (30)

and when Dw is invertible then <βw : K 0 W^ — > F is an isomorphism, and by
definition

- , = r - ,
v2

So, with respect to the polarization F = F+ 0 F~ into positive and negative spinor
fields, the canonical determinant is given by

Hence because of the factorization into upper and lower triangular matrices

1 0<Λ _ Λ 0<Λ fl-goh 0

A i y v° ϊ / V h l

where #0 = ~9~ l , and the identity det ( 1 + a) det ( 1 + b) = det ( 1 + a + ̂  + ab) for
trace-class operators a,b there is the canonical identification

άQt^Dw = det -(1 - gQh) ,

which by definition [27] exists as a number in C because ^(1 — g$h) is of the form
1 -f smoothing. That completes the proof of Theorem (1.2). D

5b. Proof of Theorem (L3\ Let X be a compact connected 1 -manifold with
boundary. We consider the first-order elliptic operator D — iVd/dx '- C°°(X\ ^) — >
C°°(X'9 S\ Then self-adjoint boundary conditions for D are parameterised by the
finite-dimensional isotropic Grassmannian GriSO)2«(<^o θ <^ι) which is identified with
the space of unitary isomorphisms S$-+ $\. We assume a trivialization of $ such
that the Hermitian structure in each boundary fibre is the pull-back of the stan-
dard Hermitian metric on Cn '. The isotropic Grassmannian is thus identified with
^Πso,2π = Gr^2n(C2n), and hence with the unitary group U(n). Relative to the triv-

ialization we have D = ij-χ + A(x\ where A(x) : Cn -^ Cn is a Hermitian matrix.
The ζ-function trivialisation of the determinant line Lψ is the trivialisation associ-
ated with the norm || ||ζ. We define an explicit C-function determinant <£ — > C
with det£V l~> detζDψ, and |detζD^| = ||detD^||ζ. To define the ζ-function for

the non-positive operator Dψ — (i-j^ + A(x))w we follow the constructions of [22].
We shall take X = [0, 1].
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Formally one defines the ^-function of DW by

We make sense of this equation as follows. Let γ denote a contour in C consisting
of a ray in the sector of C with Rez < 0,Imz < 0 going from —zoo to a small
circle of radius δ about the origin, traversing the circle clockwise into the sector of
C with Rez > 0,Imz < 0, and then returning along a ray to —zoo. For λ disjoint
from the spectrum of Dψ the resolvent (Dψ — λ)~} is a holomorphic function of λ
and along the rays one has the L2 estimate \\(DW — λ)~l\\ ^ limίΛ,)!" 1. Hence for
Re (s) > 1 we can define

: - ,

where y does not enclose any poles of (Dψ — λ)~l and the equation is taking place
in the Banach space of bounded operators L2(X\ Cn) — > L2(X\ C") with the operator
norm.

Proposition 5.2. ζoιv(s) is well-defined and holomorphic for Re(s) > 1. For W 6
Griso,2« it has a holomorphic extension to all of C.

Proof. Let Kχ(x,y\ W) denote the Schwartz kernel of

relative to the boundary condition W, so for any v G Cn the function x \ — >
Kι(x9y; W)v satisfies W. Then D^s is an integral operator with kernel

ks(x,y; W)=^- fλ-siKλ(x,y; W)dλ .
2πi ^

Let τχ'.X-* Gl(n\ C) be the monodromy of the covariant derivative i(Dw — λ)
with respect to the initial condition τ0(0); that is, τ'; — -ί(λ — A(x))τ^ and τ^(x) —

e~l/jcτo(x). Then it is straightforward to verify that depending on τ; and the choice
of boundary condition W there are n x n matrices P/,β;. independent of x9y and
satisfying Pχ — Qλ = 1, such that

λ(x)Qλΐλ(y) ] for x > y .

So K;(x, y\ W) is an infinitely smooth function of jc, y off the diagonal and has a
simple jump discontinuity when x = y. Moreover, if ReO) > 1 = dimJf, then D^s

is a continuous function on X x X. For although the jump in K) (i.e. K^(x9x + ε) —
^;L(x,z - ε)) is z, the jump in ^(x,j;; W) is ^ /, λ^rf/ — 0, and hence ks(x,y, W)

is a continuous function of x, y £X. Thus D~^s is trace-class for Re^s1 > 1 and

= fΎτc(ks(x,x', W))dx
x

is holomorphic.
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To see that ζow(s) has an analytic continuation to all of C when W G Gr\^^n we
must see that Kχ(x,y\ W) has the right convergence behaviour as λ — » -/oo. First,
we choose τχ so that τ^(0) = 1. Then τ; t(l) = hχ = e~lλh is the monodromy of the
covariant derivative i(λ — D), where h — ΛQ, and clearly K — Γ(h). The boundary
condition W is the graph Γ(g) of some g G U(n) and so we require that

that is,

-̂'τ Xo^τ X Γ'v -

which implies that

00~'̂  = Mi +Λ).

Hence

fa = Gfo V - /Γ1 = (^A~ V - /Γ1 and

Qi = (/ - ffoΛ-iΓ1 = (/ - e-'λg0hΓl

For Re(s) > 1 we now have two formulas for ζow(s)'9 one using Pχ and one
using Qχ. But only the first of these defines an entire function of s, because then
Ύτ(Kλ(x9χ 9 W)) = Tr (/>;„) — > 0 exponentially as λ -^ -/oo, whereas Ύτ(Qλ) -> 1.
Thus with Kχ(x,y\ W) = iλ(x)Pλτλ(y)~λ we have the desired analytic continuation
to C. Note that inspection of where Seeley [22] says ks(x,x\ W) has poles shows
there are no poles for a first order operator. D

This means that for W G Grlso the derivative of CD^(^) at 0 exists, and so the
ζ-function determinant of Dw can be defined by detζ/V = exp(-ζ^r(0)) when

= 0 and 0 otherwise.
We identify dεtζDw precisely in the following way. We have

= T~ I I λ-sΊτ(iKλ(x,x; W))dλdx

As a consequence of Cauchy's Theorem the path y of integration may be deformed
without affecting the value of the integral so that the rays proceed along the negative
axis between —zoo and —iδ. So with λ — — z'α and α G [0,oo),

3π

/ (e'"Γs+l

zπ



Determinants of Boundary Value Problems 65

Provided Re(s) ^ 1, as δ -> 0 then (e'V*+V(/cosίJ~sin0)^ V' ~ /)~1 tends uni~
formly to its limit, and so we have

1 °° _!ι
/ s* J L\ )

Z7Γ Q

and hence

From the identity δ log det (P) = Ίτ(P~lδP), we obtain

d_

~dκ

and so
ζ'Dw(Q) = -logdet(/ - hgo) = -logdet(7 - gQh).

And that completes the proof of Theorem (1.3). D

The ^/-function of Dw is defined formally by ηow(s) = ΣΛ sgn(/i)/l~5, where
/ runs through the eigenvalues of ZV. Then for W G Gr\so,2n and g = ζ^(0) the
relation of the (-determinant to the C-function norm on the determinant line is
given by

Corollary 5.1.

detζ(£V) = exp ( / — (

Proof. Because ζow(s) is entire so is (j^(s). From the identity

1
ί] — (y~mS\rtr, ( v\j \ L e )r\Dw \3) ,

one has that ηow(s) is entire for Re s > 1, and elsewhere has at most simple poles.
In this 1-dimensional case one has by a similar type of analysis as for the ζ-function,
that the residue at 0 vanishes and hence that ηow(Q} is finite. Differentiating the
identity with respect to s and evaluating at zero proves the asserted relation. D

Example. Consider D = i£ acting on C°°([0, π]; Cn) and with W = Γ(g) for some
g G U(n). Since the eigenvalues of DΓ(CJ) and DΓ(k-\ k) for k G U(n) coincide we

may take g to be diagonal with diagonal entries HJ = e2m*> for j = !,...,«. Then we
have that Spec(D^) = {m - αy : m G Z}, and so ζow(s) = Σ/=ι Σmez(m ~ αy)~'s

Thus one way to calculate dQtζ(DΓ(y)) is by using standard formulas for the Hurwitz
ζ-function. The approach we have taken is to rather observe that the integral ex-
pression f ( s ) = Σj=ι uj^ $»,t~s(e2mt - Uj)~ldt defines an analytic continuation of

to all of C, and so we can evaluate

CD^(°)= Σ -uJf\ogt(e2πιt-uJΓ
ldt = - log Π(l + e~2m^) ,

j=\ }' j=\
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and hence

5c. 77ze gauge determinant (dimension 1). The 1 -dimensional determinant can be
calculated more simply, as follows, using intrinsic properties of the determinant line
and the fact that U(n) connections on the bundle $ over X = [0, 1] are all gauge
equivalent to the trivial connection.

More precisely, let TO(JC) G End($\9$x) be the parallel transport matrix at x G
X of the connection V along X — [0, 1] from x — 1. Thus Vj/^τoOt) = 0 with
TO(!) = / and τo(O)"1 = Λ, where A^ = Γ(/z). By picking a frame for the fibre $\
over c = 1 we obtain a global trivialisation for $ . Hence we may identify C°°(X S)
with C°°(Λf;CΛ) (the calculation of the determinant is independent of the choice of
trivialization of $ ). Moreover, V is gauge equivalent to the trivial connection by
the gauge transformation TO(X). That is,

d = τ-
lVτQ. (31)

Now let C$°(X; C"1) = {φ G C°°(Z; C"2) : 0(0) - 0(1) - 0} and let D0 denote
the restriction of D to C™(X\Cn). Then we have the following commutative dia-
gram with exact rows and Fredholm columns:

0 — > CS°(X;Cn) — > C^(X\Cn) - W^ — > 0
i ^o I ̂  1 #

0 — > Ker(ε) — > C°°(X\Cn} -^ Cn — > 0

where
i

β(0) - /τ"1^^^)^ and 7V(α,^) - i(β - hoc) .
o

The commutativity of right-hand square is immediate from (31).
Proposition (4.1) now identifies a canonical isomorphism of determinant lines

which for invertible DW sends the determinant element detD^ G ̂ w to

detZ) 0(g)det7VG ^o ΘDetί^f-1)* 0 DetC" .

Moreover, det/)o is non-zero and independent of W and so one has

gw ^Det^yΘDetC" - DetTV , (32)

canonically. But since W^ = {(gox,x) : x G C"}, where gfo = ~0~l £ U(n) and
W — Γ(g)9 the right-hand determinant line is canonically trivialized by the projec-
tion isomorphism pr : W^ -* Cn onto the second factor. Thus we have canonical
isomorphisms

J^V = Det(A^ o pr~l ) ̂  C (33)

which take det/V to detΛ^ o pr~l . Hence we define the gauge determinant det^/V
of DW by

det^ DW = det (N o pr~ 1 ) .

For v G C" we have by construction that

N o pr-\v) = N((g0v,v)) = i (1 - %0)(v) ,

and hence the following identification.
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Theorem 5.1. The gauge determinant coincides with the ζ-funcΐion determinant
and the canonical determinant (without the factor 1/2) up to a factor in. That is,

det^ZV = in det (1 - gQh).

6. Proof of Theorem (1.4)

Let DM : COQ(M\SM) -> C°°(M;SM) be the first-order elliptic operator over M =
X° UK X] constructed from the Dirac operators DQ,D] over XQ and X] acting on
sections of the respective (compatible) spinor bundles SQ,S}. The canonical deter-
minant det^Z)M of DM is defined by det<# DM = det ^M, where ^M is the Fredholm
operator

Here iκo,iκ\ are the inclusion maps, Kΰ is the graph of AQ : F+ — >• F~ and K] is
the graph of h\ : F~ — > F+ defined by Theorem (1.1).

Proposition 6.1. ^M «* Fredholm and there is a canonical isomorphism of (Quίllen)
determinant lines

which takes det£>M to det^ when DM is invertίble.

Proof. Let J(Y Sγ) denote the space of infinite jets of sections of the boundary
spinor bundle $γ. An element ζ of J(Y Sγ) has a formal asymptotic expansion

ζ = Σkζk(y)j\, where {ζ^} is a sequence of smooth sections in CQO(Y;Sγ), and
u is a coordinate transverse to Y in a tubular neighbourhood of Y in M. The proof
consists in showing that the following commutative diagram is commutative with
exact rows and columns:

0 0 0

1 i i
-> KQ®K} ^ C°°(Y'SY) ->

i'Ke.DO^Xe.Dl^1 i */
Γ05Ί C00(^o;^o)θC00(^1;^1) Λ J(Y;SY) ->

- 0
I 1 I
0 0 0

Here r^r\ are the restriction maps, ij is an inclusion map we shall identify below,
and δ(\l/Q,\l/\) = σJψo +Jψ\, where Jψ denotes the asymptotic expansion near Y of
ψ in M.

To see that Ker δ = C°°(M\SM), it is enough to define an injective section
of roθn over Ker^. Recall that two elements ψk G C°°(Xk;Sk) (k = 0,1) fit
together to give an element of C°°(M;SM) precisely when σbψo and b\\ι\ have
the same values and normal derivatives of all orders of 7, and that σ : F — > F is
an isometry. Hence such a section is defined by s(\l/Q9\l/\) = (p(σb\j/Q\\l/\\ where
p : F — >• C°°(XQ',SQ} is the map defined in Lemma A. 5 (Appendix A).
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For the surjectivity of δ it is enough to show that the map C°°(XQ:>SQ) — >
J(Y\Sγ) is surjective and to restrict attention to sections with support contained
in a collar neighbourhood UQ = [0, 1] x Y . But a section ψ on UQ with prescribed

k k
Taylor series ΣΨk(y)jϊ at u = Q is given by ψ(u,y) = Σ^ί^M^w)^-, where
χ is a bump function with supp(χ) C C/o and χ = 1 near 7, and /U depends on ψk

and tends rapidly to oo.
To see that Ker^M — Ker/)M we identify K° with KerZ)° and then expand

ΨQ G KerZ)° with support contained in UQ as ψo(u,y) = Σ; [e~λuψQ(Q)Φλ(y)> where
{(/>/} are a basis of F of eigenvectors of A with eigenvalues 1. This follows from

(6), and, from the local form Z)1 = (^ -f A)σ of D1 in the collar of X\ we obtain

a similar formula for an element of KerD1. Hence it is enough to require that the
zero th order normal derivatives match up to get an element of Ker DM .

To show that the third column is exact we use the fact that in a tubular neigh-
bourhood V — [— 1, 1] x Y of Y in M, where Y corresponds to {0} x 7, the elliptic
operator DM splits into a normal and 7 component and hence acts on ζeJ(Y Eγ)
as

So KerDM\γ consists of sequences {ζk}, defining elements of J(Y;Sγ), such that

ζ t=(-l)*Λ*ζ 0. That is,

and this defines the inclusion ij. Now suppose that τ = Στkjτ £J(Y\Sγ) Then
solving iteratively the difference equation ζk+\ -f Aζk = τk, so ζ0 = 0, ζ\ = τ0,C2 =
τ\ —AiQ, etc., defines an element of J(Y\SY) which DM\Y maps to τ. Thus £>M|K
is surjective and hence the third column is exact.

The commutativity of the diagram is clear except, perhaps, for the top-middle
square. To see that it does commute it is enough to consider (^O,I/Ί) G Ker£>° Θ
KerD1 with support in the tubular neighbourhood K of 7, where ψk = b~λφk and
φk G Kk. Here the sections take the form ψk(u,y) — Σ/ e~/MΨ;(Q)Φλ(y)> Expanding
the exponential term we have

But
/ i

oo 1
V^ V^ / / 0/ΆΛ

Λ=O λ Λ/2 /L ^ϊ

where the final equality is defined by the correspondence (33). Because the φχ are
eigenvectors of A, that proves the commutativity.

The Snake Lemma now identifies from the outside columns of the diagram an
exact sequence

0 -* Ker^M -> C°°(M;SM) ̂  C°°(M;SM) -> Coker^M ̂  0, (35)
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and therefore canonically identifies detD^/ as an element det/; DM G Λ(Ker%v/)* ®
Coker^>/ = L(COM}. The proof now proceeds in precisely the same way as
Proposition (5.1). G

To complete the proof of Theorem (1.4) notice that we may now rewrite the
top exact sequence of the diagram as

0 -> Ker DM -> KQ θ Kl ^ F -» Coker DM -» 0, (36)

and so if DΛ,/ is invertible then ({>M is an isomorphism. In precisely the same way
as in Sect. 5, we obtain

' 1 A,

and hence, as in Sect. 5, there is the canonical identification det^ DM = det ^(1 -
/ ? ι / 7 o ) , which is a well-defined complex number because (1/2)(1 — h$h\} is of the
form 1 -f smoothiny. Π

7. Proof of Theorem (1.5)

We assume that the Hermitian bundle S's\ has been trivialized so that the isotropic
Grassmannians of self-adjoint boundary conditions for D° and Dl may be identified
as Gr,So,2/7 = U(n)> Then from Theorems (1.2) and (1.4) the identity we are to
prove may be rewritten as

det( l - / Z I / Z Q ) = / det(l - 0 0 /z 0 )de t ( l - c j h \ ) c h j .

(When n = 1, this is just the identity 1 - el(y+β} = /Q

2π(l +el(y-0))(\ -
dO/2π.)

We do that as follows. Let End(ΛC") denote the space of endomorphisms of
the exterior algebra ΛC;? = @l=Q/\kCn, with the standard Hermitian inner-product

( , ) : End(ΛC") ® End(ΛC / ?) -> C, (To, Γ, ) - Tr (To, T* ) . (37)

Let c. G Endo(ΛC") be the operator equal to (— l)λ ' on Λ A C / 7 . Then one has the
supertrace

Tr, : End(ΛC ; ?) -̂  C, Tr y(Γ) - Tr(cΓ) .

On elements T in the space End0(ΛC") of degree preserving endomorphisms

We define a map
EndoίΛC'1) -> L2(^/(/7)), T ̂  fτ , (38)

where /H#) = Tr y(Γ o Λί/o) The map (38) is an isometry, that is,

T r ( T b Γ Γ ) = / fτ()(cj\fτ}(cj}d(j. (39)
U(n)

To see that, notice that by the Peter-Weyl theorem L2(U(n}} is an irreducible
unitary representation of U(n) x U(n\ as is End0(ΛC ; ?) = 0A, Λ A (C ; / )* Θ ΛA '(CW).
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Because the map is bi-invariant and not zero (evaluation at the identity) then by
Schur's lemma it is an isomorphism which preserves the t/(π)-invariant metric.

Applying (39) to the elements Λ/*o,Λ — h^~l G Endo(ΛC") we obtain

ί/(«)

= / Tr5(Λ/zo o Λ0o)Try((Λ — h^1 o Λ0o)*)^#
U(n)

= / Tr,(Λ(/z0^o))Tr,(Λ(/zι^))^
£/(«)

= / det(l - 0oAo)det(l -gh\)dg.
U(n)

The final equality follows since

/ /? \ n

and similarly for the second factor in the integrand. Because

Tr(Λ/*0 Λ (-/zΓ1)*) - έ(-l)*Tr(Λ*(Λ 0Aι)) - det(l - Mo) ,

that completes the proof. D

7.1. Concluding remarks on the relation with 0 -f \-dimensional TQFT

The choice of the elements Λ/ZO,Λ — A j " 1 G Endo(/\Cn) in the proof of Theo-
rem (1.5) is not arbitrary. This becomes apparent when the theorem is realized
as identifying the canonical pairing of a 0 -f 1-dimensional topological quantum
field theory. That is explained in detail in [20], where determinants of boundary
value problems arise as terms in the evaluation of the Feynman path integral defin-
ing the theory. However, it may be useful to make a few brief remarks here. A
d -f 1-dimensional TQFT is characterized in [2,26] as a functor Z which assigns to
each ^/-dimensional manifold Y a vector space Z(Y) and to each d + 1-dimensional
manifold X with boundary Y a vector Zx G Z(7), and which satisfies certain natu-
ral axioms. The most important of these is the "sewing axiom" which requires for
a closed d + 1-dimensional manifold M = X® Uγ X

1 that

ZM = (Zxo,Zχ]),

where {,) : Z(7) ®_Z(7) —> C is the_canonical bilinear pairing arising from the
"duality axiom" Z(7) = Z(7)* and 7 denotes 7 with the opposite orientation.
For d — 0 and M = Sl we naturally obtain such a structure by, identifying Zxk
with detZ/, for & = 0,1, where the Dk are as in Theorem (1.5). Thus ZχQ,Zx\
arise as elements of the Fock spaces associated to the holomorphic determinant
line bundles L°,Ll over the "classical phase space" G .̂ Moreover, the canonical
Hermitian connection on L° defined by the (-function metric has curvature /ω,
where ω is the Kahler form on Gr2« [20]. Hence the dual line bundle (L°)* is
a quantum line bundle in the sense of Kahler quantization [29], through which
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one obtains Z({0, 1}) — Γh0\(Gr2n:>(L®)*)* as the Hubert space of the theory. Here
the boundary 7 of XQ is taken to be {0,1}. However, we know from Proposition
(4.4) that LQ ^ Detξ (g>Det(Jf°)*, while it is well known [17](p. 22) that there is
a canonical isomorphism ΓhoKG^ Det ζ*) = Λ(C2")*. Hence there are canonical
isomorphisms

*, (40)

where the latter isomorphism depends on the fact that K® = Γ(/z0). Mathematically
the 0 + 1 -dimensional TQFT comes down to the Borel-Weyl theorem for the unitary
group, as predicted by Atiyah [2]. More precisely, because C2n = Cn Θ Cn relative
to the boundary points 0, 1 choosing an element λ in the second factor in (40)
defines an isomorphism Z({0, 1}) = End(ΛC"). The identification KQ = Γ(/z0) gives
a preferred choice for λ and the corresponding isomorphism takes det£)° to Λλo
The bilinear pairing evaluated on the determinant sections

{,) : E n d ( Λ C Λ ) ® E n d ( Λ C π ) - » C ,

thus coincides with (37), and the pairing of the TQFT is the identity

which from the point of view of the representation theory may be seen as a character
formula. Proofs of these facts are given in [20].

Appendix A: Construction of a Parametrix

In this appendix we construct a parametrix for a Dirac boundary value problem Dψ
and we explain the sense in which DW depends holomorphically on W.

AL The parametrix. We build a parametrix for Dψ in the following way. Let X~
denote the manifold X endowed with the reverse orientation and let M = X (Jγ X~
be the closed double manifold with "spinor" bundle SM constructed as in Sect. 1.

The Sobolev spaces Hr\(M',SM\ Hr2(Y;SY) for the closed manifolds M and
Y are defined as usual for any real numbers π,^. For X we define the Sobolev
space Hk(X\S) for each non-negative integer k as the Hubert space completion of
C°°(X;S) in the norm

k
Ml = Σ f\vJΨW\2dχ.

j=OX

Lemma Al. Let k be a positive integer.
(i) The restriction map b : C°°(X'9S) —> F extends to a continuous linear map

bk : Hk(X;S) -> Hk~l/2(Y'9SY). There is a continuous linear section p : F -> C°°
(XlS)for b which extends to a continuous section pk : Hk~]/2(Y;SY) —> Hk(X;S)
ofbk.

(ii) The map r : C°°(M; 5Λ/) —> C°°(X°9S) restricting smooth sections of SM to
the compact submanifoldX extends to a continuous linear map rk : Hk(M\$M) —*
Hk(X\S). There is a continuous linear section ε of r which extends to a continuous
linear section εk : Hk(X;S) -> Hk(M\SM) of rk.
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The existence of the linear section ε for r is a delicate fact proved by Seeley in
[21]. An explicit p is constructed in Proposition (Al). For the remaining assertions
we refer to [16].

In particular, this implies that for each integer k > dim X/2 there is a continuous
inclusion Hk+r(X\E) — » Cr(X\E) (Sobolev theorem). For the inclusion factors as

Hk+r(X\ E) ̂  Hk+r(M', EM ) -» C(M\ EM ) ̂  C(X\ E) ,

where the central map is given by Sobolev 's theorem for a closed manifold, and
all the maps involved are continuous. Similarly, one has that for integers k\ < k2

the inclusion Hkl(X',E) — > Hk](X;E) is compact (Rellich lemma). Consequently,
C°°(X'9S) = H00(XιS) and the inverse limit topology on H°°(X;S) is the C°°
topology.

By a smoothing operator C°°(X; S) -» COG(X\ S) on the manifold X with bound-
ary we mean an operator with continuous extension Hk\(X\S) — > Hk2(X\S) for all
non-negative integers k\ and #2, and which, by Sobolev' s theorem, therefore has
image in C°°(X'9S). Let OP-^(X\S) denote the space of all such operators.

Proposition Al. Let W be in Gr. Then there is a C°° continuous linear operator

such that
(i) Kw extends to a continuous operator Kl

w : Hl(X\S) -> Hl+l(X'9S) for each
non-negative integer I.
(ii) Dw Kw -I = R} e OP-ooί^ S).

(iii) KWDW -I=R2e OP-ootT S).

Proof. First, we recall from elliptic theory on closed manifolds that the doubled
operator DM : C°°(M\SM) — » C°°(M\SM\ has a parametrix JΓ of order —1, so that
DMJ^ — IM = Q\ and 3fDM — IM = Qi are smoothing operators on C°°(M',SM\
and Jf' extends to a continuous operator HI(M\SM) — » HI+I(M\SM)

An explicit continuous linear section p : F — > C°°(X'9S) for b is given by

p(φ)(u,y) = %(u)e~u(A ®~A ^φ(y\ where the boundary operator is written A =
A+ ® A~ relative to the energy polarization of F, and χ is a C°° bump function on
Rl with χ ( u ) = 1 for 0 ^ u ^ \ and χ ( u ) = 0 for u ^ 1, (8X = Y x {0}).

-Let W G Gr. We define a parametrix K\γ for DW by

Kw = rtf'ε - pPwbr^ε . (41)

Notice that for ψ e C°°(X;S) one has PwbKw\l/ = 0, so that Kw has the cor-
rect range. Moreover, by our preliminary remarks the operators defining Kψ are
continuous with a combined order of —1. That proves (i).

To see (ii) first observe that since W and H+ are in Gr one has that Pψ — P+ =
Rw : F — > F is a smoothing operator. For φ G F the support of p(φ) lies in the
collar neighbourhood U, and so for φ E C°°(^;S),

DWKW\I/ = DrJίTε(ιl/) - σ - + A
du

(42)
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It remains to explain why the third term is smoothing. Away from the boundary
this is immediate because A+ 0 — A~ : F — » F is a positive elliptic operator and

hence the heat operator e~u(A ®~A ) is smoothing. Thus for u > 0 there is a smooth
extension of SΊjs e Hk~λ/2(Y\Sγ) into the interior ofX. To see that it is also smooth
over the boundary (u = 0) we work in the neighbourhood of Y with u G [0, 1/4)
where χ = 1. Because RW is a smoothing operator it is enough to consider just the

positive energy part P+SΊI/ of Sty. But τu = e-
u(A+®-A~ϊp+ξ = e~lίA+P+ξ and for

0 < u < 1/4 this is in KerD. So there is a smooth sequence of sections τu — » /^+^
as u — > 0 with ||/>ΓM||A; = 0 for u 6 (0, 1/4) and each non-negative integer k. By
continuity then | |£>TO||A- = 0. That proves (ii). Notice that from this construction it
is clear that if DM is invertible the Atiyah-Patodi-Singer problem DH+ has an exact
parametrix (R\ = 0) as in [3].

Part (iii) is immediate from the observation that the operator (εD — DMz)r :
C°°(M;£A/) — * C°°(M\SM} has support contained in the collar neighbourhood of
the boundary in X~ , and that ^ preserves supports on M up to a smoothing
operator. Π

Corollary Al. There exists a constant C such that for ψ e C^(X\S)

(43)

Let @w denote the L2 extension of the operator Dw> Then the elliptic estimate
(43) implies that if ψ e dom^ then ψ e Hl(X;S) and Pwbψ = 0, where Pw and
b refer to their Hubert space extensions.

Conversely, if ψ e Hλ

w(X\S) ά={ψ e H](X;S) : Pwbψ = 0} then ^ e dom
(^^). For it is sufficient to consider ψ supported on the collar, and show that
there ψ is approximated by smooth sections which satisfy the boundary condition.

That follows by applying the smoothing operator e~^A in the Y direction, and in
the normal direction by extending ψ into a tubular neighbourhood of F in M by
reflection and then smoothing out by convolution. Thus we have

Lemma A2.

The existence of the parametrix Kw means that Dw and Dw* and their L2

extensions are Fredholm operators and that ker^^/^ker/V [16]. A particular
consequence of the following proposition is that the index of Dw can be computed
in C°° or L2. The next proposition is well-known [8,23].

Proposition A2. Let W e Gr. Then the L2 closures of Dw and Dw* are adjoints
of each other.

Proof. From Proposition (Al) we obtain orthogonal decompositions

dom(ZV) = C%(X;S) = Ker/V θ W ,

and C™(X\S) = Yj&(Dw*)®lm(pw\ where N = (KerD^)^ Π Cff(X\S). The
restriction of Dw to N is invertible and hence it has a continuous linear in-
verse Im(ZV) -> N which we extend by zero to an operator Tw defined on all
of C°°(X;S). Let B0 and B\ respectively denote the L2 projections onto Ker/V
and Ker£V*. Then, by construction, there are the equalities

DWTW -/ = -/*!, TWDW - / = -Λo, B<>TW = 0 = TWB\ .
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Repeating this construction with W* yields corresponding equalities for TV*, and
since BQ and B\ are smoothing, then Tw is a parametrix for Dw and TV* is a
parametrix for Z~V*. Moreover, the combined equalities imply that {£, Twη)$ =
(Tw*ξ,η)s for ξ,η G C00^;^). Hence TV and 7>*_are formal adjoints in C°°.
Then by the continuity of the inner-product (TV)* = TV*. D

We have the immediate corollary of Proposition (A2) that if W is a self-adjoint
boundary condition then the L2 extension Q)ψ is self-adjoint. It is also a straight-
forward consequence that if W e Gr is a self-adjoint boundary condition then Dw is
essentially self-adjoint, that is, DW has a unique self-adjoint extension. These facts
imply the spectral theorem Proposition (2.1) for elliptic self-adjoint Dirac boundary
value problems. The details are now no different to the case for closed manifolds
given, for example, in [19]. The parametrix KψKψ* for the Laplacian ΔW, where
KW and KW* are the parametrices for Dw and /V*, implies the corresponding
spectral theorem for Aw.

A2. Holomorphίc Families. We refer to a family of linear operators Ta : Ea — >
Fa,a e si acting between complete Hausdorff locally convex topological vector
spaces endowed with continuous norms as a holomorphic family in the sense of
[25]. That is, one requires $ = UaEa and J^ = UαFβ to be holomorphic vector bun-
dles over jtf, in the sense of [24], and that there exists a parametrix Sa : Fa — > Ea

such that the family of operators SaTa — / : Ea — •> Ea and TaSa — I : Fa — » Fa are
compact operators and continuous with respect to a in the uniform topology. We
refer to [25] for further discussion.

Let us, for example, consider the family of boundary value problems

DW : C%(X\ S) -> C°°(Xι S), W e Gr .

In this case we take

X;S) and & = Gr x C°°(X;S) .
w

The space ̂  is trivially a holomorphic vector bundle, while the holomorphic bundle
structure on $ is given by the same argument as [24](p. 389). For the parametrix
we take Kw : C°°(AΓ;S) -» Cff(X\S) as in Proposition Al, and from that proposi-
tion we know that DWKW — I and KWDW - / are compact operators. By inspection
(from Proposition A l ) one sees that the continuity dependence on W of these opera-
tors is simply the orthogonal projection operator Pw and hence Dirac boundary value
problems parameterized by the restricted Grassmannian form a holomorphic family.

Appendix B: Proof of Theorem (4.1)

Our goal is to prove that there is a canonical isomorphism

which varies smoothly with W . Most of the work needed to prove this was done
in the proof of Proposition (6.1), we just need the following identifications.

Proposition Bl. There is a canonical isomorphism of determinant lines
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depending smoothly on W, where ρ^\(W-L) = Pw±. ° iκ\. If D]

w± is invertible

det£>^± maps to dQtpκ\(W±).

This is just Proposition (4.3) restated for the opposite Grassmannian and so we
omit the proof.

Let <$M :K°®Kl -> F be defined by ^M(Φo,Φ\) = ^o(Φo) + ^ι(Φι), as in
Sect. 6.

Proposition B2. For each W in Gr there is a canonical isomorphism of determinant
lines

varying smoothly with W. If W = K° the isomorphism preserves the determinant
elements.

Proof First we modify ^M to the map

%w : K° ®K] -> F, π(φQ,φι) = p^(W)(φΌ) + iκι(Φ\).

There is the following commutative diagram with exact rows:

oφ-d }0 _> κ° ^o

i«W I

0 — > W — > F - W^ — ̂ 0

Since W,K° e Gr and W^-.K1 G Gr~, all the columns are Fredholm, and so there
is a canonical isomorphism depending smoothly on K®,Kλ and W9

and from Propositions (4.3) and (Bl)
Cώ C °̂ /ς?s O?1

— =^ w 09 -ZT ,̂± .

If the Dirac operators D^,Dl

ψ±yDM are invertible the determinant elements

and ά^i PKQ(W^~)® άQi pκ\(WA~) correspond under the isomorphism.
One has

ΉM-^W = (PW± 0/^0)00,

and since W and K® are in Gr then Pw± o /^o : AΓ° — > ^F-1 is smoothing, and hence

Det ̂ M = Det ̂ w .

Because ^M = ^w when ^F = AΓ°, we see that the determinant elements then
map to each other. D

We know from Proposition (6.1) that there is a canonical isomorphism preserv-
ing determinant elements

and so that completes the proof.
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