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Abstract: We consider the ¢§ quantum field theory on a torus and study the short
distance behavior. We reproduce the standard result that the singularities can be re-
moved by a simple mass renormalization. For the resulting model we give an L,
bound on the short distance regularity of the correlation functions. To obtain these
results we develop a systematic treatment of the generating functional for correlations
using a renormalization group method incorporating background fields.

1. Introduction

The renormalization group is not a group, but a technique for isolating the singularities
of a quantum field theory. Originally invented by Wilson it has become one of the
standard tools used in rigorous work on the subject. Still, its application is far from
routine.

In a series of papers starting with a paper by Brydges and Yau [BY90], the authors
have developed a systematic version of the technique which we believe has substan-
tial advantages [Bry92, DH91, DH92b, DH92a, DH93]. Until now the Brydges-Yau
method has not been applied to ¢* type models, but we have developed a modification
(incorporating background fields) which covers this case as well. In this paper we use
it to study the short distance problem for the ¢% model. We believe it can be used for
many other problems. The paper [BDH93] also reviews the general framework of the
background field method.

Here is a brief history of rigorous work on the gb}‘ model. The original stabil-
ity estimate was given by Glimm and Jaffe [GJ73] in a very difficult proof using a
phase-cell cluster expansion. The complete construction of the model was finished
by Feldman and Osterwalder [FO76] and Magnen and Sénéor [MS77]. Since then it
has been worked over by many other authors, usually looking for a simpler proof.
Some of the work continued to use a phase-cell cluster expansion, for example Battle
and Federbush [BF83] and Williamson [Wil87]. Others used renormalization group
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techniques, for example Benfatto et al [BCG*80] and Bataban [Ba83]. Each of these
techniques was subsequently substantially strengthened to attack more difficult mod-
els. For the phase-cell cluster expansion there is the recent work of the Paris school
[FMRS86, Riv91l, MRS93] and for the renormalization group there is the work of
Gawedzki and Kupiainen [GK85, GK86]. The method of Gawedzki and Kupiainen
was applied to the ¢5 model in [Wat89]. We should also mention a third method using
a random path representation due to Brydges, Frohlich, and Sokal [BFS83].

The present paper is intended not only as a discussion of the ¢3 model, but also
as a development of new and general methods. We work in a fixed volume and
use the renormalization group with a mass renormalization to obtain stability bounds
independent of the ultraviolet cutoff. In §2 we set up the ¢5 model, and define the
renormalization group. The perturbative renormalization problem is solved to second
order in §3, as a warmup to non-perturbative problem. Section §4 sets up a general
renormalization group for polymer expansions with background fields. Section §5
provides the details of the norms we will work with. The technical heart of the paper
is in §6 where we give in a model independent form the basic lemmas which control
a single renormalization group step. We return to ¢3 in §7 where we set up and prove
the main theorem giving uniform bounds on the polymer expansions at each step
of the renormalization group. This implies the ultraviolet stability of the generating
functional for correlations. The final section §8 derives in a straightforward fashion
new bounds on all correlation functions. These say, for example, that the test functions
can be taken to be in L, for any p > 3. All these results carry over to the theory with
no ultraviolet cutoff. The ultraviolet limit could be taken using our techniques, but
this requires further technical results we do not include. (See however [DH93] where
this step is carried out for the sine-Gordon model).

Acknowledgement. We thank Lon Rosen for helpful conversations and comments.

2. The Model and the Renormalization Group

We define the ¢ model on the unit torus A = R?/Z%. (We could as well take any
finite torus.) The fields are real valued functions ¢ on A and the model is defined by
a measure on these functions.

As a reference point we take the massless free theory is defined by the Gaussian
measure with covariance ¥ = (—A)~!, denoted duy(¢). (We could as well take a
massive theory with covariance (—/A +m?)~1.) We also use a regularized version of
the free measure, where ¥ is replaced by a covariance ¥y with kernel:

In(e,y) = A7 Y ey LT )
pEA*
P70
Here A* = (2wZ)?. This function approximates ¥ at distances larger than @(L~),
and converges to ¥ as N — oo. The kernel is now smooth and the corresponding
measure dug, (¢) can be realized on a suitable Sobolev space F#(A) of smooth
functions whose integral is zero.
The regularized full theory is defined by a measure

ZN($)dpsy () 2
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on .F#(A) with )
ZN)=e V@, 3)

The potential is of the form
VN () = A\Va(o, 4; ) + uVa(p, A; ) @

where we use the notation
Vo, 4; U)=/ D ()" iy dz. 5)
A

Here ) is the coupling constant and p is a possible adjustment in the mass.
The correlation functions of this measure have the generating functional

N — [ »ip,®) - i(p,¢) 7N -
V)= (o) = [ 092 Gdpan @) ©

where (p, ¢) = [, p(x)p(x)dz.
The goal is to show that a normalized generating functional has a limit as N — oo.

For d = 2 this is well-known. For our case d = 3 there is a limit provided we
renormalize the mass (i.e. let ;1 depend on V). For d > 4 it may be that all limits are
trivial no matter how one renormalizes.

If we make a contour shift in the functional integral replacing ¢ by ¢ + ity p we
obtain the formula

V() = e VAewp) / IV (6 + ionp)dusy (@) ™
= e PPN g, x 2 )i p)

where p,* denotes convolution by the Gaussian measure dy,. Since ¥y has a limit
as N — oo, this shows that it suffices to find a limit for pg, * ZV.

We break the integral with respect to uz, into pieces as follows. For any 0 < ¢ <
N, we define the fluctuation covariance ;" = 9y — ,, where ¥; is given by (1) with
N — ¢ when 7 > 0 and ¥y = 0. For ¢ > 0, this has Fourier transform

DN @) =p e VP —e LT (8)
and @)’ = ¥ For each 4, there is a decomposition of Gaussian measures
Poy = Mo, ¥ [N - )
If we define
7V = g+ 2V (10)
for any 1 <14 < N then we have
oy ¥ ZN =y« ZN. (11)

This further isolates the N dependence. The family {ZN} interpolates between ZV
and Z{¥ = ps, * ZN. Bach density Z! is supposed to capture the behaviour of the
original measure on length scales greater than (L ™").

To control the Z} it is also advantageous to give an iterative definition:
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2, =, + 2V (12

with a single-slice fluctuation covariance C; =5 —;_, (note the special case C = T1).

As it stands each fluctuation integral comes on a different momentum scale. To
really understand the iteration we need to scale the problem so each fluctuation step
comes on the same scale, say a unit scale. This will make it easier to identify the
most important terms in the functionals ZiN (the relevant variables) and follow the
true renormalization group flow.

The basic rescaling is a transformation from FB(A) to FE(Ay) where Ay =
R?/(LNZ)?. We define ZV on F#(An) by

ZN(¢)= ZN () (13)
where in general
or(x) = L922¢(La). (14)
After this change of variables we find
(o * ZV)(@) = (poy * ZV N Pr-n) (15)
where the new covariance vy has unit cutoff and is given by
un(@,y) = Ay Y ePeTpT2e (16)
PGA*N
P70

where A% = 2nL~N Z)<. The interaction density is now
ZN(@g)=e V@ (17)

with
VN(9) = AnVa(@, An;un) + unVa(g, AN vw)), (18)
)\N - L—(4_d)N)\ UN = L_2N[L.
We also define effective densities ZY on F#(A;) by

ZN @) = Z) (pre) (19)

and find that (12) becomes
ZN\(9) = luc, * ZNN$r-1) (20)

where now (taking vg = 0),
Ciz—y) = vi@—y)— L i1z -1y)/L) 1)

. 2 .
| i)™ S pear €PC VP2 P — 7Ly > 1

P70 . 2
IA]I_I ZpEA’l* 6zp(m_y)p_2€_p 1=1
P70

The dependence on i is weak (except for ¢ = 1) and hereafter we write C for C;.
Note that (11) can now be written (usy * ZV)¢) = (1o, * Z¥)(¢1—+) and this
gives an expression for S™V(p) on the volume A; for any i. Specializing to i = 0 we
have
SN(p) = =120 78 (it ). 22)
Thus to gain control over the generating functional S (p) it suffices to have control
over Z}{.
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3. Perturbative Renormalization

Now we specialize to d=3 and discuss renormalization. If one calculates the physical
mass in perturbation theory one finds that the shift represented by the diagram

N
N

diverges like (P(N) as N — oo. This turns out to be the only serious divergence and
one renormalizes by subtracting it off, choosing py = u% in (18) to be defined by

iy = 480y / un(z —y) dy. (23)

AN

It corresponds to choosing p = L*N X = (P(N) in (4). Note that p is very small
(@(A%\,‘e)). It is characteristic of superrenormalizable models that the rescaled cou-
pling constants like Ay and py are exponentially small.

We now show how this does the job in perturbation theory. We consider the
effective potentials V;¥ defined by

ZY = exp(-V,N)

and show that they stay bounded to second order in A as N — oo. This will be a
guide to the complete flow which we study later on. Our discussion parallels that of
[GK86].

We focus our attention on the relevant terms: those which grow under the iteration
of the renormalization group map (20). In addition to terms [ : ¢* : and [ : ¢* :
which grow respectively like L? and L, we also consider nonlocal polynomials of the
form

Q" (v, w; ¢) = / DP@)"  w(@ —y) : py)"  dady. (24)
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These have the diagrammatic representation:

- o
N

]
L
]

Qa4

Ignoring constants and (0¢)*> terms we now assert that the effective potential on

FE(A;) has the form
Vi = AVai) + pN Va(vi) — Qs + O(NY)

where
Qi = M2(8Q%(v,, wi¥) +36Q% (v;, (wN)?)).
Here \; = L7\,
wl@—y) = Y L O a, L)
k=i+1

= LNy (LN Tz —y) —viz —y)
A7 ey LT o

peA:
P50

(except for ¢ = 0 where the e~ P term is omitted). Also

py = LPNOuN 48N /(wZN(x - y))3d3:

48X} / (w¥ @ - y) + vz — ) — W) @ - y)) dz.

(25)

(26)

27)

(28)

This establishes the boundedness as N — oo since in the expression for ul¥ the two

(?(N) divergences cancel and give a finite result.
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To see that the assertion is true we proceed by induction and compute V;_; from
V;. We have

V1)
—log(uc, * exp(—V3))

Vic1()
V#

where now ¢;,-1(x) = L™'/2¢(x/L). Perturbation theory can be generated by expand-
ing in powers of V' and has the form

V@) = (uc, * Vi) +1/2(—pc, * Vi + (e, * Vi)*) +... .

To evaluate the convolutions it is helpful to know that on polynomials F, uc *x F' =
e?¢ F where Ac is defined in (34). Also one has : F':c= e 4°F.
For the first order term we find the contributions

pe * Vi = A Va@h) + pl Voot
=7 (8Q°(*, wy) + T2Q* (v*, w;C) + 144Q* (0", w;C?))
=7 (36Q% (0", w) + 144Q*(v*, wiC)) + O(X))

where v* = v; — C and we abbreviate w; = sz . For the second order term we find
(cf. [GK86], Eq. 2.33)

—A2(8Q0, ©) + 36Q° (", C7) + 48Q2(", ) + (A,
Adding these all together and defining w* = w; + C we find

Vi = \Vaeh) + pl V)
=7 (8Q°*, w) +36Q* (", (")) + 48Q* (", ")’ — w)))
+OD).

Now in the term —48)\2Q*(v*, (w*)® —w}) replace ¢(z)d(y) by 1/2(p(@)*+¢(y)?).
The difference depends only on ¢ . What is left (modulo constants and (9¢)? terms)
is 6plY Vo(v*) where

sl = —48\2 / (w'@ 9’ — 0l @~ y’)de 29)

and we combine this with the other quadratic term.
Now do the scaling and compute V;_;. We use that v;_(z —y) = Lv*(L(z — y)),

that w,—(z — y) = Lw*(L(z — y)) , that X\;_; = L);, and that
pi = L2+ 6pd). (30)

We obtain (25) for ¢ — 1 and so our assertion is correct.

When we come to this step for the full non-perturbative theory there will be a
number of modifications. There will be explicit bounds on the errors. The interaction
terms will be broken up into local pieces. In each step we will only pick out local
contributions to the mass and so there will be some residual non-local Q?. Nevertheless
the core idea is the same.
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4. Polymer Expansions

The starting point in an analysis such as this is the representation of each Z = ZiN by
a polymer expansion in the d-dimensional torus A = A;. In the original Brydges-Yau
treatment [BY90] polymers are closed so that adjacent blocks overlap and thus are
excluded from occurring in a single term in the expansion. This has some definite
advantages, particularly for infrared problems. Nevertheless, in the present paper we
find it convenient to return to a more standard formulation in which the basic blocks
are open (or localized by their centers), so that adjacent blocks do not overlap. It
seems that the open approach we adopt will work for most ultraviolet problems.

A polymer X is defined to be a union of blocks, where a block is an open unit
cube centered on a point of the lattice Z¢. Every set is a polymer unless otherwise
specified. For example, A is now regarded as a union of open blocks. We consider
polymer activities which are real valued functions A(X) defined on polymers and
possibly other variables. There is a commutative product

(Ao B)(X) = Z AY)B(X \Y)
YcXx
and an exponential
Exp(A)=T +A+1/2A0 A+..
where .7 (()) = 1 and otherwise .7 (X) = 0. Note that one can also write

(Fxp)X) =Y [[Ax)
{x;y J
where the sum is over partitions of X into collections of polymers { X }.
In our formalism each interaction density Z on some torus A is expressed as a
polymer expansion
Z(¢) = const (Ezp(A))(A, ) 31)
with polymer activities A(X,¢) depending on ¢(x) for z € X (in a sense made
precise in chapter 5). It will further be convenient to write polymer activities A in the
form of a background term and a deviation. The simplest choice for the background
is O where [O(X) defined to be 1 if |X| = 1 (i.e. X is a single block) and to be
0 otherwise. More generally we take the form Je~" and assume that V(X ¢) is
additive in X:
VX, 9)= ) V(A 9) (32)
ACX
where the sum is over single blocks A contained in X. The deviation is represented
by polymer activities K (X, ¢) so that

A=0e"" +K. (33)
For any polymer Z one finds that
(Fap@e™" + KNZ)= ) exp(-V(Z\ X)) [[ KXy
{X;} J

where now the sum is over sets { X} of disjoint polymers in Z (possibly empty) and
X =U;X;.

We now discuss how the representation (31) - (33) changes under the action of
the renormalization group.
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4.1. The Fluctuation Step. Suppose that uc is a Gaussian measure on F&(A) with
covariance C' and suppose that we have polymer activities A. We want to find new
activities % (A) so that

pe * (EazpA) = Exp(F (A)).
We reformulate this as asking for activities A(t) such that
pec * (EzpA) = Exp(At))

and then taking F (A) = A(1). Now &zp has an inverse £og defined on activities
which have the value 1 on the empty set. Thus if Z(t) = pic * (& xpA) then A(t) =
Log(Z(t)).

The function Z(2) is the solution of the infinite dimensional diffusion equation

8Z/0t — NcZ =0

where
2

IP(x)0P(y)

(Functional derivatives are discussed in chapter 5.) It follows that A(t) = £og(Z(t))
satisfies the equation

Ao = 1/2/dxdyC(z,y) 34)

0A 07

P = _— -1
ot a °7
= A(jZOZ—l
0A OA

with the initial condition A(0) = A. Here

0A 0OA 0A 0A
(22022 = | dadyCa, y) e 0 o2
(aqs’aczs) / T V55 © 56w

This is equivalent to the integral equation

0A(s) o@A(s)) ds
op ° 0¢ '

Note that a finite iteration of this equation yields a closed form expression for A(t, X).
In the background version (33) we can write the result as

t
A(t):utC*A-l-l/Z/ N(t—s)C*C( (36)
0

pe * Exp@e™ + K) = Exp@e” " + F(K)) (37)
for any additive V] provided we define

FEK)=F Qe V+K)—DOe .
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4.2. The Extraction Step. This is a rearrangement that is helpful in keeping track
of the leading terms. In this step one removes a piece F'(X,¢) from the activities
A(X, ¢). Typically F' is a local version of the low order terms in A. We suppose that

F(X, ¢) = Fo(X, 9) + Fi(X, ¢)
where for a = 0,1 we have
Fa(Xa ¢) = aa(X)Pa(Xa (b)

and assume that P, is additive in X. The extraction operation factors the Fy terms
out of the &zp, but incorporates the F; terms into a change in the potential V. (For
¢§, Fy will be constant and F; will be quadratic in ¢).

Given the activities A = Je~V + K we seek new activities & (A) = e~V +&(K)
so that:

Erp@e™" + K)(A) =exp( Y Fo(Y)Ezp@e™" + EE))A),  (38)

Yca
where the potential is changed by
VI(A)=V(A) - acx(MIPi(A)] (39)
YDA
and the linearization in K and F is
E(K,F)=K — Fe V. (40)

See Eq. (52) in the appendix to this section for the formula for &.

4.3. The Scaling Step. Here a polymer expansion & zp(A) on A; is scaled to a polymer
expansion on A;_;. To keep the basic blocks the same size one must also incorporate
a reblocking operation. _

The new activities .#°(A) are chosen so that

Exp(F (A Ai-1, $) = Exp(A)( A, p1-1)-

We find that _
Laz,o= >, [[AX; L. (41)

{X,}—>LZ j

The sum in (41) is over sets of disjoint polymers { X} with the property that {X ]L} is
overlap connected and the union of the {XF} is LZ, where X* denotes the smallest
L-polymer containing X. A set {X;} of polymers is called overlap connected if the
graph on {X;} consisting of bonds (i7) such that X; N X; # 0 is connected.

In the background version we define .#°(K), so as to satisfy

Exp@e™ + LK) Ai1,8) = Exp@e™ + K)(As, dp-1),

by
Oe V' +Z(K)=Z0e "V +K)
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where V/(X, ¢) = V(LX, ¢1-1). Then, after some rearrangement, we find

FSENZ,p)= Y exp(~VILZ\X,¢p-) [[KXj b))  (42)
J

{(X;}~L2Z

where X = UX;. Now the sum is over sets of disjoint polymers {X;} with the
property that {X [} is overlap connected and the union of the {X}} is LZ.

4.4. Appendix: The Equation for & (K). Given a polymer activity J define

7=y [[7xo (43)

{X7. } —X 1
where the sum is over overlap connected sets of distinct polymers whose union is X.

Lemma 1.

> I = Ezp@+ 79X, (44)

{X.}

where the sum is over sets of distinct polymers contained in X.

Proof. Group the {X,} into disjoint overlap connected sets.

O
Lemma 2. Let F' be any polymer activity and let
2X)= Y FY). (45)
YCX
Then
e = Exp@+ (eF — ). (46)

Proof. Write e?(X) = [y x(eF'™ — 1+ 1), expand the product and use Lemma 1
with J =ef' — 1.

O
Lemma 3. Let K, F' be any polymer activities and let
f((X)r= K(X) — (el = D)*(X)e VX, 47
Then
eV o&zp(K)=e"V*? o Lxp(K) (48)

with §2 as in Lemma 2.
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Proof. €V o Exp(K) = Ezp(@e~ Y + K) by the additivity of V (see Eq. 32).
Exp@e " + K) = Exp@e=V +(ef — 1)*e™V) o &zxp(K) by the definition of K.
By Lemma 2, &zp(@e~" +(eF — e V) =e V&xp@ + (eF — 1)) = e V*+2,

O

Since {2 is not additive, we cannot immediately rewrite =¥+ o &xp(K) in the
form & xp(De—Vl + K) for some V’. We are now going to absorb this non-additivity
by reorganizing e~V** o &zp(K) into new polymers.

Let 2o(X) =)y x Fa(Y) and let X¢= A\ X. We have

> F(2)

ZCcXe

> Y a@Pi)

ZCXeACZ

IR DI }m(Z)Pl(A).

ACXe | ZDA  ZHA,ZgXxe

21(X°)

Add V(X°) =3 5 xe V(A) to both sides. Recalling the definition of V', Eq. (39)
we find

V-2)X9) = VIX9+ Y. > @R

ACXeZDAZZgXe

VX9+ Y aDPZ\ X).
Z¢X,ZgXe

Therefore
e—V+.Ql(XC) - e—V/(XC) . H e_al(Z)PI(Z\X)
Z¢X,Z¢ X¢

V. 3 I EnED 1y )

{2k} K

with Z € {Z;} required to intersect X and X° . We also have

e®(xe) = eP) [ @ —1+1)
Y:YNX

ey [P -1 (50)

{v;} g

where the sum is over sets {Y;} of distinct polymers intersecting X. Substitute Egs.
(49,50) and the definition of & zp(K) into

eV o Eap(BK) M) = Y e (XY NX)Eap(RNX). (51
XcA

Then group the polymers in the sum over {X;},{Y;},{Zx} into disjoint overlap

connected sets. One finds that e~V 20 Ezp(K)(A) = e (AN)Ezp@eV +&(K))(A)
with &(K) = &(K, F) given by
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EE)W) = > exp(—V'(W \ X)) (52)
{X.3:4Y; Y {Zk}—-Ww

[T B [Jexp(—Fo¥i)) — D [ Jexp(—an(Ze) Pu(Zi \ X)) — D).
i j k

Here X = U;X;, and the sum is over collections of disjoint subsets {X;} and pairs
of collections {Y}},{Z;} of distinct subsets so that

1. the union is W;

2. each Y; intersects X;

3. each Zj, intersects both X and X¢= A\ X;

4. the polymers {X;},{Y;},{Zx} are overlap connected.

5. Norms

In this section we define the weighted norms on the polymer activities which will
enable us to control the activities K in the renormalization group flow. For more
details see [BY90].

As a preliminary step we make a modification in the definition of the activities.
Typical functionals such as [(8¢)* have functional derivatives with respect to ¢ which
are derivatives of measures. We prefer to avoid this by treating O¢ as a new field.
This is formalized as follows. Let A’ = Ax (), 1,...,d). Every differentiable function
¢ on A determines a function 14 on A’ by

Yp() = p(x) if &= (z,0)
Pg(§) = Opp(x) if &= (x,k).

We consider continuous complex valued functions ) on A’ and at each stage of our
analysis will construct functionals K (X,) with the property that they reduce to
the K (X, ¢) when v = 14. This is possible because all the elementary operations of
Chapter 4 (including .% ) have natural generalizations to functionals on 1. We require
that the K(X, 1)) are & functions on the Banach space C(A’). The derivatives at
1) = 1p4 are measures written as

N K(X, )
571’(51) Tt 6¢(€N) Y=g .

We also require that the support of this measure is X’ x ... x X’.

Since we do want to keep track of the field and its derivatives separately, we
define Aj = A x § and A} = A x (1,...,d). Then we have the decomposition into
components A’ = Ay U A}. For n = (ng,n1) and [n| = ng + n; let K (X, ¢) be
the restriction of K),,|(X, ¢) to (Ay)™ x (A})™. These partial derivatives determine
the full derivative. For each X, ¢, n, let | K,(X, @)| be the total variation norm of

KN(X7 ¢;£17"‘a€N) =

Kn(X, ¢).
Next, dependence on the variable ¢ is dominated by a large field regulator
G =Gleo,e13 X, 9) = eXP(GO/ ¢’ + e / > 7P, (53)
X X 1<]al<s

Here we usually chose s > d/2 + 1 so that ¢ € C!'(X) when G is finite. More
generally, we say that G(X, ¢) is a regulator iff for all polymers X,Y,
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- (G G(X,¢9=0)>1
- (G2) G(X UY, ¢) > G(X, d)G(Y, ¢) whenever X NY = ().

We introduce a partition of unity into products of blocks A = A; x ... x A, and
define
IEnXlle =2 sup [Kn(X,)1allGX,$)7". (54)
. GETH(A)

This choice for G lacks terms from the boundary of X which were necessary
in previous papers to keep G from growing too rapidly under repeated convolution
with the Gaussian measures (cf. the property (78). For ultraviolet problems one can
allow € to start off very small and hence allow the more rapid growth. In any case
our open set formalism does not allow boundary terms, since condition (G2) would
be violated.

Dependence on the set X is controlled by a large set regulator which we will
choose to be either of the form y(X) = 2/X| or of the form

rx) = AXlex) (55)
ex) = inf]] ok (56)
beT

for some large constant A > L?*!. Here the infimum is over trees 7 composed of
bonds b connecting the centres of the blocks in X. Lengths such as |b| are measured
in an {* metric on R¢. The function 6 is defined so that 8(s) =1 for s =0, 1 and

0({s/L}) = L% '0(s), s>2 (57)

where {z} denotes the smallest integer greater than or equal to x.

This regulator has been constructed to satisfy certain bounds which relate a poly-
mer X to X T, the smallest union of L-blocks containing X. The polymer X is called
a small set if its closure is connected and if it has volume |X| < 2%. Otherwise it is
a large set. For any set X, there is a constant ¢ such that

(Y IUL'XT) < e(y 2 I)(X). (58)
For any large set X, there is a stronger bound
(yIDYLTXE) < eL™ 4Ny 3 0)(X). (59)

These bounds are needed to control the scaling step (41), and are proved in [BY90].
Next for each n define the norm

[ Knlle,r =sup Y I'OIKn(X)]c- (60)
A xo5A
If the function is translation invariant one can drop the supremum.
Finally, for h = (hg, h1), h™ = hg°h]" and n! = ng!n;! we define
IKllrn =Y (B"/n)) [ Knllc,r- (61)
n

A functional for which this norm is finite is analytic in . In the translation invariant
case this can also be written
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IKlern=Y_ TXIKX)|en- (62)
XDA

We will find it necessary to have extra control over the low order ¢ and 9¢
derivatives at ¢ = 0. This control is provided by an additional norm defined in the
translation invariant case by

h’n
KOk = D —lIKn(X, 6 =0) (63)

n

> LEOIK)|.

XDA

|K|rn

The kernel norm |K|r;, can be thought of as a limiting case of the norms || K||¢, 1 a
in which G is concentrated at ¢ = 0.
The following multiplicative properties can be derived:

IK1(X)K(Xlgieorn < I1K1XDan 1 EK2(XD)Gahs (64)
|IKi(X) K (X)) < |Ki(X)|n [K2(X)|h- (65)

We now estimate the norms of certain classes of functionals which will arise later.
First, we consider polynomials of degree r of the form

P(X,¢)= Z 1/k! ./Xk d(x1)...0(@R)pr(X, x4, ..., T )dT) ... dT) (66)
k=0

where pp(X, z1, ..., T )dz;...dTy, is a symmetric measure supported on X*, and ¢(x)
means (z, §).

Lemma 4. For some constant ¢ and € > 0

IPlicearn < |Plph./are (67)

< <1 + \/c1"/eh2>7~ |P|r.p- (68)

Remark. The norm | P|rp, is generally easy to estimate. This lemma also has straight-
forward generalizations to polynomials depending on gradients.

Proof. Computing the derivatives and taking the norm of the measure yields

1PaX, 9)1all < D1/ —n)lIgllin IpeO1 4]l

k=n

But by a Sobolev inequality
”¢”X,oo S V CT/GG(G/Tv 6/7‘, X7 ¢)

which leads to

k—n)/2
1Pallceo.r < S 1/ =)t (er/e) ™ lIpell .
k
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Multiplying by h™/n! and summing over n gives the first bound and the second

follows directly.
O

For the next example, we estimate e~ where V (X, ¢)=AV4(X, ¢; v)+uVa(X, ¢;v)
with A > 0 and p possibly complex.

Theorem 1. Let \h*, €2/, and |u|? /X be sufficiently small and let h~>v(0) < 1. Then
for any polymer X :

leVPlgeon < 2%, (69)
eV, < 2l (70)

Remark. If X is a subset of a unit block A, then the same proof gives:
le™ P geopn < 2. (71)

This fact will be needed when we verify the hypotheses of Theorem 6.

Proof. We first prove the result when X is a single block A. We compute the deriva-
tives of e~V by

B o
e @, ) = S5 S DT [ Ve, (62 )V
4 J

Here 7 = {n;} is any partition of 1,...,n and n; = |r;|, and z., denotes the set of
points z; with ¢ € ;. Now take the total variation norm. Furthermore classify the
partitions by the number of elements r and order the elements in the partition which
overcounts by a factor of r!. Finally use the fact that there are n!/n;!...n,! ordered
partitions with given n;. This yields

2 eV @l < IEDD I1 i@l e,
n j=l,.r
Dropping the constraint ZJ nj =n gives
||< VO < exp(—RV($) + Y —IIV @ ).
n>1

Next we note that
LY W@l < -3t [ p o+ uln) [ oD )

n>1

Here p(t) is a polynomial whose coefficients are integers times non-negative powers of
h~2v(0) and p(t) = t*+terms of lower degree in ¢. Also g is a polynomial of the same
type with q(t) = t2+. .. Since eh? = (eA™1/2)(A/2h?) and |u|h? = (|u|A~/?)(A/2h?)
it follows that

— RV (¢) + Z ' S Vo + eb? /A h72 g < OO + O(E +|p)/N)  (73)

n>1
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for all ¢. From this we conclude
h’l’l
e Dnallaeo < exp (FORY + O(E + )/ V) - (74)

This argument was valid for arbitrary A > /v(0). Therefore we can replace h by 4h
and conclude that

h* _
— e nllaco < 47" exp (CORY +O(E +|uH/N) . (75)
If we now take the parameters sufficiently small the sum over n is bounded by 2 as
required.
In the general case we write
eV = [ eV,
AeX
Gx) = [] cw.
Aex

By the multiplicative property (64),
le™VOllgn < T eV @llgn < 21X
Aex

The kernel bound follows similarly.
O

Corollary 1. Under the hypotheses of the theorem there is a constant 0 < a < 1 such
that if € > aA'/?, and P is a polynomial of degree r then

IPe Vlgoenrn < (1+4/er/aX/2h2)| P, (76)

|Pe VIrn < |Plyrp. (77)

Proof. Choose a so that the theorem holds for € < a)\'/2. We prove the bound for
¢’ = € = aA'/2. Combining the theorem and Lemma 4 we have

I1Pe Vllcoe,rn < lIPlaeoqrn sup VX eVl ae0,n]
< (A +y/er/eh®)"|Plyrh.

The result (76) follows for € > €. The kernel bound (77) is similar.

6. Estimates on .% , & ,.%.

In this chapter we obtain general estimates on the three functionals .77 , & and .
which make up the renormalization group transformation for any space dimension d.

For greater generality, we treat .% rather than .% . For the same reason, we will
treat & and . with hypotheses for a general background V.
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6.1. Estimates on % . The basic result bounds .% (A) for A not too large, provided
we allow a deterioration of the regulators G and h. Let G(t) be a family of large field
regulators which satisfies the “homotopy” property

f—sc * G(s) < Gt) for 0 < s <t < 1 (78)

and let h = (h,h), b’ = (W', h), with b’ < h. We denote “before” and “after” norms
by || - llo=1-llgo,r,n and || - |li = || - |Gy, 1/~ The size of the fluctuation covariance
C is measured by a norm

ICllo = sup > C(AL, A)B(d(A, Ar))

1 AZ

where C(Ay, A2) = SUpPg, e a, £,e 4, [C(€1,&2)|- We suppose that A is not too large in
relation to the above choices:

[4llo < D = (16]|Clo)~"(h — h')%.
Theorem 2. [BY90] Under these assumptions,
17 (Dl < [1Allo
and the map A — F (A) is Frechet analytic.

Remark. Analyticity is reviewed in [DH93].

We can obtain sharper control over the fluctuation step if we can find approximate
solutions of the flow equation (35) for %(A) = A(t). Suppose B(%) satisfies

0B 1 0B 0B

where the error term E(t) is to be thought of as small. Let (%);(A4; B) denote the
derivative of the fluctuation operator evaluated at A, namely

_ d -
(P1(A;B) = EB%(A + 3B)|p=0- (80)

The following formula can be used to show that if A(0) is close to B(0), then A(t)
remains close to B(t).
Theorem 3. Suppose A(0) = B(0)+ R(0). Then F(A0)) = A(t) = B@t)+ R(t) where

1 t _
R(t) = /0 (FD1(B(0) + sR(0); R(0))ds — /0 (Fi-s), (B(s); E(s))ds. €2y

Proof.

A(t) — B(®) )
[32;,'(3 (0) + R(0)) — F(B(0))] + [F(B(0)) — B(@)]

R(t)

1 t
- d -
/0 (F)1(B(0) + sR(0); R(0))ds — /0 E%-S(B(S))d&
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Now
LI B = T (Bl o
= T (FBE) + FaBs )] o
= (Zis), (B(s); E(s))
where E(s) = — L7 (B(s)) + 282,

O
This formula will be used in conjunction with the following bounds on the lin-
earized fluctuation operator:

Theorem 4. Assume the hypotheses of Theorem 2 hold with the family G(t) satisfying
G, X,9p=0) <vX)forallt €[0,1].

1 If||Allo < 3D then
[-7(A; B)[l1 < 2]|Bllo- (82)

2. Let ||Allgwyyr,n < 4. For any n = (n,m) with 1) € [0,1) and any M there exists
C =C(n, M, ||C||g) such that for all sufficiently large h,

|\ A(A; B)|rym < C(B|r1 + h™||Bllco)~rn)- (83)

Remark. The idea is that || B|| enters the kernel estimates with a large negative power
of h to reduce its contribution.

Proof.

1. The first bound is a consequence of the Cauchy integral formula:
> N—1 d,B =
FA(A; B) = (2mi) ﬁ‘? (A+3B).

We integrate over the contour || = 1D||B||;"! and use the bound ||.7 (A +

BB <A+ BBHO < £+ 2 which follows by Theorem 2.
2. The difficulty here is that there is no straightforward version of Theorem 2 for
the kernel norm. We consider the Taylor expansion of .7 (aA4; B) about o = 0:

N
- 1 = 1 do
j=

and take the | - |1, norm of both sides. For the error term, we take the contour
ol =R = ;DllAllG(o) ., (We may assume that R > 2 since h is large) and by
(82) - -

[A(ad; B)lry < | FA@d; Bllcayyrw < 2||Blleo,yrh-

For the terms in the sum over j, we use the bound |A|r; < ||Allco)rp < 4
and apply the following lemma with A’ = h/2. We obtain
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\AUA; B, < CACIY ' (B|ry + B M| Blleoyr,h)

4
+R—N”B||G(0),7F,h~
Since R = @(h?), (83) follows from this bound by choosing N large enough.

a
The technical lemma we need gives bounds on the derivatives of % at A =0:

Lemma 5. Assume the hypotheses of Theorem 2 hold with the family G(t) satisfying
G(t,X,9p=0) < ~y(X) forallt €[0,1]. Then

1. Foranyn > 1

|, A0l < D (5)" [T#4slo (85)

2. For any 1 < 1 and any integer M there is a constant (7 (1) such that for h > 4,
FA(A) = po * A is bounded by

Ay < O Al + M| Allco,yr,n)- (86)
Forn>1
\Z( AL -, A rn < OQ)|C5 7" H(|Aj'F,l,21+hl_M”Aj“G(O),'yl",h) 87)

J
where | - |pp>1 =] |re — |- |rh=o
Proof.

1. This follows immediately from Theorem 2 via Cauchy bounds.

2. We prove these results for .% for all 0 < ¢ < 1. B
For (86), we let A(t) = p;c * A(0) and make a Taylor expansion of A,,(t) =
Wt—s)C * Am(s) around ¢ = s. We find

-1 1 J
An(t,X) = Z(t S)JA]‘ m(8 X)

t
+ ; / t— T)l_l,u(T_s)C * (Alcflm)(s,X)dT.
(-,

Now evaluate at ¢ = 0, and take the variation norm, || - ||. Then use

(AL Aym(t, X, = O]l < Ci(m, ) IC/2M D [1Ap(t, X, 6 =0)].
p=m:|p—m|=2g
(88)
Recall that |A|r, =3, L- s " || Am(¢ = 0)|| . By multiplying by I'(X) and sum-
ming over X, we obtain

IALDmt,0=0)lr < Cim,D) ICI, > 1 Ap(t,¢=0)lIr

p>m:i|p—m|=2j

Co(m, §) |CIIZ, 0~ ™% |A®)| -

AN

IA
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By the hypotheses on G
[lper—s)c * (ALAS)ml(¢ = 0| r

< H/,L(.,-_S)C * (AICA(S))mHG(T),‘YF

< AL An(S)llGes)yr

< GUmClk Y. 14®lewar
p>m:|p—m|=2l

< Cal,m) [Clls R || A(s)| o)y ron- (89)

Therefore
|Am(t, ¢ =0)r < Csl,m,n) { |A(S)|ry+
R A lawarn ), (©90)

- ! -
[Amt, ¢=0)r < = | A®)|cwrh o1

hm
The second inequality is obtained from An@) = Ut—s)C * A(s) and the hy-
potheses on G using (89) with [ = 0. Estimate the terms in the sum |fl(t)|p,,, =
S || Ap(t, ¢ = 0)|| with |m| < M by using (90) with [ the least integer

m m!

such that |m|+2l > M. For |[m| > M use (91). We obtain the bound

|A®)| 1y < OWAG)| 1 + M A es),yr,n) 92)

from which the special case (86) follows.

We prove (87) for n, assuming it is true for ¢ with 1 < % < n (there is no
assumption on n = 2). Taking derivatives in (36) with respect to A at A =0 we
find

_ 1 t
(FPm(Ay, ..., Ap) = 3 ;/0 H—s)c * Cryds 93)
where & _
_ A [ (F)i(AD) (F);(A))
o1y =0 (g o ) | o9

The sum is over partitions of (1, ....n) into two proper subsets I, J and we define
Ar = {A;}icr and ¢ = |I|. Neither set can be empty since (%) = 0. Estimate the
norm of ui—gc * Cry using (92) to obtain

(Fn(AL . A rgn < 95)

t
@(1)2/0 [ICLslrm + WY ™M|ICrillgs) ron 2] ds. (96)
1.7

Now

0 = 0 =
ICralrn < 2||C)ls %l(%)i(AI)IF,h %l(%)j(AJ)IF,h

0
ol llrn < OOl llrg-n>1,
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and by the inductive hypothesis if 1 < ¢,7 < n and (86) if i =1 or j = 1, we
have

IA

OW)||ICllo (T AD | rmi 11T (AD s 31
oW|Cll TI0 451,21 + B~ A5l covrn)-
J

|Crlrym

IN

By similar estimates followed by (85) for .7 we have

ICtillowarwp < COICIlI(FD(AD 6@ (D) i(ADl 6w
< oo|Cliy T4 lcora-
J

These suffice to prove the bound (87) for n > 1.
O

6.2. Estimates on &. An important aspect of the definition of & is finiteness of the
geometric constant 7 defined as the largest number of distinct small sets that can
intersect, i.e.,

T=sup|{X :z € X and X is small}|. 97

Recall that large and small sets were defined in Chapter 5.

Theorem 5. Let G be any regulator. Let F, o;, P;, V, V' and & (K) be defined as
in Sect. 4.2 and suppose F, V are translation invariant. Assume that for some r > 0

le =)l , <2 (98)

for all complex o with |a| < r. A is a unit block. Assume in addition that
-P=1
- Fy(Y), 1(Y)=01ifY is not a small set;
- llewollrs Y eullr, and || K||G,yr,» are sufficiently small.

Then & is jointly analytic in K, Fy, F| and there is (9(1) such that

LN EE)lle,rn < OWKlanqr + lleollr +r7leal r);
2. |EE)|r < OW(Klyr + lloollr + 7~ eallr).

Proof. We prove the first bound. The second bound is a variation in which the large
field regulator G~ is concentrated at ¢ = 0. Also we only give the proof for the case
where K is translation invariant.

We write ¢’ W\X) = [Tacw\x 97(4) where g(X) = e~V'®)/7_ Then we can
redistribute factors g(A) to rewrite Eq. (52) as

EEYW) = > I @y

{X 1AV} {2k} > W ACW\X

[T &) [ Jexp(—Fo¥y) — D [ [ T(Zk, 26 \ X)
i j k
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where n(A) =7 — |{Zy : Zx D A}| and J(Z,Z \ X) = (e« @PEX) _1)g(Z\ X).
Since Zj, are small sets, n(A) > 0. We take the norm using the multiplicative property
(64) and obtain the result

IEEYW)an < > II oy (99)

{X. 1Y 1. {Zk}>W ACW\X

[TIE&Dlen [T lexp-Foi) = I TTI(Z, 2\ Xl gt 1
i j k

We have used [|g(AQ)||gay/-n < 7(A) which follows from (98).
With the contour |¢| = 7' = 2r(3|a;(Z)))~!:

1 dt
J(Z,Z\ X < —
192, 2\ Ollgt xS 27rj{|t(t—1)|
tai(Z)Py(A)— YR
I Acl_[Z\X € ”GTrL(Z\X),h
tai(Z)Pi(A)— YA

< 3r (D)2 \ X).

We have used (98) and assumed Yy - 4 |1 (Y)| < [leu|r < 3.

Next we write .
IEDE DS

{(X.,} N T (X1,..,XN)

where the sum is over ordered sets, but otherwise the restrictions apply. Similarly
{Y,} and {Z} are replaced by sums over (Y1,...,Yy) and (Zi,..., Zy).

The factors y™“)(A) and y(Z; \ X) in (99) combine to give 4" (W \ X). Since
W\ X is a union of sets Y; \ X, Z;\ X and these are small sets, we have |W '\ X| <
24(M + L). Therefore, we can overestimate 4" (W \ X) by 227(M+D) = @(1)M+L
Next we multiply by I'(W) and use I'(W) < [[, I'(X,) [ I'(Y;) [ 1, I'(Zx) which
follows from the overlap connectedness. Then sum over V‘/ with a pin, and use a
spanning tree argument' and the small norm hypotheses to obtain

|&E)lGn,r
(N+M+L) .
< N;L W”K”g,h,qr(@(l)l exp(—Fp) — 1],r)™
N¢M+l,,2l

. <@<1>||a1nw)L

'
< o) (|IKllgnpyr +lloollr +r7 el r) -

Since F' lives on small sets we have dropped the <y in the norms of Fj, «; at the cost
of increasing the @'(1).

1 described in the proof of Lemma 5.1 of [BY90]



166 D. Brydges, J. Dimock, T.R. Hurd

In the case of translation invariance |- ||g,r,n = |- |g,n,r» SO the proof is complete
once we show that |K||ghyr < OW{||K||lg,h~r + |laollr + 77 eu|r} for K =
K + (e F —1)*e~V. The norm of

€ —DreV(X)=e VO N e - D(X) (100)
{(x.} i

is estimated by the same argument we just used. By introducing a Cauchy integral
over a circular contour |¢| = ' chosen so that

10g2/|oo(X)| > 7' > 1+ (2r~ Yy (X)] + 2|ap(X)]) ™
and using the hypothesis on r, one finds
le™ = DX O g/,

= zi I dt H ” —tlao(X)+a (X)Pi(A)]— V(A)“
8 - GT(A)h

- - _M
7 sup H [ tao(X) | g~ tar(X)PA(A) ot e, h]
ACX

< @) (reu(X)] + |ao(X)]) -

<

(for (1) here we need that X is small). Now we use

II((e‘F — e )Xo,
< > I (eayr® H le™ = (X X7 |l grsrixyne

{X;} ACX
This is obtained by writing e~V X) = [T,y g7(A) where g(A) = e=V@/™ and
distributing the factors of g(A). Now one inserts the first bound into the second and

continues as before to obtain the desired bound on K.
O

Corollary 2. Assume the hypotheses of Theorem 5. Let

E(K,F)=K — Fe"
522(K7F)'= g(KaF) - gj(KyF)v

where & (K, F) = &(K). Then

|E>2(K, F||lg,rn < O K| ghqrllelr
|&52(K, F)|r < )| K| rllalr

where ||a||r = |laol|r + Lol r-
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Proof. Since, by construction, &>o(uK,vF) vanishes if either u = 0 or v = 0 and
& (K, F) is analytic, we have the Cauchy representation

& WK, vF). (101)

du dv
gzz(K,F)=/2mu(u_ ) /27m‘v(v— 1y

The Corollary follows by choosing |v| proportional to [|a||;:! and [u| proportional to
the inverse norm of K and taking norms.
O

6.3. Estimates on .%°. Given a functional F(X, ¢) we define the rescaled functional
Fr-(X,$) = F(LX,¢1-1) where ¢p-1(z) = L'=%2¢(%). Also for h = (ho, h1)
define hy, = (L'=%2hy, L=%?h,).

Theorem 6. Let G := G(eq, €1). Let V be additive and translation invariant and sup-
pose, for some h, it satisfies: ¥V L~ 'scale polymers X C some unit block A

e )1 (X0llgn < 2. (102)
IfI|K |Gy ,~—3r,n, is sufficiently small, then
1SEDa,rp < OWLY Ky n—3rn, (103)

| S E)|rp < OWLY K|y, - (104)

Proof. The bound on the kernels is the special case where the large field regulator G
is concentrated at ¢ = 0. We only prove the first bound. We give the proof only for
the case of translation invariant K. We rewrite (42) as

FSENZ,p) =Y 1N S (e )p-(Z\ L' X, ) [ [ KX, 921, (105)

N (X1, XN)

where the X; are disjoint but the L-closures X7 overlap and fill LZ. Using

G(Z,$' =GZ\L'X, )" [[ Gr(Xi, pr-1)" (106)

we obtain by (64)
| ENDllen <

ZI/N! Z H(e_V)L—:(Z\L_lX)lIG,hH||K(Xi)HGL,hL-

N (X1,..,XnN)
By (64) and the small V' hypothesis,
e~ Z\ L' X)llen < [ Ie™)-1(A\ L7 X)llgearz-1x0.0 < D).
ACZ
(107)
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Now multiply by I'(Z). By the connectedness we have (yI')(Z) <
Hi(fyF)(L‘lXiL). Furthermore we have the bound (58) for some constant 7(1):

(DXL XY < o)(y 3 (X).

Summing over Z with a pin and using a spanning tree argument’> we obtain

1#Elle,rn < YOO LY Kllgy y-ra)”

N=1

This gives the result.
O

We can replace the hy, by h in the right hand side of the above theorem, because
the norm on the right hand side becomes larger when hj, is increased to h. If we
also know that low dimensional derivatives vanish at zero, we can gain some critical
factors of L~! when we make this replacement, at least for small sets. Our next goal
is to see how this is accomplished.

A key role is played by an estimate dominating functionals K with derivatives
satisfying K,(X,¢ = 0) = 0 for dimn < p by a norm involving only derivatives
with dimn > p for all ¢ (not just ¢ = 0). This originally appeared as Lemma 4.3 in
[BY90] for functionals depending only on O¢. The proof involved using a Sobolev
inequality to dominate fields d¢ by G(0, €) and does not work for plain fields ¢. We
have a modification using the factors e~ to dominate the ¢’s. The details follow.

Lemma 6. There is a constant D such that the sup norm on a small set X satisfies
1llco,x < DLI0 oo, 32 + DL™2(|$]l5, 22\ x
where ||§||, x 1\ x is the L, norm on XL\ X.

Proof. Let Y = X\ X. Note that Y is not empty for a small set X. For z € X we

have
o) = —|Y] /Y ( / d$) dy+ Y] /Y S(y)dy.

The first term is bounded using |z — y| < @(L). The second term is bounded by
[Y|~1/2||¢|l2,y by the Schwarz inequality and since |Y| = (?(L?) the result follows.
a

We define, for p a nonnegative integer,

G(eo, €1, X) = GL(eo = 0,€1, X¥) Gr(eo,e1 =0, XF\ X),  (108)

. d—2 d
dim(n) = ng 2 + nlz, (109)
IKlle,rnam=p =D (h"/n)[[Knllc,r (110)
n:dim(n)>p

2 described in the proof of Lemma 5.1 of [BY90]
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Lemma 7. Suppose K is supported on small sets and K (X, ¢ = 0) = 0 for n with
dimn < p. Let a = min{eoh3, €1h3, e1h3} > 0. Then there exists c(p, a) such that for
all T,

I K Geq,en,rhr, < @ K| GL©,e0),1 b dim>p-

Proof. Let F € (X' x ... x X') be a test function for the derivative K, (X, 1)) and
A=(4,,...,AN). By the fundamental theorem of calculus, if dim(n) < p,

K (X, Fla)= Y / dt ZK (X,t; Fla@9la). (111
m>n,|m|=|n|+1
We evaluate this at ¢ = 1)4. We also have, by a Sobolev inequality, that

100]co,x < 00|00 xx

= _d/2|3¢L|oo L- 'XL

1
L™ o G (0,6, L7 X,
1
< L0 G'H(X,
< ()\/——\/_ X, )

and by Lemma 6, G1,(€y,0) = G(L 2, 0) and a Sobolev inequality

[floo,x < DL|<9¢|OO,XL+DL_d/2|¢|2,XL\X

< o 1 Ll——d/2 Ll—d/2 G"vl 2 x
g - :
< ez [ ot

By these two bounds and |, dt ——— < oo we obtain
y it

Ll—d/z L1_d/2 mo—ng
IKnller < @) > (\/6_1 + \/EE> (112)

m>n,|m|=|n|+1

[-d/2\ ™™
(5%)  Wnlor (113)
We iterate this equation starting with n with dimn < p and obtain
[1-d/2  pi—d/2\ ™o
Killer < CO ( + ) , 114
IKallgr < € > (Z— e

m2>n:dimm=p

(115)

[—d/2\ ™™
(=)
Recall that hy, = (L'=%/?hy, L=%?h;). We multiply both sides by };—7’; and sum over
n with dimn < p to obtain
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1 1 Mmoo
1Kl rh, dimm<p < C®) Z (ho_\/€_1+ho—\/5>

m>n:dim m=p

1 my—mng
Kl A N
(—wa) 1K, 11my dimep

We complete the proof of the lemma by using the hypotheses on € and h to bound

the sum by c(p,a) and then add || K||g 1, gim>p to both sides.
O

Now consider the linearization % of .¥” which is given by

AHENZ)= Y, KX, 9pp-) (e )p-1(Z\ L7 X, p)).
X:XL=LZ

Theorem 7. LetV be translation invariant and let G = G(0, €;), g = G(€g, 0). Suppose
g and h are such that

Ie™)-1Ollg-1,6 <2
for all L™ -polymers X contained in a unit block A.
1. If K(X) is supported on large sets then

I HE6,rn < ML MK gy y-3rphs -

2. Let K(X) be supported on small sets with K,(X,¢ = 0) =0 for dimn < p. Let
a = min{egh3, €1h3, €1h?} > O (as in the last lemma) then there exists C(a,p)
such that

A e,rn < Cla,)LUK gy y-31,hp dimzp-

Remarks. The same estimates hold for the kernels. Notice that in the small set estimate
a factor of L™P is gained if the norm on the right hand side with h;, is bounded in
terms of the norm with h.

Proof. (1) We give the proof -assuming translation invariance of K. Proceeding as in
the proof of Theorem 6 we obtain

IHEN D)o <12 D> IED)ph,
X:XL=LZ
which leads to

A Elg,rn < L Y DL X KX ey by -
XDAy

But for X large we have the bound (yI")(L~'XT) < @(1)L~4"Y(v~3I')(X) which
gives the result.
(2) Let G = G(eg, €1). This time we use
G(Z,¢) = GrL(LZ,¢r-)
GL(X%, 090X\ X, ¢,-097'(Z\ L™ X, ¢)
G(X,¢-09 ' (Z\L7'X,¢)
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and obtain
IAEN Do < Y IKXgn €™ )12\ L7 X) g1
X:XL=LZ
<92 Y IK®llen,
X:XL=LZ
so that

A E N a,rn <L Y DL XK X6 p, -
XDAp

Now use the previous lemma and the bound (yI)(L~'X%) < @) (v 3I)(X) to
complete the proof.
O

Remark. In [BDH93] we have given stronger versions of these theorems that allow a
larger class of polymers, preparing the way for problems such as infrared ¢j.

7. Main Theorem

Now we return to the ¢3 model and study the renormalization group flow using the
machinery we have been developing. The starting point is the density

ZN = Viam (116)
Exp@e™"" ) An)

VNX) = AnVa(Xsun) +unVa(X, vn).
Here Ay = L~ ) and we make a basic mass renormalization by choosing
py = 4805 / un(z — y)dy, (117)
AN

following the suggestion of second order perturbation theory as in Sect. 3. We do not
renormalize the energy.

After N — i renormalization group transformations we have a density Z¥ on A;.
We will find constants 2}V, 4N and polymer activities K;¥ such that

ZN = Wl E AN Ay) (118)

1
XM g pp@e™ v + KN )(A:)
AVa(X, i) + Y Va( X, vy).

12409}

(Hereafter the superscript N is suppressed.)
To write Z; in this form we assume it has been done for 7 and derive the form
for 4 — 1. For the fluctuation step we have

pe*Z; = ePlAlErpAt) (119)
il 4] g.’z:p(l]e—v” + K%
VHX) = NVaX, oty + VX, o).
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Here A* =.% (A;) and we have defined
K*=F(K)=A*—0e V. (120)

The Wick ordering v* = v; — C now matches the free measure.
Next we extract F' = Fy + F} where

Fy(Y)
Fy(Y)

ao(Y), (121)
a1 (V)Va(Y, v"). (122)

The parameters ay(Y), a1 (Y) are still to be specified, but they will be invariant under
lattice symmetries. Then we find

pe x Z; = rWlgenmeV" 4 K*) (123)
VAX) = AVaX,vh) + (us + 6ps)Va(X, v*)
where
K* = &K F), (124)
62 = ) aoY), (125)
YoA
b = — Y on(Y). (126)
YoA

Finally we scale to obtain Z;_; which has the claimed form if we define

Ki1 = (K% (127)
Aic1 = L

pic1 = L*[p + 6l

Q1 = L[02;+69].

Note that K;_; = (&% )(K;) and that our notation can be summarized by

K2kt Lk LK.

We shall write K; = Q; exp(—V;) + R; where @; includes the terms which are
second order in A; and R; is the remainder. We track the flow of the Q; as in
perturbation theory (Chapter 3), now including the 9¢ terms and constants and give
general bounds on the remainder.

We introduce quantities Q*"(v, w; X, ¢) for 0 < n < 3 by setting

Qz"(v,w;AUA’,¢)=/A oa A:¢(w)” ww(T —y) gy dzdy  (128)
XAUA’ x

if | X| = 1,2 and defining Q2. (v, w; X, ¢) = 0 if | X| > 3. Then the following formula
defines Q;:

QiX, ) = N[8Q%u;,wi; X, B) +36Q% (v, (w;)*; X, ) + (129)
48Q%(wi)*x5; X, ¢) + 12Q°((wy)*x5; X)1 + Qi(X, #).
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Here x(z,y) =1 if Ay U A, is a small set (A, = the unit block containing z), and
is 0 otherwise. Also x©=1— x and x(z,y) = x(Lz, Ly). The last term Q}(X, ¢) is
supported on small sets X with |X| < 2 and has the form

QUX,$) =\ /X . d(@)g (X5 2, y)(0,d)(y)dzdy (130)

X

where the kernel g; is a function (not just a measure) to be specified further.

All the functionals K;,V;, @,, R, are to be regarded as functions of ¢ € C(A)).
For V,Q one replaces ¢(x) by (@, x) and (0,¢)(x) by ¢(u,z). As functions of ¢
these functionals have norms of the form discussed in Sect. 5.

We now make specific choices for the norms

1. = II'llc.rh., (131)
1 = IIn- (132)

We take
G; = G0, k;) (133)

where G is given by (53) and «; = )\i/ *. The large set regulator I is as defined in
Sect. 5. Finally
B = (hao, ) = (A, /4, 6077 (134)

for some constant 6. This is the largest choice of h consistent with Theorem 1.
As a reference point for the mass we take a local version of second order pertur-
bation theory:

fii = PN~ fuy — 48X / (wi(z — y))’xr(z, y)dzdy. (135)
AXAi

As noted previously this is bounded uniformly in N. For the change in the second
order mass we use

bf1; = —48\? /A ) W@ — y)’*x(z,y) — wilz — y)*xr(z, y)dzdy (136)
XA,

where we recall that w* = w; + C. We still have fi,_; = L?(fi; + 61;).

All the results to follow are obtained under the following hypotheses. Fix 0 < € <
1/2. We assume that § is sufficiently small, that L is sufficiently large (depending on
), and that X is sufficiently small (depending on 4, L). Constants that may depend on
6 are denoted by ¢7(1) and constants that may depend on L are denoted by the letter
C whose value may vary from line to line. A constant of this type whose value does
not vary from line to line is denoted by Cy, C;, etc.

Now we are ready to state the main theorem which gives bounds on the poly-
mer activities K; and the effective masses p; uniform in N. (Since we have not
renormalized the energy we do not get good bounds on §2;.)

Theorem 8. Under the above hypotheses there is a choice of ay(Y),a1(Y) and a
constant C so that for all i, N with 0 < i < N the polymer activities have the form

Ki=Q.exp(=V) + R;

where |Q'|,r1 < C1\? and
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IRl < A~
|Ri| < X~°
s — ) < N7

The bounds on R; are smaller than the following bounds on Qie_vi so the R;
really are remainder terms.

Lemma 8. There is a constant C, such that for all i, N with0 <i < N
Qie™villi < Cz)\;/z < )\;/2—5
Qie™"| < G2 <A

-1/2 L
i 221> a, Corollary 1 implies
1Qie™ " [l < @W)|Qilyr .-

To estimate |Q;|yr,», We note that

Proof. Since k;A

/ [wP(z,y)|dedy < Cexpl—ad(A,A)], forp=1,2
Ax A’

/ [w?(z, y)|x5(x, y)dzdy < Cexpl—ad(4,A)], forp=3,4
AxXA’

for some C and 0 < o < 1, both depending on L. Note that in the second bound the
characteristic function enforces that |x — y| > 1/L: this is needed since w;(z,y) has
the singularity @(|z — y|™') as |z — y| — 0. Using also

> (OIA, A)eme¥a4) < ¢

A/

we find that the first four terms in (); have norms bounded by CA2h¢. For the last
term we use |Q}|yrn; = h?|Q}|yr,1 < C1A2h2. Thus we have

|Qilyrp, < CAIRS < Cz>\zl-/2-

Similarly,
1Qie™Ve |1 < |Qilyr1 < CoA2.

O
The proof of Theorem 8 is by induction on ¢ working down from ¢ = N. Clearly
the result is true for ¢ = NV, since Ky = 0. The proof of the inductive step ¢ — 7 — 1

is broken up into three lemmas, each analyzing a piece of the transformation K; ;| =
SEFK;.

To control the fluctuation step we introduce a norm || - || with regulators:
G'X,¢) = GO,ki-1;L7'X,¢1), (137)
"Xy = X)X,
Rt = (1/2)h

and also the norm | - |4 = | - |1+ 1/5.
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Lemma 9. K* has the form
K* = Q*exp(-V* + R*
where
Q" = N[BQU0", wh) +36Q° ", (W) +48Q(W" — (wi’xz)
+12Q (" — 4w C + W) Ixw)] + Q)+ Ao}
and where

IR*ls < @A
IRy < OMNT

The extraction step is controlled using the norm || - ||.. defined with the regulators
G* =G*, I'"'(X) =v(X)’I'(X), and h* = h*. We also define | - |, = |- |« 1/2.

Lemma 10. K* has the form
K*=Q%exp(-V*)+ R* + S*
with
Q" = N[BQ°C*,u")+36Q40", (wh?)
+H8QA(WN ) + 12Q°(Wx)] + QY.

Here Q! has the form (130) and satisfies |Q} |yr,1 < O)C1 2. Also RE(X, ¢ =0) =
0 for X small and dimn =ngy/2 +3n,/2 < 2 and

IR |l < OGN
[R*]. < @I
Is*). < oA
1S, < @M/
|Bps — 6| < OGN

Finally the proof of the theorem is completed by the scaling step:

Lemma 11. K;_; = #(K*),Q._, and p;_y = L?(p, + 611;) satisfy the conditions of
Theorem 8.

Now we prove each of these lemmas.

Proof of lemma 9. The proof relies on Theorems 2,3 and 4. These will apply once we
have checked that the homotopy hypothesis 78 can be satisfied since ||C;|lg < C for
all 7 (even for ¢ = 1) which follows from standard bounds on such covariances. In the
Appendix to this section we show that the homotopy hypothesis is satisfied.

Let B(t) = (O + Q(t)e~V® where



176 D. Brydges, J. Dimock, T.R. Hurd

V(t, X)
Q)

AiVa(X, v) + p Va(X, ve)
A2 [8Q6<vt, we) +36Q* vy, w?) + 48Q2(vy, wl — wix 1)

+12Q°w? — @twlC + whyr) + Q' + tACQ’]

with v; = v; — tC and w; = w; + tC. Then B(t) interpolates between B(0) = (O +
Q:)eV+ and B(1) = (O+Q%)e~"". It is also an approximate solution of the fluctuation
equation (35). Indeed we will show that the discrepency

OB OB OB
PO =5 — Ak C(aw aw)
satisfies
C\i, (138)
CA. (139)

lE®|: <
|Et)| <

Recalling that A(t) = Fi(A;) is the exact flow of the fluctuation equation, and
that A* = A(1), it follows from Theorem 3 that

R* A(1) — B(1)

1 1
| Fwxtri Rt~ [ (F_onBo: ot
0 0
Now the proof of Lemma 9 follows from Theorem 4 since

IR |ls < @)||R:; + & Wysup | ED)); < O (140)

Similarly using Theorem 4 we get |R*|s < @(1)\3 .
We prove (138) and (139) by first defining

VO IVD ¢ x = AU A

1
J(X) = { 2 Jaixasanx a €@~ D50 o6t , (141)
0 otherwise,
and then writing
Et) = (% —Ac+ J) Qe VO® call this I,
8 —V(t) .
+Q) - | = — Ac call this I1,
BQ(t) fe=V® _
C( 96 09 call this 171,
+ {(% — A)Q(t) — JEI} eV call this IV,
—(J = JO)e”V® call this V,
V(@) 4]
_C d0e o AQ(t)e
d¢ ’ 0¢
1, /0Qt)e V® 9Qit)eV® .
—EC( 96 0 96 call this V1.



Short Distance Behavior of (¢*)3 177

(The first four terms come from (% — A¢)B and the last two from —%C(% gg—g).)

We now proceed to estimate each term

1. I vanishes because ( ?9% — Ac)V(t) = 0 by the definition of Wick ordering.

2. IT has the form QPe~V® for some polynomial P. The polynomial has terms
labeled by two vertex tree diagrams. (Again we use (% —Ac)V(t) = 0 to suppress
the single vertex term.) Each vertex either comes from a mass counterterm and is
O(u;) = (P(\}) or from the interaction and is @(\;).

By Corollary 1 and a variation of Lemma 8 we estimate this term by

IQPe™"®|l, < |QPlyrp, (142)
< |Q|’yF,hl |P|'yl“,hl
<

CA;.
Here the bound on P can be patterned on the bound on (). Similarly
|QPe~V®| < O (143)

3. IIT has the form Pe~V® where P is a polynomial with Z(\?) coefficients (or
smaller). It has terms labeled by three vertex tree diagrams localized in at most
two squares. More precisely it is a tree provided we regard the terms from @ as
having single propagators w;,w?,w>x$ or g;. Since there are at most 8 fields in
any term, it is straightforward to bound the norm by CA?h® < C); and the kernel

norm by CA}. In making this estimate for the terms involving ¢; one can use the
fact that it is supported on small sets X and that for A, A’ ¢ X

/ ¢ (X: 2, y)ldady < A2 Qlyr < O
AxXA!

4. IV +V = Pe~V® where P is a two vertex tree diagram of the form @(\;u;) +
O(u?), ie. at least one vertex is from the mass counterterm. To see this we
compute

X2 [8Q%wi, ©) — B)OQ (e, w,C) (144)
+(36)(2)Q" (vt, w;C) — (36)(H)Q* (v, wi C)
+(48)(3)Q*(vy, w2 C) — 48Q°(w3C — w3Cxy1)
+12Q%4wiC — 4w;?’CxL)}

= 8XQ%w, )

5]
(5 ~ Ac)Q(®)

and
J = 8X2Q%(vy, C) + O\ i) + O(3). (145)

These remainder terms have norms bounded by CA}h} < CA? and kernel norms
bounded by C\>.
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5. VI can also be written in the form Pe~V® and treated similarly, although the
details are a bit more involved. For example, one contribution to P evaluated on
X=A1UAUA3U A, is

ov(4y 3V(A3))
9 ’ 99 )°

This is a product of three tree diagrams. Each diagram has @(\?) coefficients
and at most 6 fields for an C/\Z!/ ? bound. Overall the term is bounded by C’/\f/ 2,
Note that the localizations overlap in such a way that in the sum over X there is
always adequate decay to cancel the growth of vI'(X): do the sums in the order

As, A3, Ay,

1/2Q(A; U A)Q(A3 U Ay) C (

O

Proof of lemma 10. We write
K* = &(K* F) = &(K*, F)+ &(K*, F)

where & is the linearization of the extraction step and &>, is the remainder. The

first term is Y
E(K* F)y=K*"—Fe "

which, if we write F' = Fg + Ffg, can be expressed as
(K F)=(@Q" — Fele™" +(R* — Fre™¥").

Now K* can be written in the form Q*e~"" + R* + S* if we define

Q" = Q'-Fy, (146)
R* = (R'— Fre™ V"), (147)
S* = &KL F)+QeV —eV). (148)

We choose Fy and FR to cancel the local low order terms in ¢ in Q* and R* for
small sets. Let X = AU A’ be a small set. We define Fo(X) by taking the constant
terms in Q*, and also inserting the identity

1 d
HX)PWY) = / dz |(¢(2))* + / —P(Vz2(8)P(7y=(9)) (149)
1X| Jx o ds

into the Q* term in Q¥ and retaining the first term. Here +,,(s) is some standard
choice of path in X from z to z. This can be done in a way that is invariant under
lattice symmetries (see [BK93] for a detailed discussion). The complete definition of
Fg is then

Fo(X) = 1222Q%X, (w** — 4w?C — whxr) + AcQ, (150)
+48)7 [L / : d2(¢(z))2} / [y — wixr(z,y)] dzdy
|X| X AXAUA' XA

for X = AU A’ and small and Fp(X) = 0 otherwise.
Notice that this has the form
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Fo(X) = apg(X)| X| + a1(X)Va(X, v¥)
where
4872

[(w*Yx — w)xr]
|X‘ AXA'UA' XA

a19(X) =

and qy satisfies |ap(X)| < CA2. The Q extractions lead to the perturbative change in
the mass (cf. Eq. (136))

= ) aigX)=—48X / (")’ x — wixr] = 6. (151)
XoA AxA,

The definition of Q* = Q¥ — F(y agrees with the definition in the lemma provided
we define
{ =@ +6Q (152)

where for X = AU A’ and small

5QUX) = 482 / de dy [(w*) — wix)(z, )
AXA'UA' X A

1 1 g
[|7(—| /X dz /0 75 P02=(NP(y=(8))ds | -

We redefine it as a functional of i) by carrying out the s derivatives and replacing
(Oud)(x) = 0u3(x,0) by 9(x, 1). Then 6Q has the required form.

Taking into account that the leading singularities in (w*)* and w? cancel so that
(w*)® — w}? is locally integrable uniformly in ¢ and N, we can bound §Q using the
techniques in the proof of Lemma 8 and obtain |6Q|,r,;1 < C)\? provided C is
sufficiently large; this fixes C;. Then |Q"|,r1 < @(1)CA\?

For the choice of Fr we proceed similarly. Let R"<2 be the expansion of R*
to second order in ¢ on small sets and zero on large sets. In the quadratic piece we
localize the ¢ dependence using (149). This means we replace R*<? by R»<2 — §R
where

1 'd
sR=1/2 [ Rio(X, 00,0l [ = [ S-000000(dstdady

Then we choose Fi so that (Fre—V")S% = R*<2 — §R. We find we should take (for
small sets only):
Fr(X) = aor(X)|X| + au (X)Va(X, v¥)

where agg, a1 g are the solutions of the equations

R*(X,0) (153)
X! / R (X, 0: 2, y)drdy.

(aor(X) — a1 r(X)v*(0))e™®

(a1r(X) — aor(X)a)e™®

Here a, b are the coefficients of the quadratic and constant terms in V*:

—6A0*(0) + 15
3N@HO) — piv*(0).

[S ]
|
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The contribution to the change in mass is by definition 6u; — §41; and is given by

i—6hi=— ) air(X).

X>A

Now taking into account that v#(0) is bounded we have that a,b are @();), and so
one can show

1618 — 8f1i) < D laur(X)] < @) Ry < (DN
XDA

which gives the bound on éu; — 8.
We write

R*=(R* — Fre V") = [R* — R"<2 + R+ [(Fre V)S2 — Fre V1.  (154)

Note that in the term 6R we can again replace 9,,¢ by ¥(x, 1) and then R},(X, ¢ =
0) = 0 for X small and dim(n) < 2 as claimed. To bound R* note that the terms
l6R||¢ and ||R* — R%<2||4 are bounded by @(1)||R*||s < @(1)A"¢. Since ag =
OO we also have |[FreV — (Fre™V)<2|ly < CAY?™° < @A™, Thus
IR« < |IR*||l# < @)A1, Similarly the kernel norm satisfies | R*|. < Z(1)A\3C.

Finally consider S*. For the bound on &5,(K*, F) we shall apply Corollary 2
The hypothesis (98) is verified by using Theorem 1 with a value = Z(1)A\'/2. With
la|l = ||awol| + 7 |c1 || we find that

&K Pl < OQ)|al el K* ||
|E(KH, P < O)|lalr |[K*s.

Since ||K*||y < @(1)/\2/2—6, [K*s < @()A7C, and |||+ < C’)\?/z we obtain the
bounds @’(1)/\2/2_e and @(I)AZ/Z_E. Finally Q*(e‘V” — e~ "V") supports a similar
bound (details are left to the reader) and we have the required ||S*||. < @(1))\3/ e

and |S*[, < @(I)AZ/ 7€ This completes the proof of Lemma 10.
O

Proof of lemma 11. We have
Ki 1 = LA (K*) = A(K*) + KH(K™)
where .4 is the linearization of .’ and .4, is the remainder and further
AEK™) = AQ ™) + AR + AS").

Let .70 be the linearized scaling operator with V = 0, that is

KUKNZ, )= Y KX, pp-).
X:XL=LZ
Then the first term is computed as
Qe ) =A@ = Qimre

provided we define
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Qé—l = «%O(Q”)
The remainder is then given by
Ri—1 = SKa(K™) + A(S™) + AR). (155)

To estimate the remainder we use Theorem 6 and Theorem 7 to bound each term
separately. Thus we need that

™" D -1Xllghiey = eV (XOlg ey < 2

holds for any L~! scale polymer X C A, both for g = 1 (and hence for G;_;) and for
g = G(—¢p,0) with ¢ = a/\i__ll/ 2and a = (1) (but small). This follows by Theorem
1.

The first two terms of (155) are higher order in A; than we need, and we use this
extra smallness to cancel any growth factor. By Theorem 6 and Lemma 10 we have

that s — #(sK™*) is analytic in say |s| < A, 1/2+¢/2 and is bounded there by
L (KE")ie1 < OML|sK*||, < @)LPCA!.

Since ) FK)
wy 4 S
FK = f{ 261"

—1/2+¢/2

K3

around the circle |s| = A we get the bound

|Z2(E )iy < GOLPON”? < O,
Similarly we have
1 AESMlli-1 < WL < GAIE.

For the last term we need the more delicate estimate given by Theorem 7. Sepa-
rating large and small set contributions gives

[ AR|im1 < @)L R ||« + @)L || R¥|| G+, 1 (s 1), dim>2

where .
(h'i—l)L - (L_3/4(S)\,L_l/ ,L_7/46A,L-_1/4),
The theorem is applicable since
min{eph?_,, k;_1h?_,} =min{a,1} =a = @(1) > 0.

Now we can extract some powers of L~! in the second term in passing from (h;_1)z,
to h* = (%6/\;1/4, %6)\;1/4). The worst term with dim > 2 is a ¢ J¢ term which
gives L~>/2, Then we may continue with

[ SHR*)|im1 < OQ)LY/2N<

Combining the above bounds gives the required result || R;_[|;—; < @(1)L/2\]7¢ <
Mf, where we use \; = L1\ .

Now for the bound on the kernels of R;_;. Again for the first two terms of (155)
we have a higher power of \; than we need:
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| KoK < OMLPA*
< OMNE
A < eI
< O

And for the last term we again use Theorem 7 to obtain:
[A(R"| < é(l)L_”R*l* + @)L R | r+ 1y, dvm>2
< OQ)LAE.
Combining the above we get the required |R;_;|r < @’(I)L)\'f‘6 < Af’:f.

The previous bound is also a model for the bound on Q)_, = #%Q"). Since
(Q"n(X,0) =0 for dim(n) < 2 we have as above

|Qi—ilyr < OOLIQ" |y < OMCILA] < G
Finally we note that the mass term has the correct behavior:
it = fiea] < LP|us — fual + L|6ps — 84
< O)PNTE
< NTL

This completes the proof of Lemma 11 and the main theorem.

7.1. Appendix: The Homotopy Hypothesis. We have defined G; = G(0,k;) and
G*X,¢) = G(0,K;_1; L' X, ¢1). Recall that k; = v/X;. To apply Theorems 2,3
and 4 let G;(t) be the geometric interpolation

G;(t) = Gi ' (vGH, (156)
where t € [0,1] and vy = y(X) = 21X1.

Lemma 12. Given L > 2, there exists Ao > 0 such that VA € [0, \], Vi > 0 and
Vs <t e[0,1]

i—-sc * Gi(s, X) < Gy(t, X). (157)
Proof. Let U(s, ¢).:= log G(s, ¢). It is enough to prove that
oU 1 _,0U oU
- - - —O(=, =) >
s AcU 20(8¢’8¢)“0 (158)
because of the implications
ou 1 _oU oU 0G(s)
= _ — —C(=. =y > - >
s AcU 20( 55 f9¢) 20 = pe-sc* < 55 ACG(S)) >0

= gs'ﬂ(t—s)C * G(s,X) >0 for s € (0,t)

=  We-s)c * G(s, X) < G(t, X).
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From the definitions
U =tlog@)|X|+ VA Y, /|aa¢|2 (L2lel=3/2 _ 1)t+1) (159)
1<]a|<s

from which we verify (158): for example, if we choose A small so that

Vo sup (0205 C(x — y)| (160)

T,y

is small for 1 < |a], |B] < s then the ¢ independent term in OU /0t dominates AcU
U U

for all 7. To dominate C(a—¢, 3—5), we use
8U ou o
OG5 < 101N 30 et [ o a1
1<]|a|<s

which is smaller than the ¢ dependent terms in QU /0t when /Ao||C]| is sufficiently
small. Here ||C|| is an L, norm in £ —y on the (matrix-valued) kernels |6§‘85 C(z—y)|,

1< al,|8] < s.
O

8. The Generating Functional and Correlations

Now we consider the generating functional SV (p). From (22) and (118) this can be
written

exp (—1/2(p, np) + 20)S™ (p),
(EzpA) WA, ¢ = itnp) = A) (A, iTnp). (162)

SN (p)
B 0)

The truncated correlation functions are the functional derivatives of log S(p) with
respect to p. For the two point function one has

2

o 0
(@ode)" = (-5

log S + ‘
~ og S(s1p1 + s5202) o

8% ~
= 0] + 1 SN ‘
(1,0 p2) 85,05, 0g 57 (s1p1 + $202) o

and for the truncated n-point function

U3

. '
(860, $p) T = (i) G log S(s1p1 + -+ supu)|_

Now we can give a bound on the correlation functions that is uniform in N.

Theorem 9. Suppose the hypotheses of Theorem 8 hold.

1. For any p > 3 there is a constant R so that S(p) is analytic in the ball ||p||, <
R~'\"1/4 in LP(A) and satisfies there

1S(p) — 1| < 1/2.
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2. For p; € LP(A)
|{@(01)(p2)) — (o1, Tnp)| < 22RENY2|| 1|l o2l

(@), - (o))" | < 0BT llpill,-

i=1

A

Proof. (1.) We start with the analyticity properties of
AN (A, = e AP L KN (A, 9).

By the main theorem KJ¥(A, ) is analytic in ||[¢o]lco < ho.|[¥1]lcc < ho and if we
make a Taylor expansion around 7 = 0 we find that

|Kg' (4, 9)] < T(A)1 - “—’/’,j—”ﬁ)—la - %)“IIK(%V o, 10
0 0

This gives analyticity and a bound for K (A,¢) = K (A,1,). If we also use

1Ko llg,rmo
< 2X\!1/2=¢ and take ||$]|oo < ho/2and ||0¢|leo < ho/2 we find

K (A, ¢) < 1/4.

With the same restrictions on ¢ we have |VV(A, ¢)| < @A = @(1)6. Thus
taking 6 smaller if necessary we have

%" (A9 _ 1| < 1/4.

Thus if ||@]|c and ||0¢@||co are less than hg/2 = SA~'/4/2 we have that A) (A, ¢) is
analytic and satisfies
145'(A, ) — 1] < 1/2.

Now specialize to S(p) = AY (A, iy p). Since T (x) and Ty (z) have the sin-
gularities @(|z|~!) and @(]x|~2), the best we can say about both of them is that
they are in L9(A) for ¢ < 3/2. For p > 3 take ¢ < 3/2 s0 1/g+1/p = 1. Let
R, = max(||Un||q, ||00n]||q)- By Young’s inequality we have

[9n * plloo < Ryllpllp
109N * pllc < Rqllpllp-

Thus if ||p||, < R~'A~/4 with R = 2R, /5 these quantities are bounded by 6A~1/4/2
and so S(p) is analytic and satisfies |S(p) — 1] < 1/2.

(2.) By part (1.) for ||p|l, < R'A\™'/* we have that log S(p) is analytic and
satisfies |log S(p)| < 1. It follows that for ||p;ll, < R™'A~1/4n~! the function
log S(s1p1 + - - - + Sppy) is analytic in |s;| < 1 and is also bounded by 1. By Cauchy
bounds the derivatives satisfy

o" ~
( [asl—as‘ log S(s1p1 +"'+3npn)] ‘ <1

s=0

This gives the bounds of the theorem with the restriction on the p;. The general case
of p; € LP(A) follows by linearity.
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Remarks. The fact that the test functions can be in FP for any p > 3 is a limitation
on how singular the truncated correlation functions can be at coinciding points. The
result is probably not optimal and one could try for a lower value of p and hence
more regularity. The best one could hope for would be p > 12/11, for example this
is needed so that ViV (A, i@np) is well defined. In any case to do better one would
have to get better regularity for the derivatives of the polymer activities K zN , possibly
by using a stronger norm.
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