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Abstract: The non-relativistic quantum mechanical description of meta-stable states
which arise by perturbation of embedded eigenvalues is considered. The model
given by the Hamiltonian

rr_(-Λ XU
n ~ \λu -A + v

is studied for small λ. If — A -f v has a positive eigenvalue then, when λ = 0, H
has an embedded eigenvalue. The corresponding eigenstate, Φ, is a meta-stable state
for 2φO. The time evolution of Φ under H,e~ιtHΦ, is estimated uniformly in t.

1. Introduction

One of the more striking effects described by quantum mechanics is the decay of
an unstable state and the observed transformation of matter which accompanies the
decay. Unstable states which remain close enough to their initial conditions for a
long enough time to be observed are sometimes said to be meta-stable. The physics
of quantum mechanical meta-stability is fairly well understood and formal schemes
for approximating the relevent quantities have been developed ([GW, LL, M]). It is
expected that the probability that a meta-stable state remains in its initial condition
decreases exponentially in time, behaving like e " . The constant τ is said to be the
lifetime of the state. Further, when a meta-stable state finally decays, the distribution
of energies of the final state is found to be peaked about the energy of the initial
state, the distribution having the Lorentzian shape, £2

ι

 2 . Here E is the difference

between the energies of the meta-stable state and the final state. The constant γ is
called the width. It is found that (in units in which h = 1) γ = ~.

The problem of making these formal considerations precise has a long history
(see [S1,S2 and RS]: it is well known that exponential decay cannot persist as
t —•>• oo). One approach which has had some success is the technique of dilation
analyticity ([AC,BC,RS]). The dilation of a wave function φ eL2(RN) is given
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by φ(x) t—> aϊφ(ax) for some a > 0. Such dilations are implemented by a uni-
tary transformation. In its original form, the idea of dilation analyticity is to write
a = eιθ and then to analytically continue from imaginary 0 to real 0. More gener-
ally, if H is the Hamiltonian describing a given system, and if U(θ) is a unitary
operator for pure imaginary 0, then one considers analytic continuations in 0 of
HQ — U(θ)HU(θ)~ι. For real 0 the operator HQ is generally not self-adjoint. For
appropriately chosen U it is shown that real eigenvalues of HQ are eigenvalues of
H. Complex eigenvalues are defined to be resonances. This technique has provided
proofs in some examples that embedded eigenvalues are unstable under perturbation,
by showing that they become complex eigenvalues of HQ ([FW,RS,OY, Si, S1,S2]).
This shows, in these examples, that states corresponding to embedded eigenvalues
become unstable when perturbed in the sense that they are not eigenfunctions of
the time evolution operator e~ιtH.

To do better, the action of the time evolution operator e~ιtH on a meta-stable
state must be controlled. One would like to track the time evolution of a meta-
stable state to see in what sense there is exponential decay and to find the state
which describes its decay products. As Simon [S2] has pointed out, the leading order
expression for the absolute value of the imaginary part of a resonance obtained from
the dilation analyticity technique is equal to the inverse of the lifetime calculated
by the physicists' methods. This suggests that dilation analyticity might be used to
control time evolution.

There are some results on exponential decay ([D,FW,H,Ki, Sk]). The greatest
generality is obtained by Hunziker [H] who considers a class of models amenable
to dilation analyticity techniques. The Hamiltonians in these models are of the
form H — Ho + λV, where λ is a small parameter. He studied the matrix element
(φ,e~ιtHφ), where φ is an eigenfunction of Ho which perturbs to a resonant state
in the sense of dilation analyticity. It was found (we quote his result to leading
order only and in the simplest case where the eigenvalue of Ho corresponding to φ
is simple) that

where ε is the resonance corresponding to φ. Further, I m ε ~ -λ2. Since | |e~z / / / | | = 1
one can see that e~ιtHφ ~ φ for times small compared to llmεl"1. This justifies the
interpretation of llmεl"1 as the lifetime of φ. Since |Imε| is small one concludes
that φ is meta-stable under the action of e~itH.

In this note we extend the ideas of Hunziker [H] to estimate the full time
evolution of a meta-stable state. In particular we obtain asymptotics for the state
describing the decay products. We consider a model which, though admittedly un-
physical, is nonetheless nontrivial and captures much of the problem. Explicitly, we
consider the model given by the Hamiltonian

λu -A +

acting in C2 <g)L2(Rn); restrictions on u and v will be given in the next section.
If — Δ -f υ has an isolated positive eigenvalue, SQ, with corresponding eigenfunction
φ9 then one expects the state Φ = (°,) to be unstable, the instability arising through
the coupling λu to the continuous spectrum of — A. In such models we are able
to estimate Φt = e~itHΦ to leading order in λ uniformly in t. The approximations
anticipated in the physics literature are obtained.
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An example is given by taking n = 1, v(x) = x2, u(x) = e~x and ε0 = 1. The

eigenfunction corresponding to βo = 1 is φ(x) = π~ϊe~ϊx . It is found that there is
a n ε e C , with |1 - ε| = (9{λ2) and

I m ε = — 7 ^ Γ λ 2

3eΐ

such that, using the notation / for the Fourier transform of / ,

~m) ( 1 \0)
This estimate is uniform in t.

Φ has, to 0(/U), the behavior expected of a meta-stable state. It exhibits
approximately exponential decay

Further, the transition probability from Φ to a state of momentum p, given by
([LL,GW])

Hm \Φ,(p)\2 = λ 2 ( j - ) 2

 2_ ίj" lπe-lλ4 + &(U}'

is peaked about |/?| = 1 with the expected Lorentzian form and with width,

|π2β~3^ 2

? equal to the inverse of the lifetime. Note that the decay products all lie

in the (*) sector and, in the long time limit, evolve according to the time evolution

generated by —Δ.
The paper is organized as follows. In Sect. 2 the full definition of the model

is given and the main result is stated. In Sect. 3 it is shown that H has a dilation
analytic resonance which is a perturbation of εo in the sense that it approaches ε0

as λ —• 0. In Sect. 4 it is shown how the results of Sect. 3 can be used to control
the time development of the corresponding meta-stable state.

2. Description of the Model and Statement of Results

As mentioned in Sect. 1, we consider the model given by the Hamiltonian

-A λu
H ~ \λu -A+v

acting in C2 ®L2(Rn). Here u and v are multiplication operators corresponding to
the functions u(x) and v(x). Enough restrictions will be put on u and v so that
the calculations can be carried through with a minimum of technical difficulty.
We assume the following (in all that follows σ(A) denotes the spectrum of the
operator A).

Assumptions. There is an εo G (5,00) such that for all θ with RQΘ G (—f > f) the
following is true.

i) vg(x) — v(eιθx) is an analytic function of θ which is real valued when θ = 0
such that -e~2iθΔ + VQ is an analytic family of operators in the sense of Kato.
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ii) uθ(x) = u(eiθx) and (x - Vu)θ(x) = (x Vu)(eiθx) are analytic L°°(Rn) val-

ued functions of θ which are real valued when θ = 0. Further, eιe p ' XUQ(X) is an

analytic L2(Rn) valued function of θ.

iii) εo is a simple eigenvalue of —A -\- v. Let φ E L2(Rn) be its eίgenfunction.

iv) ε0 is an isolated point of σ(—e~2iθ A + VQ).

v) {e*V*P * xu,φ)+0 as a function of p on Sn-i = {p G Rw| \p\ = 1}.

vi) Both xjuφ and xjxkuφ are in Lι(Rn)for all j,k G {1,2,3,...,/i}.

Assumptions (i) and (ii) are made to insure that we can apply the complex

dilation technique to H. Insisting that eιe p ' XUQ(X) be analytic in L2(Rn) is not
necessary, but simplifies the exposition. Assumption (iii) is also a simplifying as-
sumption. Allowing ε0 to be finitely degenerate introduces no fundamental new
difficulties into the problem. Assumption (iv) insures that εo is in the pure point
spectrum of —A + v and that —A + v has no resonances in the sense of dilation
analyticity near βo Assumption (v) is a sufficient condition for εo to perturb to a
resonance of H. It insures that the coupling of φ to the continuous spectrum of —A
occurs at leading order. Finally, assumption (vi) insures that (eιp ' xu, φ) is twice
differentiate in p. This simplifies certain parts of the proof.

We now state the main result that is obtained. A discussion of the result follows
below.

Main Result. Let

let

1 .
r = -mm

dist(σ(-zl-hι;)\{εo},εo),- > ,

and let uφ(p) = (2π) 2 (eιp ' xu, φ) denote the Fourier transform of the function
uφ. If λ is small enough there is an ε e C with,

|Reε — εo| S const λ2,

and

I l m έ + Λ v ^ ) " - 2 / \uφ(^p)\2dΩ(p)\ S const λ4 ,

where Sn-\ = {p e Rn\ \p\ — 1} and dΩ is the surface element on Sn-\, such
that if

Φf\x) = e-*Φ(X) + X J
I^l26(εo-f

then
| | e - ^ φ _ φ ( ° ) | | ^ const λϊ .

Assumption (v) is a necessary and sufficient condition for

J Ke^P *u,φ)\2dΩ(p) > 0,
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so that I m ε ~ - λ 2 . In particular, assumption (v) is a sufficient condition for
Imε < 0. We will see that Imε = 0 implies that ε is an embedded eigenvalue
for H. One does not expect H to have embedded eigenvalues. Rather one expects
that Im ε < 0 with some generality. If so, then, as mentioned above, ε is generally
referred to as a resonance for H in the sense of dilation analyticity. If it hap-
pens that (eι^p ' xu,φ) = 0 for all p G Sn-\9 then it is presumably sufficient for
(eip ' xu, φ) φ θ as a function of p to show that Imε < 0. We have not investigated
this possibility.

Since I m ε ~ -λ2 is small Φ,0 ) has precisely the behavior expected of a meta-
stable state with lifetime |Im εl" 1. For short times, t ~ #(1),Φ,(O) = Φ + Θ(λ). As t
increases the factor e~ιεί gives the expected exponential decrease of the component
of Φ ^ in the subspace spanned by the initial condition, Φ. As t —> oo the state
φ | 0 ) describes, to leading order in λ, the decay products of the unstable state Φ.
For long times, t ^> ^ , we have

^ 4 e
t,£0+L) \P\ ~ ε

This is the approximation for the state describing the decay products of Φ ob-
tained by the formal arguments found in the physics literature ([GW,LL,M]). The
transmission probability

has the Lorentzian shape characteristic of decay phenomena and, indeed, the width
is the inverse of the lifetime of the state.

3. The Dilation Analytic Resonance for H

In this section we show that there is a neighborhood of εo in which H has no
eigenvalues but has a resonance, ε, in the sense of dilation analyticity. Basic to the
technique of dilation analyticity are the definitions

) (3.1)

for φeL2(Rn) and

-e~2ιθA λuθ

λuθ -e~2ιθΔ -h VΘ ,

If Re# = 0 then the transformations (3.1) and (3.2) are unitary. As mentioned in
Sect. 1, the dilation analyticity technique involves considering Reθ > 0. Eigenval-
ues of HQ with non-zero imaginary parts are called dilation analytic resonances of
H. We begin by deriving an expression for the resolvent of HQ which we will be
able to use to establish the analyticity of HQ in θ and then afterwards to study the
eigenvalue problem for HQ.

Lemma 3.1. Let

hθ(η) = -e~2WA +VQ- λ2uθ(-e-2iθA - ηy
ιuθ (3.3)

in L2(Rn) and let η G C\e-2/θ[09oo).
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a) η is in the resolvent set of HQ iff hρ(η) — η is boundedly invertible. If so
then

(Hθ - η) ' = , (3.4)
\-λCθ(η) Dθ(η) )

where

Aθ(η) = (-e-2iθA - η)~ι + λ2(-e~2iθA - ηΓιuθ(hθ(η) - ηΓluθ(-e-
2iθA - η)~ι ,

Bθ(η) = (-e~2WA - ι χ

Ce(η) = (hθ(η) -

= (hθ(η) - η)-λ . (3.5)

b) If η is in the resolvent set of HQ then {hβ{γ]) — η)~ι is an analytic bounded
operator valued function of θ. It follows that HQ is an analytic family in the sense
of Kato.

Proof Since η ^e~2iθ[0, oo) the resolvent (—e~2iθA — η)~ι exists and is bounded.
If, in addition, hβ(η) — η is boundedly invertible then the operators in (3.5) are well
defined and bounded. Equation (3.4) then follows from elementary algebra and is
clearly bounded. Thus η is in the resolvent set of HQ.

Conversely, if η is in the resolvent set of HQ then for all Φ e C2 ®L 2(R") there

is a unique Ψ in the domain of HQ with Φ = (HQ — η)Ψ. If we write Φ = (t1) and

ψ = (-A )5 where φj £ L2(RΠ), f\ is in the domain of —A and f2 is in the domain

of -e~2ιθA + vθi then

Φ2J V λuθ -e~2iθA + VQ - η) \ h

= / (-e-2ίθA - η)fx + λuθf2

\λuθf\ + (-e-2iθA + VQ- η)f2

But since η φe~2^[0,oo) we have

fx = (-β-2^zl - ^rVi - λ(-e-2iθA - ηΓιuθf2 ,

so that

φ2 - λuθ(-e~2iθA - ηyxφx = (hθ(η) - η)f2 .

Since the domains of — e~2ιθA + VQ and hρ(η) are equal it follows that for all
φ £ Z 2(R 3) there is an / in the domain of hβ(η) such that φ — (hβ(η) — η)f. Thus
hθ(*l) — V is boundedly invertible. This finishes the proof of part (a).

Let η be in the resolvent set of HQ. By assumption (-e~2iθA -f VQ - η)~ι and
UQ are analytic bounded operator valued functions of θ. Since η φ e~2ιθ[0,00) the
resolvent (—e~2lθA — η)~ι is also an analytic bounded operator valued function of
θ. It follows immediately that (hβ(η) - η)~ι is a bounded operator valued analytic
function of θ.

Finally, since (—e~2iθA - η)~ι is a bounded operator valued analytic function
of θ, it now follows easily from part (a) and the assumptions that (HQ — η)~ι is a
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bounded operator valued analytic function of θ. Thus He is an analytic family in
the sense of Kato. This finishes the proof of part (b). •

We now show that He has an eigenvalue which approaches ε0 as λ —> 0. The
imaginary part of this eigenvalue is estimated and is found to be negative. This
establishes the existence, and estimates the position, of a dilation analytic resonance
of H near SQ.

Proposition 3.2. Let

r = -min \ dist(σ(-zl + ϋ)\{εo},εo), -

Fix θ G ( j | , f ) , let Hθ be as in (3.2) and let hθ(η) be as in (3.3). There is a
λo > 0 such that if λ < λ0 then the following is true.

a) There is an ε G C such that (ho(η) - η)~x is analytic in ηfor η G Dr(εo)\{ε}
and has a simple pole at η — ε.

b) If Dr(ε0) = {εeC\\ε- εo\ < r} then

Further, ε is a simple eigenvalue of HQ. Re ε satisfies

|Reε — εo| ^ const λ2

and Im ε < 0 and is estimated by

sn_{

r§ const λ4,

where Sn-\ — {p G RΛ \p\ = 1} and dΩ is the surface element on Sn-\.

Proof First note that (he(η) - η)~ι is a bounded operator valued analytic function
of η for η in the resolvent set of HQ and η φ e~2ιθ[0, oo). If |̂ 7 — βo I — r then by
assumption (iii) the resolvent (—e~2ιθA -f VQ — η)~x is bounded so that

\\{-e-2iθΔ + vθ- n)-χuθ{-e-2iθΔ - η)-χuθ\\ ύ const.

It follows that for λ small enough

x (1 - λ2uθ(-e-2iθA - η)-ιuθ(-e-2iθA + vθ - ηΓι)~ι

exists and is bounded and satisfies

\\(hθ(η) - n y x - (-e~2WA + vθ- ηΓx\\ ^ const λ2 . (3.6)

That (he(η) — η)~x has a simple pole, ε, in Dr(ε0) with |ε — εo| S const λ2 follows
from the general theory of analytic perturbations [K]. Standard arguments show that

\ε + λ2{φ_θ,uθ(-e-2iθA - εoy
xuθφθ)\ ^ const λ4 . (3.7)

This establishes part (a).
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That σ(Hβ) Π Dr(εo) = {ε} and that ε is a simple eigenvalue of HQ follows
from part (a) of Lemma 3.1. To establish the estimates for ε we note first that
(3.7) implies that both the real and imaginary parts of ε are bounded by a constant
times λ2. To estimate the imaginary part of ε note that φe is an eigenfunction of
an analytic family of operators and thus is an L2(Rn) valued analytic function of
θ. It follows that the inner product (φ_θ,Uθ(—e~2iθA — η)~xuβφβ) is analytic in θ.
Further, this inner product is independent of Im β, and is therefore independent of
θ, in the strip 0 < Re0 < | . Representing the integral kernel for (—e~2iθA — η)~ι

using the Fourier transform we have

{φ-θiuθ(-e-2iθA-ηyιuθφθ}

),uθ(-e~2ιθA - εo)~ιuθφθ)
V

1
e~ 4>

\(eiζp • xu,φ)\2

1 \
xu,φ)\2dΩ(p)-2 ζn~ιdζ

where Sn-\ = {p eRn\\p\ = 1} and dΩ is the surface element on Sn-\. The esti-
mate for Im ε now follows from

lm(φ_θ,uθ(-e-2iθA-ε0)-ιuΘφθ) = ^ζl] J \(e^p ' xu,φ}\2dΩ(p),

which is clearly non-negative. That it is also non-zero follows from assumption (v).
It follows that Im ε < 0 if λ is small enough. D

Using Lemma 3.1, Proposition 3.2 and Imε < 0 it can be shown, as in [RS] vol-
ume IV theorem XIII.36, that H has no point spectrum in (εo — r,εo + r), since real
eigenvalues of He in A (εo) are eigenvalues of H and conversely. This is enough
to conclude that the state (^) is unstable since it is not close to any eigenfunctions
of H. In the next section its time evolution is estimated.

4. The Propogation Estimate

If λ = 0 then εo is an eigenvalue of H. Let Φ be its eigenvector. In Sect. 3 we
showed that, for /ί + 0, H has no eigenvalues near ε0. One expects Φ to represent
a meta-stable state under the time evolution generated by H, e~ιtH. In this section
we use the results of Sect. 3 to estimate e~ιtHΦ.
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Proposition 4.1. Let φ e L2(Rn) be the normalized eigenfunction of — A -f v cor-

responding to the eigenvalue εo, let r=\ min{dist(σ(—A + ιθ\{εo},εo), j}, let

p2 € (εo - J.eo + ?), feί ξ e C0°°(R) satisfy

[0 if εe (-00, ε0 - r] U [ε0 + r, 00)

and let ε />e /Λβ resonance found in Proposition 3.2. Lei

0

eip ' x

If λ is small enough then for each N e {1,2,3,...} there is a constant c(N) and
for each j G {1,2} a function aj(p) which satisfies

\aj(p) - (2π)--2(eip ' xu,φ)\ ^ const λ2

such that

\(Ψp,e-ιtHξ(H)Φ) - -^—,z(aι(p)e-ιp2t - a2(p)e~m)\ ^ c(N)λ3(\+tyN .
pz — ε

Proof Using Stone's formula we have

1 OO

(Ψp,e'itHξ(H)Φ) =— Urn / ξ(ε)e-i£t{Ψp,((H - ε 4- if)"1

-(H -ε-iζ)~ι)Φ)dε.

For η 0 R the operator H — η is invertible. As in (3.4) we have

{H η) - \-λC(η) D(η) ) '

where as a general convention we drop the subscript θ when θ — 0. It follows that

iλ °°
(Ψp,e-mξ(H)Φ) = — 7 ^ lim / ξ(ε)e-

to({e'> ' *,B(ε - iζ)φ)
(2π)2+1 tto _oo

Explicitly we have

(ei?-\B(ε±iζ)φ)

= (eip ' X,{-Δ - ε ± iζyxu(-Δ + v-ε±iζ- λ2u(-Δ - ε ± iζyγu)-χ

= 1 (eίp χu,(-A+υ-ε± iζ - λ2u(-Λ - ε ± iζyιu)~l φ).
p — ε ± zς
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Let

fθ(η) = (eιe~iΘP xu-e,(-e-mΔ + vθ - η - λ2uθ(-e-2iθA - ηΓιuθΓ
ιφθ)

= (eie~lθP ' xu-θ9(hθ(η) - ηΓlφθ) . (4.2)

If Im?y > 0 then, by analyticity arguments as in [RS] volume IV theorem XIII.36,
η is in the resolvent set of Hθ for all θ with 0 ^ Re0 < f. Thus, by part (b)
of Lemma 3.1 and assumptions (i) and (ii), fβ(η) is analytic in θ in the strip
0 < Re0 < f. Further, fβ(η) is independent of Im0. It follows that fθ(ε + iζ)
is independent of θ in this strip. Similarly, since hβ(η)* = h-e(ή\ /-#(ε - iζ) is
independent of θ in this same strip. Thus

- (eip %xu,(-Δ + v-ετ iζ ~ λ2u(-Δ - ε =F iζ)'ιu)-ιφ),

so that we can write

(4.3)
Fix 0 G ( j | , f). Let | G C0°°(R) be a non-negative cutoff function with

θ if εG ( - o o , ε 0 - §] U

and let Γ c C be the curve parameterized by Γ(ε) = ε — ίξ(ε). In the interior of
the closed curve R U Γ the function fe(η) is meromorphic in η with a simple pole
at ε while f-β(η) is analytic. Since p2 G (ε0 - ^>εo + \) we have

(Ψp,e-mξ(H)Φ) = ^ i ^ / ξ ( R e ^ ) 4 ^ - (/_0fo) - /,(^))^
(2π)2 + i

Γ p̂ -f/

(2π)S

where Res(/(z),w) is the residue of / at w.
Consider first the integral over Γ. If we let

forηeΓ then, recalling that (-e~2WA + VΘ)ΦΘ = εo</>̂  and noting that (eze ' p " xug,
φβ) is independent of 0, it follows that

x ((-e-2iθ/l + ί;e - ηytuβi-e-^Δ - ηΓιuθ)
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converges uniformly on {η e Γ\ξ(Reη)Φ0}. Using this expansion it is straightfor-
ward to show that for each N £ {0,1,2,...} there is a constant c\(N) such that

dNgo(η)
dηN

It follows that there is a constant c2(N) such that

- fβ(η))dη = /ξ(Reί/)-^-(0-flO/) - 9β(η))dη
P Ά

^ ( f e ( η ) f β ( η ) ) η / ξ ( / ) ^
P ~ Ά r P ~

Now consider the second of the two residues. We have, using (3.6),

, f i ) = - ί / fθ(tι)dη
l % l \η-εo\=r

so that

-^e- ί aRes(/ e(ε),ε) = _A-^-'*(_(e" *u>φ) + (p(^)).

Finally we consider fβ(p2) Separating out the singular part of fo(η) near η = ε
we have

fΘ(p2)=-^--Λes(fθ(εlε) + R(p2),

where

is the regular part of fe at p2. Using (3.6) and recalling that p1 e (εo — 5,̂ 0 + 5)
we have

\R(p2) / 2 "—^Ά\ = const λ2 .

But

so that
| ( 2 | ^ const

It follows that
1
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Thus we arrive at the estimate

{Ψp,e-itHξ(H)Φ} = λ * Λ{eip ' xu,φ) + Θ(λ2)) (e^2' - e~m)
(2π)2 p — ε \ /

This proves the proposition. D

We end this section by using Proposition 4.1 to prove the main result quoted
in Sect. 1. Let

-Δ 0

and let P — P(£Q-L,εo+
r) ^ e m e spectral projection for //0 onto the subspace of

C ®Z,2(RW) in which Ho has spectrum (εo — |,εo + £)• ^y assumption, P has the
integral kernel

P(X,y) = φ(X)®φ*(y)+J— J ψp(x)®ψ;(y)d"p, (4.4)
\^π) ιn |2cί ί Λ_

where Φ and ¥^ are as in Proposition 4.1 and ( V ] = {φλ φ2). Recall the cut-

off function ξ introduced in Proposition 4.1. The content of Proposition 4.1 is
an estimate for the continuum matrix elements (Ψp,e~ltHξ(H)Φ). The matrix el-
ement (Φ,e~itHξ(H)Φ) is estimated by Hunziker in Theorem 1 of [H]. It is found
that there is an a, depending on λ and satisfying \a — 1| ^ const A2, and, for each
N e {1,2,3,...}, a constant b(N) such that

\(Φ,e-itHξ(H)Φ) - ae~m\ ^ b(N)λ2(l + 0"^ , (4.5)

uniformly for t G [0,oo). Using (4.5) and Proposition 4.1 we can estimate Pe~ιtH

ξ(H)Φ. We now show that this is enough to estimate e~ιtHΦ itself.

Proposition 4.2. Let

i I is as in Proposition 4.1 and uφ(p) = (2π)~%(eip ' xu,φ) is

the Fourier transform of the function uφ. /^ImβΦO then

^Φ-ΦΓll ^ const A2

uniformly in t.

Proof We must bound

| | e - ^ Φ - Φ[O ) | | 2 - 1 + | |Φ[O ) | | 2 - 2 R e ( e - / W Φ , φ [ 0 ) ) . (4.6)
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We begin by computing the inner product (e~ ί WΦ,φ[0 )>. Note that Pφ\0) = Φ,(0) so
that (e"itHΦ,Φ^0)) = (Pe-itHΦ,Φ^0)). Recalling the cutoff function ξ introduced in
Proposition 4.1 we have

(e-itHΦ, Φ<0)) = | |Φ<0 ) | |2 + (Pe-itHξ(H)Φ - φf\ Φ<0))

+ {Pe~itH(\ - ζ{H))Φ,φf}) .

As in [H] we can use (4.5) to bound ||(1 — ξ(H))Φ\\. The only condition on ξ
is that it be in CQ°(R) and satisfy (4.1). Thus (4.5) remains true if ξ is replaced
by ξ2. We have

||(1 - ξ(H))Φf = 1 - 2(Φ,ξ(H)Φ) + (Φ,ξ(H)2Φ).

Setting / = 0 in (4.5) we find that (Φ,ξ(H)Φ) = 1 + Θ(λ2) and (Φ,ξ(H)2Φ) =
1 +Θ(λ2) so that

||(1 -ξ(H))Φ\\ S const A.

It follows that

| ( A f l W ( l -ξ(H))Φ,Φ{P)I g constA||Φr

(0) | |.

The inner product {Pe~ιtHξ(H)Φ - φf\φ^0)) is estimated by noting that

{Pe~mξ(H)Φ)(x)

= {Φ,e-itHξ(H)Φ)Φ(x) + - J - / {Ψp,e-itHξ(H)Φ)Ψp(x)d"p

and using Proposition 4.1 and (4.5). One finds that

\{Pe-itHξ(H)Φ - Φf\ Φf])\ S const A2 | |ΦίO ) | | .

Thus

| ^ - ^ φ ? φ ( ° ) ) _ | | φ ( ° ) | | 2 | ^ constA| |φ| 0 ) | | .

All that remains is to estimate the norm of φf\ We have

(4.7)

β I m a

! /> | 2 -ε

r2

dnp

J

where

Sn-\

\(eiζβ χu,φ)\2dΩ(p)
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It follows from assumption (vi) that g'(ζ) and g"(ζ) are bounded on [->/εo - $,

\/εo + $]• Using Taylor's theorem we can estimate the integral

cos((C2 - Ree)ί)

where we have noted that Imε = %g(y/eo)X2 + ^(A4). It follows that

||φ[0) | | = \+Θ(λ2). (4.8)

Substituting (4.7) and (4.8) in (4.6) the proposition follows. D

As a final comment we point out that Proposition 4.1 and (4.5) allow for a
much shaφer estimate for the propogation of the restricted state ξ(H)Φ. Explicitly,
if we let

λj

where the functions aj(p) are those introduced in Proposition 4.1 for \p\2 G (eo ~
5»εo + 5) a n c^ a r e z e Γ 0 o m e r w i s e a n d a is the constant introduced in (4.5), one has
for every N G {1,2,3,...} a constant K(N) such that

\\e-itHξ{H)Φ-Φ{P\\ S K(N)λ(\+tyτ .

Not only does Φ ^ approximate e~itHξ(H)Φ to within order λ rather than λ?

but the error goes to zero as t —> oo as well. Simply replacing Φ, by Φ, in

Proposition 4.2 will not help. A factor of λ i and the decrease of the error with
increasing t would both be lost in bounding ||(1 — ξ(H))Φ\\, that is, in replacing
e~itHξ(H)Φ with e~itHΦ. In fact one does not expect the error \\e~itHΦ - φf]\\ to
decrease as t increases without further assumptions on H. Indeed, if H has other
resonances whose real parts lie somewhere in the support of 1 — ξ then one expects
these resonances to become excited as e~ιtHΦ evolves, producing meta-stable states
which themselves decay. Thus, higher order terms in λ should contain terms which
behave like φf\ but with ε replaced by these other resonances. These terms would
not decrease with increasing t.
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